绝对值不等式的性质及其解法
绝对值不等式(绝对值三角不等式与绝对值不等式的解法)

提出问题:
你能看出下面两个不等式的解集吗?
⑴ x 1
⑵ x 1
主要方法有:
法一:利用绝对值的几何意义观察; 法二:利用绝对值的定义去掉绝对值符号,需要分类讨论; 法三:两边同时平方去掉绝对值符号; 法四:利用函数图象观察.
这也是解其他含绝对值不等式的四种常用思路.
探索:不等式|x|<1的解集.
方法一:利用绝对值的几何意义观察
思考四:若变为不等式|x-1|+|x+2|<k的解集 为 ,则k的取值范围是 k 3
练习:解不等式│x+1│–│x–2│≥1
x | x 1
作出f (x) │x +1│–│x – 2│的图像, 并思考f (x)的最大和最小值
│x +1│–│x – 2│ k恒成立,k的取值范围是 │x +1│–│x – 2│ k恒成立,k的取值范围是
2x 4, x 1
例1. 解不等式|x-1|+|x+2|≥5
y
2x 6, x 2 y 2, 2 x 1
2x 4, x 1
如图,作出函数的图象,
函数的零点是-3,2.
-2 1
-3
2x
-2
由图象可知,当x 3或x 2时,y 0,
∴原不等式的解集为{x|x≤-3 或 x≥2}.
ab a b
当向量 a, 共b 线时,
同向: a b a b 反向: a b a b
y
ab b
a
O
x
ab a b
定理1 如果a,b是实数,则 a b a b
定理1的完善
绝对值三角不等式
a b ab a b
a b ab a b
定理1的推广 如果a,b,c是实数,则
绝对值不等式的解法及应用

绝对值不等式的解法及应用绝对值不等式在数学中具有重要的应用价值,在各个领域中都有广泛的运用。
本文将对绝对值不等式的解法进行简要说明,并介绍其在实际问题中的应用。
一、绝对值不等式的解法1. 求解一元绝对值不等式对于形如 |x|<a 的不等式,其中 a>0 ,我们可以将其分解为两个简单的不等式,即 x<a 和-x<a ,然后再根据这两个不等式得到解的范围。
例如,对于 |x|<3 这个不等式,我们可以拆分为 x<3 和 -x<3 ,再分别求解这两个不等式,得到解的范围为 -3<x<3 。
2. 求解含有绝对值不等式的方程对于形如 |f(x)|=g(x) 的方程,可以通过以下步骤求解:Step 1: 根据绝对值的定义,将绝对值拆解为两个条件,即 f(x)=g(x) 和 f(x)=-g(x) 。
Step 2: 分别求解这两个条件对应的方程,得到解的范围。
Step 3: 将 Step 2 中得到的解进行合并,得到最终的解集。
例如,对于 |x-2|=3 这个方程,我们可以拆解为 x-2=3 和 x-2=-3 ,然后求解这两个方程得到 x=5 和 x=-1 ,最终的解集为 {5, -1} 。
二、绝对值不等式的应用绝对值不等式在实际问题中有广泛的应用,下面将介绍其中两个常见的应用领域。
1. 绝对值不等式在不等式求解中的应用在不等式求解中,绝对值不等式是一种常见的工具。
通过合理地运用绝对值不等式,可以简化不等式的求解过程,提高解题效率。
下面通过一个例子来说明。
例题:求解不等式 |2x-1|<5 。
解:根据绝对值的定义,将不等式拆分为两个条件,即 2x-1<5 和2x-1>-5 。
然后分别求解这两个条件对应的方程,得到 x<3 和 x>-2 。
最后将这两个解的范围进行合并,得到最终的解集为 -2<x<3 。
2. 绝对值不等式在数列问题中的应用在数列问题中,绝对值不等式可以用来求解数列的范围,帮助我们找到数列的性质和规律。
绝对值不等式的解法

绝对值不等式的解法绝对值不等式在数学中有着广泛的应用,它们涉及到了绝对值的概念和不等式的解法。
本文将介绍几种常见的绝对值不等式的解法,并给出相应的例子进行说明。
一、绝对值不等式的基本性质在解绝对值不等式之前,我们先来了解一些绝对值的基本性质。
对于任意实数a,有以下三个性质:1. 非负性质:|a| ≥ 0绝对值表示的是一个数距离原点的距离,因此它始终是非负的。
2. 正负性质:如果a > 0,则 |a| = a;如果a < 0,则 |a| = -a这是绝对值的定义,即当a为正时,取a的值;当a为负时,取-a 的值。
3. 三角不等式:对于任意实数a和b,有|a + b| ≤ |a| + |b|这是绝对值的三角不等式,它表明两个数的绝对值之和不超过它们的绝对值的和。
有了以上基本性质的了解,我们可以利用它们来解决绝对值不等式。
二、1. 绝对值的定义法义来解决不等式。
例如,对于不等式 |2x - 3| ≤ 5,我们可以通过以下步骤来求解:(1)当2x - 3 ≥ 0时,|2x - 3| = 2x - 3,此时原不等式可以转化为2x - 3 ≤ 5,解得x ≤ 4。
(2)当2x - 3 < 0时,|2x - 3| = -(2x - 3) = -2x + 3,此时原不等式可以转化为 -2x + 3 ≤ 5,解得x ≥ -1。
综合以上两种情况的解集,最终得到该不等式的解集为 -1 ≤ x ≤ 4。
2. 绝对值的范围法当绝对值中的表达式的取值范围已知时,我们可以利用绝对值的非负性质来解决不等式。
例如,对于不等式 |x - 3| > 2,我们可以通过以下步骤来求解:(1)当 x - 3 > 0 时,|x - 3| = x - 3,此时原不等式可以转化为 x -3 > 2,解得 x > 5。
(2)当 x - 3 < 0 时,|x - 3| = -(x - 3) = -x + 3,此时原不等式可以转化为 -x + 3 > 2,解得 x < 1。
绝对值方程与不等式

绝对值方程与不等式一、绝对值不等式的基本性质绝对值不等式的定义与绝对值方程类似,只是将等号换成不等号。
对于任意实数a,绝对值不等式可以写成如下形式:a,≤b或,a,≥b其中b为实数。
绝对值不等式的解集可以用区间表示。
例如,对于,a,≤b,解集为闭区间[-b,b];对于,a,≥b,解集为两个开区间(负无穷,-b)和(b,正无穷)的并集。
与绝对值方程类似,可以利用绝对值的定义解绝对值不等式。
对于,a,≤b,我们可以将绝对值去掉,得到两个不等式,然后分别求解,并将解集取交集。
对于,a,≥b,我们可以将不等式拆解为两个绝对值不等式,再分别求解,并将解集取并集。
在解绝对值不等式时,需要注意以下几个性质:1.两个非负实数的绝对值相等,当且仅当这两个实数相等。
也就是说,如果,a,=,b,那么a=b或a=-b。
2.如果,a,=c,c≥0,那么a=c或a=-c。
这些基本性质对于解决绝对值不等式非常有帮助,可以帮助我们化简不等式,提取出能够直接进行计算的部分。
二、绝对值不等式的解法解绝对值不等式的方法包括图像法、分段讨论法和代数法。
1.图像法:使用数轴上的图像表示法,通过观察图像来找到解集。
例如,对于不等式,2x-1,≤3,可以先画出2x-1的图像,然后找出使得,2x-1,≤3的x的取值范围。
这种方法在直观上很直接,但对于复杂的不等式可能不太适用。
2.分段讨论法:将不等式分成几个条件,然后分别讨论每个条件下的解集,并将解集取并集。
例如,对于不等式,x-2,>3,可以将不等式分成两个条件,即x-2>3和x-2<-3,分别求解得到x>5和x<-1,最后将解集取并集得到(-∞,-1)∪(5,+∞)。
3.代数法:利用绝对值的定义和基本性质,将绝对值不等式转化为一系列等价的不等式,然后求解。
这种方法在理论上较为严谨,适用范围更广。
例如,对于不等式,3x+2,≥5,可以将不等式拆解为3x+2≥5和3x+2≤-5,分别求解得到x≥1和x≤-7/3,最后将解集取并集得到(-∞,-7/3]∪[1,+∞)。
绝对值不等式的解法

绝对值不等式的解法绝对值不等式是数学中常见的一类不等式,对于绝对值不等式的解法,我们可以通过以下几种方法来进行求解。
在本文中,将介绍绝对值不等式的图像法、符号法、分情况讨论法以及代数法等几种常用解法。
一、图像法图像法是一种直观的解法,通过绘制图像来确定不等式的解集。
例1:解不等式 |x - 2| > 3。
首先,我们可以将其转化为两个方程:x - 2 > 3 或 x - 2 < -3解得:x > 5 或 x < -1将这两个解集对应的区间在数轴上标出,即可得到图像。
通过观察图像,我们可以得出原不等式的解集为 x < -1 或 x > 5。
二、符号法符号法是一种抽象的解法,通过符号的转换来确定不等式的解集。
例2:解不等式 |2x - 3| ≤ 4。
根据绝对值的定义,我们可以将不等式分解为以下两个条件:2x - 3 ≤ 4 且 2x - 3 ≥ -4解得:x ≤ 7/2 且x ≥ -1/2将这两个解集取交集,即可得到原不等式的解集为 -1/2 ≤ x ≤ 7/2。
三、分情况讨论法分情况讨论法是一种特殊的解法,通过考虑不同情况来确定不等式的解集。
例3:解不等式 |3x + 2| > 5。
根据绝对值的定义,我们可以得到以下两个不等式:3x + 2 > 5 或 3x + 2 < -5解得:x > 1 且 x < -7/3因此,我们可以根据不同的情况得出原不等式的解集为 x < -7/3 或x > 1。
四、代数法代数法是一种基础的解法,通过代数运算来确定不等式的解集。
例4:解不等式 |x - 4| ≥ 2。
根据绝对值的定义,我们可以得到以下两个不等式:x - 4 ≥ 2 或 x - 4 ≤ -2解得:x ≥ 6 或x ≤ 2因此,原不等式的解集为x ≤ 2 或x ≥ 6。
综上所述,绝对值不等式的解法包括图像法、符号法、分情况讨论法以及代数法等几种常用方法。
绝对值不等式公式大全

绝对值不等式公式大全下面是一些常见的绝对值不等式及其推导和解法。
1.绝对值的定义:对于任意实数x,绝对值,x,定义如下:-当x≥0时,x,=x。
-当x<0时,x,=-x。
2.单个绝对值不等式:2.1,x,>a时,有以下不等式:-方程的解集为:x>a或x<-a。
-解法:将,x,>a拆解为x>a或x<-a,然后根据实际问题分析确定解集。
2.2,x,<a时,有以下不等式:-方程的解集为:-a<x<a。
-解法:将,x,<a拆解为x>-a且x<a,然后根据实际问题分析确定解集。
3.绝对值的性质:3.1,a+b,≤,a,+,b该性质成立是因为绝对值函数具有非负性质,并且,a+b,的取值范围比,a,+,b,的取值范围要小。
3.2,a-b,≥,a,-,b该性质成立是因为绝对值的定义在于,x,≥-x,同时采用了加法的逆运算。
3.3,a-b,≥,b,-,a该性质成立是因为绝对值的定义在于,x,≥-x,同时采用了减法的逆运算。
4.绝对值不等式的加法运算法则:若,a,≤,b,则有以下结论:-,a+x,≤,b+x-,x+a,≤,x+b解法:根据2.1的解法,将,x,≤a拆解为-a≤x≤a,根据性质3.1,可得,a+x,≤,a,+,x,≤,a,+,b。
5.绝对值不等式的乘法运算法则:若0≤a≤b-,a*x,≤,b*x,其中x可以是任意实数。
解法:对于给定的,x,≤a(根据2.2的解法得到),将其乘以非负的实数k,则有,k*x,≤a*k,根据性质3.1,可得,k*x,≤a*k≤b*k。
6.绝对值不等式的复合运算法则:若,a,≤b且,c,≤d,则有以下结论:-,a+c,≤,b+d-,a-c,≤,b-d解法:根据4的解法,分别将,a+c,和,a-c,展开为,a+x,的形式,并应用3.1的性质,可以得到上述结论。
这些是常见的绝对值不等式及其推导和解法,通过这些公式和方法,我们可以更方便地求解一些数学问题。
但需要注意的是,在应用绝对值不等式时,需要根据具体问题来确定解集,并判断是否需要考虑特殊情况,提高解题的准确性和完整性。
含绝对值的不等式及其解法

含绝对值的不等式及其解法绝对值不等式及其解法。
绝对值不等式是指不等式中含有绝对值的表达式,常见形式为|ax + b| < c 或 |ax + b| > c。
解决这类不等式需要一些特殊的技巧和方法。
首先,我们来看 |ax + b| < c 的不等式。
要解决这个不等式,我们可以将其分解为两个不等式,即 ax + b < c 和 ax + b > -c。
然后分别解这两个不等式,得到的解集合的交集就是原不等式的解集合。
举个例子,假设我们要解决 |3x 2| < 7 的不等式。
首先将其分解为两个不等式,3x 2 < 7 和 3x 2 > -7。
然后分别解这两个不等式,得到 x < 3 和 x > -1。
因此原不等式的解集合为 -1 < x < 3。
接下来,我们来看 |ax + b| > c 的不等式。
对于这种不等式,我们同样可以将其分解为两个不等式,即 ax + b > c 或 ax + b < -c。
然后分别解这两个不等式,得到的解集合的并集就是原不等式的解集合。
举个例子,假设我们要解决 |2x 5| > 3 的不等式。
同样将其分解为两个不等式,2x 5 > 3 和 2x 5 < -3。
然后分别解这两个不等式,得到 x > 4 和 x < 1。
因此原不等式的解集合为 x < 1 或x > 4。
在解决绝对值不等式时,我们需要注意一些特殊情况,比如当c 为负数时,解集为空集;当 a 为零时,不等式简化为一个普通的线性不等式等等。
总的来说,解决绝对值不等式需要将其分解为多个简单的不等式,然后分别解决这些简单的不等式,并将它们的解集合合并或交集,得到原不等式的解集合。
希望这篇文章能够帮助你更好地理解和解决含绝对值的不等式。
绝对值不等式解法

绝对值不等式解法绝对值不等式是数学中常见的一种不等式类型,它在解决实际问题中起到了重要的作用。
本文将从绝对值不等式的定义、性质和解法等方面进行探讨。
一、绝对值不等式的定义绝对值不等式是指形如|a| < b或|a| > b的不等式,其中a和b为实数。
绝对值不等式中的绝对值符号| |表示取绝对值的运算,即将其内部的数取绝对值。
二、绝对值不等式的性质1. 若a > 0,则|a| = a;2. 若a < 0,则|a| = -a;3. 对于任意实数a和b,有以下性质:a) |a| ≥ 0;b) |a| = 0的充分必要条件是a = 0;c) |ab| = |a| |b|;d) |a + b| ≤ |a| + |b|。
三、绝对值不等式的解法1. 绝对值不等式的解集可分为以下几种情况:a) 当|a| < b时,解集为(-b, b);b) 当|a| > b时,解集为(-∞, -b)∪(b, +∞);c) 当|a| = b时,解集为{-b, b}。
2. 对于复杂的绝对值不等式,可以通过以下几种方法进行求解:a) 利用绝对值的性质,将不等式转化为简单的形式;b) 通过分析绝对值函数的图像和性质,确定不等式的解集;c) 将不等式分解为多个简单的不等式,并求解其解集;d) 利用代数方法和推理,得出不等式的解集。
四、绝对值不等式的应用举例1. 绝对值不等式在求解方程、不等式和问题中具有广泛的应用,如求解含绝对值的方程、不等式的解集;2. 在实际问题中,绝对值不等式可以用来描述距离、误差等概念,如求解一段路程上的最大误差、最小误差等;3. 绝对值不等式也常用于优化问题的求解中,如求解目标函数的最大值、最小值等。
绝对值不等式作为数学中的重要概念和工具,在解决实际问题中具有广泛的应用。
通过对绝对值不等式的定义、性质和解法的探讨,我们可以更好地理解和运用这一概念,从而解决实际问题。
同时,我们也应该注意绝对值不等式的合理性和准确性,避免在解题过程中出现错误或误解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当ab 0时,ab ab,| a b | (a b) 2 a 2 2ab b 2 | a |2 2 | ab | | b |2 | a | 2 | ab | | b | (| a | | b |) | a | | b |,
2 2 2
所以 | a b || a | | b |, 当且仅当ab 0时,等号成立。
D.m n
小结:理解和掌握绝对值不等式的两个定理:
|a+b|≤|a|+|b|(a,b∈R,ab≥0时等号成 立) |a-c|≤|a-b|+|b-c|(a,b,c∈R,
(a-b)(b-c)≥0时等号成立) 能应用定理解决一些证明和求最值问题。
作业:课本P20第3,4,5题
2、绝对值不等式的解法
|a-c|≤|a-b|+|b-c|
当且仅当(a-b)(b-c)≥0时,等号成立。 证明:根据绝对值三角不等式有 |a-c|=|(a-b)+(b-c)|≤|a-b|+|b-c| 当且仅当(a-b)(b-c)≥0时,等号成立。
例 : 若 x m , y m , 下列不等式中一定成立 的是( B ) A. x - y C . x y 2 B . x y 2 D. x y
|ax+b|<c
-c<ax+b<c
并
课堂练习:P20第6题
(2) a x b c和 x a x b c x 型不等式的解法
例5
解不等式 1 x 2 5 x
A1 -3 A -2 B 1 B1 2 x
解 法1: 设 数 轴 上 与 2, 对 应 的 点 分 别 是,,B 1 A
作业:P20第7题、第8题(1)(3)
补充练习:解不等式:
(1)1<|2x+1|≤3.
(2)||x-1|-4|<2.
(3)|3x-1|>x+3. 答案:(1){x|0<x≤1或-2≤x<-1} (2){x|-5<x<-1或3<x<7}
1 (3) {x | x 或x 2} 2
1 作业 P20第7题第(1)解不等式 3 x 4 6
即3 5, 矛 盾, 此 时 不 等 式 的 解 集 为
当 2 x 1时, 原 不 等 式 可 以 化 为 ( x 1) ( x 2) 5, 当x 1时, 原 不 等 式 可 以 化 为 x 1) ( x 2) 5, ( 综 上 所 述 可 知 原 不 等 的 解 集 为 , 3 2, 式 解 得x 2, 此 时 不 等 式 的 解 集 为2,
8.解不等式:
( 2) x 2 x 3 4 解 : 当x 3时, 原不等式可化为 ( x 2) ( x 3) 4, x 3 5 解得x , 即不等式组 2 x2 x3 4 的解集是( ,3]. 当 3 x 2时, 原不等式可化为 ( x 2) ( x 3) 4, 3 x 2 即5 4显然成立, 所以不等式组 x2 x3 4 的解集为( 3,2). 当x 2时, 原不等式可化为 x 2) ( x 3) 4, ( x 2 3 即x , 不等式组 的解集是[ 2,). 2 x2 x3 4 综上所述, 原不等式的解集是 . R
|2x+3y-2a-3b|<5ε .
证明: |2x+3y-2a-3b|=|(2x-2a)+(3y-3b)| =|2(x-a)+3(y-b)|≤|2(x-a)|+|3(y-b)| =2|x-a|+3|y-b|<2ε +3ε=5ε. 所以 |2x+3y-2a-3b|<5ε .
定理2
如果a, b, c是实数,那么
绝对值不等式性质及解法
二、绝对值不等式
1、绝对值三角不等式
实数a的绝对值|a|的几何意义是表示数轴 上坐标为a的点A到原点的距离: |a|=-a(a<0) |a|=a(a>0) x A(a) A(a) O
任意两个实数a,b在数轴上的对应点分别为A、B, 那么|a-b|的几何意义是A、B两点间的距离。 |a-b|
3x 4 1 解 : 原不等式等价于下列不 等式组 3x 4 6 5 x 1或x 3 3 x 4 1或 3 x 4 1 即 6 3 x 4 6 10 x 2 3 3 10 5 2 解得 x 或1 x 3 3 3 2 10 5 故原不等式的解集为 , 1, . 3 3 3
b a a+b O 如果a<0, b>0,如下图可得:|a+b|<|a|+|b|
x
a+b b a O (3)如果ab=0,则a=0或b=0,易得: |a+b|=|a|+|b|
x
定理1
这个不等式称为绝 如果a, b是实数,则
对值三角不等式。
|a+b|≤|a|+|b|
当且仅当ab≥0时,等号成立。
探究: 如果把定理1中的实数a, b分别换成向量a, b, 能得出什么结果?你能解释它的几何意义吗?
y
O -2
2 x
由 图 象 可 知 原 不 等 式 解 集 为 ,3 2, 的
(2) a x b c和 x a x b c x 型不等式的解法
①利用绝对值不等式的几何意义
②零点分区间法
③构造函数法
练习:P20第8题(2)
8.(2)解不等式x 2 x 3 4
1 那 么A,, 两 点 的 距 离 是, 因 此 区 间 2, 上 的 3
数 都 不 是 原 不 等 式 的 。 将 点A向 左 移 动 个 单 位 解 1 到 点A1, 这 时 有A1 A A1 B 5; 同 理, 将 点B向 右 移 动 一 个 单 位 到 点, 这 时 也 有B1 A B1 B 5, B1 从 数 轴 上 可 以 看 到 点与B1之 间 的 任 何 点 到 点, A1 A B的 距 离 之 和 都 小 于 点A1的 左 边 或 点 1的 右 边 5; B 的 任 何 点 到 点 ,, 的 距 离 之 和 都 大 于 故 原 不 等 A 。
( 3) x 1 x 2 2 解 : 当x 1时, 原不等式可化为 ( x 1) ( x 2) 2, x 1 1 1 解得x , 即不等式组 的解集是 ,1 . 2 2 x 1 x 2 2 当1 x 2时, 原不等式可化为 x 1) ( x 2) 2, ( 1 x 2 即1 2显然成立, 所以不等式组 的 x 1 x 2 2 解集是(1,2). 5 当x 2时, 原不等式可化为x 1 x 2 2, 即x , 2 x 2 5 所以不等式组 的解集是 2, . 2 x 1 x 2 2 1 5 综上所述, 原不等式的解集是 , . 2 2
例5
解不等式 1 x 2 5 x
解 法3: 将 原 不 等 式 转 化 为 1 x 2 5 0 x 构 造 函 数 x 1 x 2 5, 即 y 2 x 6, x -2 y - 2, -2 x1 2x - 4 , -3 x1 作出函数图象 ,
y
ab
a
O
b
当向量a, b共线时, 有怎样的结论?
x
定理1的代数证明:
证明:当ab 0时,ab | ab |,| a b | (a b)2 a 2 2ab b2 | a |2 2 | ab | | b |2 (| a | | b |) 2 | a | | b |
例3 解不等式|3x-1|≤2
例4 解不等式|2-3x|≥7 补充例题:解不等式
1 1 (1) (3 | x | 1) | x | 3 4 2 2 (2) x 3 4 | x | .
|ax+b|<c和|ax+b|>c(c>0)型不等式比较:
类型 化去绝对值后 集合上解的意义区别
{x|ax+b>-c} ∩ {x|ax+b<c}, 交 {x|ax+b<-c}∪ |ax+b|>c ax+b<-c或ax+b>c {x|ax+b>c},
• 复习:如果a>0,则 |x|<a的解集是(-a, a); |x|>a的解集是(-∞,-a)∪(a,+∞)
-a
O |x|<a
a
x
-a
O |x|>a
a
x
(1)|ax+b|≤c和|ax+b|≥c(c>0)型不等式的 解法: ①换元法:令t=ax+b, 转化为|t|≤c和|t|≥c 型不等式,然后再求x,得原不等式的解集。 ②分段讨论法:
S(x)=2(|x-10|+|x-20|),要求问题化归为求该函数的 最小值,可用绝对值三角不等式求解。
练习: P19第1,2
补充练习: .已知 a b , m ab a b ,n ab ab , 则m, n之间的
大小关系是( D ) A.m n B.m n
C.m n
x
A(a)Biblioteka B(b)问题1:从“运算”的角度|a|,|b|,|a+b|具 有怎样的关系?
分ab>0、ab<0和ab=0三种情形讨论: (1)当ab>0时,如下图可得|a+b|=|a|+|b| x