9.1.2--1不等式的性质

合集下载

9.1.2-不等式的性质(2)

9.1.2-不等式的性质(2)

探索提高:
1、分别比较下列各式中左右两个算式的结果 大小(在横线上填“>,<,=”)
> (1)32 42 _____234;
= (2)22 22 ______222; > (3)(2)2 (5)2 ______2(2)(5);
> (4)(1)2 (2)2 _____来自_212;2323
通过观察归纳,你能写出这种规律的一般式吗?
2、如果
x y
>0,那么xy

0;
3、如果a>-1,那么a-b > -1-b;
4、若a<b,则a-b < 0;
5、若a>b,则 a
3

b 3

6、若2a>3a,则a是 负 数;
7、若
a 2

a 3
,则a是

数;
8、若ax<a,且x>1,则a是 负 数。
例1、解不等式,并将解集在数轴上表示出来. 2x-1<4x+13
在数轴上表示V的取值范围如图:
0
105
例5、三角形中任意两边之差与第三边有怎样的 大小关系?
解:如图,设a、b、c为任意一 a
b
个三角形的三条边的长,则:
c
a+b>c,b+c>a,c+a>b.
由式子a+b>c移项可得: a>c-b,b>c-a. 类似地,由式子b+c>a及c+a>b移项可得:
c>a-b,b>a-c及c>b-a,a>b-c. 从中你得到什么规律?
不等式性质1: 若a>b,则a±c>b±c.
不等式性质2:若a>b,c >0,则ac>bc(或 a b ). cc
不等式性质3:若a>b,c <0,则ac<bc(或 a b ). cc

新人教版数学七年级下册第九章《9.1.2不等式的性质(2)》公开课课件PPT

新人教版数学七年级下册第九章《9.1.2不等式的性质(2)》公开课课件PPT

例3 解不等式 3(1-x)>2(1-2x)
解: 去括号,得 3-3 x >2-4x 移项,得 -3x +4x >-3+2 合并同类项,得 x >-1 ∴原不等式的解集是x >-1
比一比,谁做得又快又好!
解下列不等式,并把它们的解集在数轴上 表示出来。
(1)x+4>3
(2)7x+6 ≥ 6x+3
学科网
不等式的基本性质1: 如果a >b,那么a±c>b±c. 就是说,不等式两边都加上 (或减去)同一个数(或式子), 不等号方向不变。
不等式基本性质2:
a b 如果a >b,c > 0 ,那么 ac>bc(或 c c )
就是说不等式的两边都乘以(或除以)同一个 正数,不等号的方向不变。 不等式基本性质3:
(3)7x-1 ≤ 6x+1 (4)3-5x < 2(2-3x)
例如 解不等式3+3x>2+4x 解:移项,得
-4x+3x>2- 3 合并同类项,得 -x>-1
∴ 原不等式的解集是
x<1
写不等式的解集时,要把表示未知数 的字母写在不等号的左边。
思考
1、求不等式
3(x-3)+6 < 2x+1的正整数 解。
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
问题1:实心小圆点和空心小圆圈分别在什么时候适用
例2
解一元一次不等式 8x-2≤7x+3, 并把它的解在数轴上表示出来。
解:移项,得 8x- 7x ≤3+2 ∴ x ≤5
这个不等式的解集在数轴上表示如下:
-1 0 1 2 3 4 5 6 7
5 x 3m m 5 m为何值时,方程 4 2 4 的解是非正数.

七年级数学下《9.1.2 不等式的性质》教学反思

七年级数学下《9.1.2 不等式的性质》教学反思

七年级数学下《9.1.2 不等式的性质》教学反思教后记不等式的性质是人教版七班级下册第九章《不等式与不等式组》的第二节课,本节课主要学习不等式的三个基本性质,通过实例导入课题,形成不等式的基本性质。

不等式的性质也是中学数学的重要内容,它渗透到了中学数学课本的许多章节,在实际问题中被广泛应用,可以说它是解决其它数学问题的一种有利工具。

因此不等式的性质的学习对培育同学分析问题,解决问题的技能,体会数学的价值都有较大的作用。

在此基础上使我们认识到数学来自于实践,也应回到实践中去,从而提高学习数学的爱好,培育自觉运用数学的意识。

现就今日在初一级1班上的《不等式的性质》这节课,进行反思如下:一、课前预备应当对该知识点进行深刻的认识和理解不等式的三个基本性质是本章解一元一次不等的基础,也是证明不等式主要依据。

解不等式就是用不等式的性质来施行一系列的等价变换。

因此,在课前预备工作上要正确认识和理解不等式的性质。

在教学过程中,要敏捷的应用不等式的性质解一元一次不等式。

由于一元一次不等式的解法与一元一次方程的解法非常相像,所以在学习本节时,与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区分与联系。

在同学已经理解一元一次不等式的解集的基础上再进一步让同学通过数轴表示不等式的解集,通过数形结合解一元一次不等式。

二、教学过程中知识点的落实在本节课中,要求同学学习的主要内容是不等式的三条性质,及运用这三条性质对不等式进行正确变形来解不等式。

假如径直就给同学们讲不等式有这样的三条性质,然后就是反复的运用、反复的操练的话,同学学起来就会觉得没有味道,对数学有一种厌烦感,所以我在上这一节课时就想到了运用类比的思想来学习这节课的内容,这样同学既学会了新知识又复习了旧知识,还把他们联系到了一起,而且同学还觉得这节课学的知识其实好象是旧知识,只是进行了一点改动,接受起来比较的简单,掌控起来也比较的简单。

这个方法可以说是贯穿了整堂新课的学习。

《不等式的性质》教学设计

《不等式的性质》教学设计
2.不等式的性质内容是什么?
3.你觉得在做题过程中应注意哪些问题?
学生自己小结,自由发言谈本节课的感受与收获,最后老师强调补充
通过小节使学生对本节课内容进行系统掌握,明了重难点
巩固练习
1.判断下列各题是否正确?正确的打“√”,错误的打“×”
(1)不等式两边同时乘以一个整数,不等号方向不变.()
(2)若a<b,则a+c<b+c.()
D.a≤0
例3:
(1)两边都乘,得
(2),两边都乘15,得
(3),则
a-4,根据
(4)若,则c0,
根据
学生在练习本上做相应例题,并回答
回答时说明原因理由,解释清楚根据
通过反馈校正检验学生对不等式的性质2和不等式的性质3的掌握情况,纠正并及时强调学生出现的错误,做到查漏补缺
课堂小结
1.本节课你都有哪些收获?
符号指的是正、负号
思考问题,并回答,重点标记该结论
重点强调这两点并让学生重点标记,避免学生在表达和做题过程中出错
反馈校正
例1:将下列不等式化成“x>a”或“x<a”的形式,并在数轴上表示:
(1)-2x>3;
(2)3x<-9.
例2:若x>y,则ax>ay,那么a一定为()
A.a>0
B.a<0
C.a≥0
教学设计
课题名称
9.1.2不等式的性质
教材
内容分析(课程标准要求)
《不等式的性质》是人教版初中数学教材七年级下册第9章第1节内容。在此之前学生已学习了等式的基本性质,这为过渡到本节的学习起着铺垫作用。根据《课程标准要求》不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。

初中不等式的性质教案

初中不等式的性质教案

初中不等式的性质教案篇一:不等式的性质教案课题: 9.1.2不等式的性质(1)课型:新授课主备人:张跃进篇二:不等式的基本性质教案课题1.2 不等式的基本性质教学目标知识与能力:1.探索并掌握不等式的基本性质;2. 运用不等式的基本性质将不等式变形。

方法与过程:通过对比不等式的性质和等式的性质,培养学生的求异思维,提高学生的辨别能力.情感态度与价值观:通过大家对不等式性质的探索,培养学生的钻研精神,同时还加强了同学间的合作与交流.教学重点:掌握不等式的基本性质并能正确运用将不等式变形教学难点:不等式基本性质3的运用教学方法:类推探究法教具准备:小黑板教学过程Ⅰ.复习回顾,导入新课等式的基本性质等式的基本性质1:等式两边同时加(或减)同一个代数式,所得结果仍是等式.等式的基本性质2:等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导(1)提问1:如果在不等式的两边都加或减同一个整式,不等号的方向会怎么样?举例说明3<53+2<5+2 3-2<5-23+5<5+5 3-5<5-53+a<5+a 3-a<5-a3+ a+b <5+ a+b 3-(a+b) <5-( a+b)不等式的基本性质1:不等式的两边都加(或减)同一个整式,不等号的方向不变。

很好,不等式的这一条性质和等式的性质相似。

下面继续进行探究。

(2)提问2如果在不等式的两边都乘同一个数,不等号的方向会怎么样?学生独立完成做一做,小组互相讨论总结23;2÷=2×53×5=3÷;2÷2=2×3×=3÷2;121215152÷(-1)=2×(-1)3×(-1)=3÷(-1);2÷(?)=2×(-5)2×(-5)=3÷(?);1122(3)如果在不等式的两边都除以同一个数,不等号的方向会怎么样?(乘一个不为0的数等于除以这个数的倒数)不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号方向不变。

2023~2024学年 9.1.2 课时1 不等式的性质1、2、3(17页)

2023~2024学年 9.1.2 课时1 不等式的性质1、2、3(17页)


a c

b c

不等式的性质3:
不等式两边乘(或除以)同一个负数,不等号的方向改变.
符号语言:
如果a>b,c<0,那么ac<bc

a<b cc

(1)等式的性质有2条,它们表示了等式两边进行同样的运算 时相等关系不变;
(2)不等式的性质有3条,它们表示了不等式两边进行相同的 运算时大小关系有时改变,有时不变.对于乘法(或除法)运算, 要对乘(或除以)的数的正负分别进行讨论.
性 不等式两边加(或减)同一个数 质1 (或式子),不等号的方向不
变.
如果a>b, 那么a±c>b±c.
性 不等式两边乘(或除 质2
以)同一个正数,不
等号的方向不变.
性 质3
不等式两边乘(或除
以)同一个负数,不
等号的方向改变.
如果a>b,c>0,
那么 ac>bc

a c

b c

如果a>b,c<0,
第九章 不等式与不等式组 9.1.2 课时1 不等式的性质1、2、3
学习目标
1.探索并理解不等式的性质,体会不等式与等式的基本性质的异同. 2.应用不等式的基本性质进行变形,体会归纳和类比的方法.
复习导入 等式
文字语言
符号语言
等式两边加(或减)同一个数
性质1 (或式子),结果仍相等.
如果a=b,那么 a+c=b + c, a-c=b-c.
把“数”的范围扩大到整式可以吗? 可以
不等式的性质1: 不等式的两边都加上(或减去)同一个数(或式子) ,不等号
的方向不变.
符号语言: 如果a>b,那么a±c>b±c.
用“<”或“>”填空,并总结其中的规律: (1)6>2,6×5 >2×5,

人教版初一数学下册9.1.2不等式的性质(第一课时)教学设计

人教版初一数学下册9.1.2不等式的性质(第一课时)教学设计

9.1.2不等式的性质(第一课时)教学设计莆田中山中学雍俊山教学目标1.探索并掌握不等式的性质;2.会用不等式的基本性质进行化简;3.培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力;4.培养学生积极主动的参与意识和勇敢尝试、探索的精神。

教学重难点教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3。

教学难点:正确应用不等式的三条基本性质进行不等式变形。

教学方法通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握。

教学过程活动1 复习等式的基本性质问题:等式的基本性质是什么?•性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.•性质2:等式两边同时乘一个数(或除以同一个不为0的数),所得结果仍是等式.活动2 探索不等式的性质问题1:用“<”或“>”填空,并总结其中的规律:(1)若5>3 ,则5+2 3+2,5- 2 3-2;(2)若- 1 <3 ,则-1+2 3+2,-1- 3 3-3;规律:不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.如果a>b ,那么a+c >b+c(或a-c >b-c)b a b +c a +c o问题2:用“<”或“>”填空,并总结其中的规律:(1)若6 > 2,则6× 5 ___2×5, 6 ÷ 5___ 2 ÷ 5;规律:不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.2、如果 a>b ,c>0 ,那么ac > bc 或 利用数轴解释:aac o b bc问题3:用“<”或“>”填空,并总结其中的规律:(1)若- 2< 3 , 则(- 2)× (- 6 ) ___ 3×(-6 ) ,(- 2) ÷ (- 6)___ 3 ÷ (- 6)(2)若 7< 4 ,则 7×(-1)______4×(-1), 7×(-2)______4×(-2), 7×(-3)______4×(-3), 7 ÷ (-1)______4 ÷ (-1), 7 ÷ (-2)______4 ÷ (-2), 7 ÷ (-3)______4 ÷ (-3), 规律:不等式两边乘(或除以)同一个负数,不等号的方向 不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.3、如果 a>b ,c<0 ,那么ac < bc 或c b c a >cb c a <aobac bc不等式的性质: 不等式的性质1: 如果a>b ,那么a +c>b +c ,a -c>b -c 。

人教初中数学七下 9.1.2 不等式的性质课件1 【经典初中数学课件 】

人教初中数学七下 9.1.2 不等式的性质课件1 【经典初中数学课件 】

【例】利用不等式的性质解下列不等式:
(3) 2 x﹥50;
3
不等式的两边都除以
2
,不等号的方向不变,得
3
x﹥75
这个不等式的解集在数轴上的表示如图所示:

75
【例】利用不等式的性质解下列不等式: (4)-4x﹥3.
不等式两边都除以_-_4__,不等号的方向_改__变___,得
x﹤- 3 4
这个不等式的解集在数轴上的表示如图所示:
B
C
D
E
三、巩固提高
一、平面上利用有序数对确定物体位置的方法
• 1、行列定位法: 例如: 座位
• 2、方格纸定位法: 例如: 棋盘
• 3、经纬定位法 例如:地图
• 4、区域定位法 例如:探究四的简图
四、概括整合
生活中还有哪些确定位置的其他方法?
(1)如果全班同学站成一列做早操,现在教师 想找某个同学,是否还需要用2个数据呢?
根据发现的规律填空:当不等式两边加或减 同一个数(正数或负数)时,不等号的方向_不__变___.
(3) 6>2, 6×5__﹥__2×5 , 6×(-5)_﹤___2×(-5) ;
(4)–2<3, (-2)×6_﹤__3×6 , (-2) ×(-6)_﹥__3×(-6 ) 当不等式两边乘同一个正数时,不等号的方向_不__变__; 而乘同一个负数时,不等号的方向_改__变__;
这个不等式的解集在数轴上的表示为:
0
33
【例】利用不等式的性质解下列不等式: (2)3x<2x+1; 解:不等式两边都减去_2_x__,不等号的方向_不__变__,得
3x-2x﹤2x+1-2x x﹤1
这个不等式的解集在数轴上的表示如图所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.1.2 不等式的性质
一知识要点:
1. 不等式的性质:
不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变。

符号语言:如果a >b ,那么a ±c >b ±c 。

不等式性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

符号语言:如果a >b ,并且c >0,那么ac >bc 。

不等式性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

符号语言:如果a >b ,并且c <0,那么ac <bc 。

思考? 不等式的两边都乘0,结果怎样?
2. 运用不等式的性质注意事项:
1).在运用“不等式性质3”时应注意不等号的方向变化。

2).正确应用不等式的性质对不等式进行变形,解不等式。

二 例题教学:
题型1:不等式的性质的理解
例1 设a >b ,用“<”或“>”填空,并说明依据不等式的那条性质.
(1) 3a ____3b ; (2) a -8____b -8 ;
(3) -2a ____-2b ; (4)
2a ____ 2
b ; (5) -3.5b +1_____-3.5a +1
例2设a 〉 b ,则下列不等式中,成立的是( ) (A) (B) (C) (D)
66-<-b a b a 33->-2
2-<-b a 11-->--b a
例 3.下列各题的横线上填入不等号,使不等式成立.并说明是根据哪一条不等式性质.
(1)若a-3<9,则 a___ 12(根据不等式性质___ )
(2)若-a<10,则a___ -10(根据不等式性质___ );
(3)若0.5a>-2则a ___ -4(根据不等式性质:___ );
(4)若-a>0,则 a___ 0(根据不等式性质___ )。

题型2:不等式的性质的运用
例1利用不等式的性质解下列不等式.
(1) x-7>26 (2) 3x<2x+1
(3) -2/3x>50(4) -4x>3
例2:根据不等式的性质,将下列不等式化成x<a或x>a的形式.
(1)x + 3 > 8
(2)2x < 6
(3)-2x > 3
例3:利用不等式的性质解下列不等式,并把它们的解集在数轴上表示出来。

(1)x+4>3;(2)7x+6≥6x+7
题型3:不等式的性质的实际应用
例:某长方体形状的容器长5cm,宽3cm,高10cm。

容器内原有水的高度为3cm,现准备向它继续注水。

用V(单位:cm3)表示新注入水的体积,求出V 的取值范围
三巩固练习:
1. 若a>b,用“<”或“>”填空。

(1)a+1 b+1; (2) a-5 b-5; (3) -3a -3b; (4) 6-a 6-b;
2.选择适当的不等号填空:
1)、若a-b>0,则a___b
2)、若a>-b,则a+b___0
3)、若-a<b,则a___-b
4)、若-a>-b,则2-a___2-b
5)、若a>0,(1-b)a<0则b___1
6)、若a<b,b<2a-1则a___2a-1
3.利用不等式的性质解下列不等式,并把它们的解集在数轴上表示出来。

1)8x-2≤7x+3,2)3x<5x – 4 , 3) 2 – x≤1
4.小颖种了一株树苗,开始时树苗高为40厘米. 栽种后每周树苗长高约1分米,几周后树苗高超过1米?
5.用炸药爆破时,如果导火索燃烧的速度是0.8 cm/s,人跑开的速度是每秒4 m,为了使点导火索的战士在爆破时能够跑到100 m以外的安全区域,这个导火索的长度应大于多少厘米?。

相关文档
最新文档