3.1空间向量及其运算

合集下载

3.1空间向量及其运算

3.1空间向量及其运算

3.1.1空间向量及其线性运算教学目标:1.了解空间向量的概念,掌握空间向量的线性运算及其性质;2.理解空间向量共线的充要条件 ;3.运用类比方法,经历向量及其运算由平面向空间推广的过程. 教学重点:空间向量的概念、空间向量的线性运算及其性质; 教学过程: 一.问题情境由于实际问题的需要,在必修4中,我们学习了平面向量,研究了平面向量的概念、运算及其性质,进而解决了平面上有关点,线的位置关系及度量问题. 但向量未必都在同一平面内,如下问题:已知物体受三个大小都为1000N 的力F 1 ,F 2,F 3, 且这三个力两两之间的夹角都为60°,则物体所受的合力为多少? 是否为F 1→+F 2→+F 3→?此问题中,三个向量不在同一平面内,问题不好直接用平面向量来解决,为此需要将向量由平面向空间推广! 二.数学理论1.平面向量与空间向量的有关概念(1)在平面上,我们把既有大小又有方向的量叫做平面向量.平面上的向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量. 长度为0的向量叫零向量,记作0,0的方向是任意的; 长度为1个单位长度的向量,叫单位向量;F 12方向相反但模相等的向量叫做相反向量;向量a 的相反向量记作-a .方向相同或相反的非零向量叫做平行向量(共线向量),规定0与任一向量平行; 记作:a ∥b ,0∥a .由向量的实际背景,平面向量的有关概念都可以移植到空间中 (2)空间向量的有关概念:在空间,我们把既有大小又有方向的量叫做空间向量.空间向量一般用有向线段表示.同向等长的有向线段表示同一或相等的向量. 在空间中,长度为0的向量叫零向量,记作0,0的方向是任意的; 长度为1个单位长度的向量,叫单位向量;方向相反但模相等的向量叫做相反向量;向量a 的相反向量记作-a .方向相同或相反的非零向量叫做平行向量(共线向量),规定0与任一向量平行; 记作:a ∥b ,0∥a .2.平面向量与空间向量的线性运算我们现在研究的是自由向量,大小相等方向相同的向量是相等向量,而与它们的起点无关. 所以任意两个空间向量都可以平移到同一平面内因此,空间的两个向量可用同一平面内的两条有向线段来表示.这样,空间两个向量的线性运算的意义与平面向量完全一样.已知空间向量a ,b ,在空间任取一点O ,作OA →=a ,AB →=b .由O ,A ,B 三点确定一个平面或共线可得,空间任意两个向量都可以用同一平面内的两个有向线段来表示.ab空间向量的加法、减法与数乘运算的意义如下(如图)OB →=OA →+AB →=a +b (三角形法则) OC →=OA →+OB →=a +b (平行四边形法则) BA →=OA →-OB →=a -b OP →=λa (λ∈R )平面向量的线性运算满足下列运算律 运算律:⑴加法交换律:a +b =b +a⑵加法结合律:(a +b )+c =a +(b +c ) ⑶数乘分配律:λ(a +b )=λa +λb (λ∈R ) 那么,空间向量的运算是否仍满足上述规律?aλaO PaAOb Ba -b ab ab OABa +b(1),(3)中只涉及两个向量,显然满足,但(2)中涉及三个向量,在空间中是否成立?这一规律关系到空间中三个向量和的定义问题? 结合律的验证:三个向量中有共线向量时规律显然成立. 平面向量共线的充要条件在空间也是成立的3.共线向量定理:共线向量定理:空间任意两个向量a ,b (a ≠0),a ∥b 的充要条件是存在实数λ,使b =λa . 三.数学运用例1. 如图,在三棱柱ABC -A 1B 1C 1中,M 是BB 1的中点, 化简下列各式,并在图中标出化简得到的向量: (1)CB →+BA 1→; (2)AC →+CB →+12AA 1→;(3)AA 1→-AC →-CB → 解:(1)CB →+BA 1→=CA 1→(2)因为M 是BB 1的中点, 所以BM →=12BB 1→,AC →+CB →+12AA 1→AOABCabca +ba +b +cb +cA /A /又AA 1→=BB 1→,所以AC →+CB →+12AA 1→=AB →+BM →=AM →.(3)AA 1→-AC →-CB →=CA 1→-CB →=BA 1→.例2.如图,在长方体OADB-CA ’D’B’中,OA =3,OB =4,OC =2,OI =OJ =OK =1,,点E ,F 分别是DB ,D ’B ’的中点,设OI →=i , OJ →=j , OK →=k , ,试用向量i , j , k 表示OE →和OF →解:∵BD →=OA →=3OI →=3i ,∴BE →=12BD →=32 i .又OB →=4OJ →=4j ,∴OE →=OB →+BE →=32i +4j .∵EF →= BB ’→=OC →=2k ,∴OF →=OE →+EF →=32i +4j +2k .例3.已知平行六面体ABCD -ABCD .求证:AC →+ AB ’→+ AD ’→=2 AC ’→. 证明:∵平行六面体的六个面均为平行四边形, ∴AC →=AB →+AD →, AB ’→=AB →+ AA ’→, AD ’→=AD →+ AA ’→,∴AC →+ AB ’→+ AD ’→=(AB →+AD →)+(AB →+ AA ’→) +(AD →+ AA ’→)=2(AB →+AD →+ AA ’→). 又∵ AA ’→= CC ’→,AD →=BC →,∴AB →+AD →+ AA ’→=AB →+BC →+ CC ’→=AC →+ CC ’→= AC ’→, ∴AC →+ AB ’→+ AD ’→=2 AC ’→. 【课堂练习】已知空间四边形ABCD ,连结AC ,BD ,设M ,G 分别是BC ,CD 的中点,化简下列各表达式,并标出化简结果向量: (1)AB →+BC →+CD →; (2)AB →+12(BD →+BC →);(3)AB →-12(AB →+AC →).BCDMGAABCDA ’B ’C ’D ’四、回顾总结空间向量的定义与运算法则五、布置作业3.1.2 共面向量定理教学目标:1.了解向量共面的含义,理解共面向量定理;2.能运用共面向量定理证明有关线面平行和点共面的简单问题. 教学重点、难点:空间向量共面定理的证明及其应用. 教学过程: 一.知识回顾复习空间向量的概念以及空间向量的线性运算和性质. 二.问题情境在同一平面中,向量之间有共线与不共线之分; 在空间中,我们当然要关心向量共面问题.为此首先要明确什么叫做向量共面? 能平移到同一平面的向量叫做共面向量 问题: 空间中两个向量是否共面? 空间中三个向量是否共面?在平面向量中,向量b 与向量a (a ≠0)共线的充要条件是存在实数λ,使得b =λa .那么,空间的任意一个向量p 与两个不共线向量a ,b 共面时,它们之间存在怎样的关系呢? 三.数学理论共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在有序实数组(x ,y ),使p =x a +y b .证明:(必要性)向量a ,b 不共线,当p 与向量a ,b 共面时,它们可以平移到同一个平面内,根据平面向量的基本定理,存在惟一的有序实数组(x ,y ),使得p =x a +y b .(充分性)对于空间的三个向量p ,a ,b ,其中a ,b 不共线,如果存在有序实数组(x ,y ),使p =x a +y b ,那么在空间任意取一点M ,作MA →=a , MB →=b , MA '→=x a ,过点A ’作A'P →=y b ,(如图),则MP →=MA'→+A'P →= x a +y b = p ,,于是点P 在平面MAB 内,从而MP →,MA →,MB →共面,即向量p 与向量a ,b 共面.这就是说,向量p 可以由两个不共线的向量a ,b 线性表示.四.数学运用例1.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:MN ∥平面CDE .分析:要证明MN ∥平面CDE ,只要证明向量NM →可以用平面CDE 内的两个不共线的向量DE →和DC →线性表示.证明:如图,因为M 在BD 上,且BM =13BD ,所以MB →=13DB →=13DA →+13AB →.同理AN →=13AD →+13DE →,又CD →=BA →=-13AB →,所以MN →=MB →+BA →+AN →=(13DA →+13AB →)+BA →+(13AD →+13DE →)=23BA →+13DE →=23CD →+13DE →.又CD →与DE →不共线,根据共面向量定理,可知MN →,CD →,DE →共面. 由于MN 不在平面CDE 内,所以MN ∥平面CDE .例2.设空间任一点O 和不共线的三点A ,B ,C ,若点P 满足向量关系OP →=xOA →+yOB →+zOC →(其中x +y +z =1),试问:P , A ,B ,C 四点是否共面?分析:类比证明三点共线的方法,要判断P , A ,B ,C 是否共面,可考察三个共起点的向量AP →,AB →,AC →是否共面.解:由x +y +z =1,可得x =1-z -y .则OP →=(1-z -y )OA →+yOB →+zOC →=OA →+y (OB →-OA →)+z (OC →-OA →), 所以OP →-OA →=y (OB →-OA →)+z (OC →-OA →),即AP →=yAB →+zAC →.由A ,B ,C 三点不共线,可知AB →和AC →不共线, 所以AP →,AB →,AC →共面且具有公共起点A .从而P , A ,B ,C 四点共面.思考:如果将x +y +z =1整体代入,由(x +y +z ) OP →=xOA →+yOB →+zOC →出发,你能得到什么结论?例3.从□ABCD 所在平面外一点O 作向量OE →=kOA →,OF →=kOB →,OG →=kOC →,OH →=kOD →, (1)求证:四点E ,F ,G ,H 共面;(2)平面AC ∥平面EG . 解:(1)∵四边形ABCD 是平行四边形,∴AC →=AB →+AD →, ∵EG →=OG →-OE →=kOC →-kOA →=k (OC →-OA →)=kAC →=k (AB →+AD →) =k (OB →-OA →+OD →-OA →)=OF →-OE →+OH →-OE →=EF →+EH →, ∴EG →,EF →,EH →共面且共起点,∴E ,F ,G ,H 四点共面. (2)∵EF →=OF →-OE →=k (OB →-OA →)=kAB →,∴EF →∥AB →,∴EF →∥平面AC ,同理EG →∥平面AC ,又EF →∩EG →=E ,∴平面AC ∥平面EG . 练习:已知两个非零向量e 1, e 2不共线,如果AB →=e 1+ e 2, AC →=2 e 1+8 e 2, AD →=3 e 1-3 e 2. 求证:A ,B ,C ,D 四点共面. 五.回顾小结1.共面向量定理的证明; 2.共面向量定理的简单运用. 六.布置作业3.1.3空间向量基本定理教学目标:1.掌握空间向量基本定理及其推论;2.理解空间任一向量可用空间不共面的三个已知向量唯一线性表示,而且这种表示是唯一 的;3.在简单问题中,会选择适当的基底来表示任一空间向量. 教学重点,难点:空间向量基本定理及其推论. 教学过程: 一.知识回顾共线向量定理:空间任意两个向量a ,b (a ≠0),a ∥b 的充要条件是存在实数λ,使b =λa . 平面向量基本定理:如果e 1,e 2那么对于这一平面内的任一向量a ,有且只有一对实数x ,y ,使a = x e 1+ y e 2 . 二.问题情境平面向量基本定理表明,平面内任一向量可以用该平面的两个不共线的向量来线性表示.对于空间向量是否有相应的结论呢? 三.数学理论 空间向量基本定理:如果三个向量 e 1, e 2 , e 3不共面,那么对空间任一向量p ,存在一个惟一的有序实数组x ,y ,z ,使p =x e 1+y e 2+z e 3.证明:(存在性)设e 1, e 2 , e 3不共面过点O 作OA →=e 1, OB →=e 2, OC →=e 3, OP →=p ,, 过点P 作直线PP’平行于OC ,交平面OAB 于点P’, 在平面OAB 内,过点P’作直线P’A’∥OB , P’B ∥OA , 分别与直线OA ,OB 相交于点A ’,B ’,于是,存在三个实数x ,y ,z ,使OA'→=xOA →=x e 1,OB'→=yOB →=y e 2,OC'→=zOC →=z e 3,∴OP →=OA'→+OB'→+OC'→=xOA →+yOB →+zOC →=x e 1+y e 2+z e 3.1/ (惟一性)假设还存在x’,y’,z’使p=x’ e1+y’ e2+z’e3,那么x e1+y e2+z e3=x’ e1+y’ e2+z’e3∴(x-x’)e1+(y-y’)e2+(z-z’)e3=0不妨设x≠x’即x-x’≠0,∴e1=-y-y’x-x’e2-z-z’x-x’e3,∴e1, e2, e3共面此与已知矛盾,∴有序实数组(x,y,z)是惟一的.空间向量基本定理告诉我们,若三向量e1,e2,e3不共面,那么空间的任一向量都可由e1, e2, e3线性表示,我们把{ e1, e2, e3}叫做空间的一个基底,e1, e2, e3叫做基向量.空间任意三个不共面的向量都可以构成空间的一个基底如果空间一个基底的三个基向量两两互相垂直,那么这个基底叫做正交基底,特别地,当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用{i,j,k}表示.推论:设O,A,B,C是不共面的四点,则对空间任一点P,都存在惟一的三个有序实数x,y,z,使OP→=xOA→+yOB→+zOC→.四.数学运用例1如图,在正方体OADB-CA’D’B’中,,点E是AB与OD的交点,M是OD’与CE的交点,试分别用向量OA→,OB→,OC→表示OD'→和OM→.解:∵OD→=OA→+OB→,∴OD'→=OD→+DD'→=OA→+OB→+OC→.由△OME∽△D’MC,可得OM=12MD’=13OD’,∴OM→=13OD'→=13OA→+13OB→+13OC→.例2 .如图,已知空间四边形OABC,其对角线为OB,AC,M,N分别是对边OA,BC的中点,点G在线段MN上,且MG=2GN,用基底向量OA→,OB→,OC→表示向量OG→.解:OG→=OM→+MG→=OM→+23MN→A=12OA →+23(ON →-OM →) =12OA →+23[12(OB →+OC →)-12OA →] =12OA →+13(OB →+OC →)-13OA → =16OA →+13OB →+13OC →, ∴OG →=16OA →+13OB →+13OC →.五、回顾总结空间向量基本定理及其证明 六、布置作业§3.1.4 空间向量的坐标表示教学目标(1)能用坐标表示空间向量,掌握空间向量的坐标运算; (2)会根据向量的坐标判断两个空间向量平行. 教学重点,难点空间向量的坐标的确定及运算. 教学过程 一.知识回顾复习平面向量的坐标表示及运算律:(1)若p =x i +y j (i ,j 分别是x ,y 轴上同方向的两个单位向量),则p 的坐标为(x , y ); (2)若a =(a 1, a 2),b =(b 1, b 2),则加(减)法:a +b =(a 1+b 1, a 2+b 2);a -b =(a 1-b 1, a 2-b 2) 数乘:λa =(λa 1, λa 2)(λ∈R ) 数量积:a ·b =a 1b 1+a 2b 2特别地,a ∥b ⇔a 1=λb 1,a 2=λb 2(λ∈R );a ⊥b ⇔a 1b 1+a 2b 2=0(3)若A (x 1, y 1),B (x 2, y 2),则AB →=(x 2-x 1, y 2-y 1). 二.问题情境在平面“解析几何初步”一章中,我们已经学习过空间直角坐标系,并能用坐标表示空间任意一点的位置.如何用坐标表示空间向量?怎样进行空间向量的坐标运算? 三.数学理论1.空间向量的坐标表示如图,在空间直角坐标O -xyz 中,分别取与x 轴、y 轴、z 轴方向相同的单位向量i ,j ,k 作为基向量,对于空间任意一个向量a ,根据空间向量基本定理,存在唯一的有序实数组(x , y , z ),使a =x i +y j +z k .有序实数组(x , y , z )叫做向量a 在空间直角坐标O -xyz 中的坐标,记作a =(x , y , z ).2.在空间直角坐标O -xyz 中,对于空间任意一点A (x , y , z ),向量OA →是确定的,容易得到OA →=x i +y j +z k ,因此,向量OA →的坐标为OA →=(x , y , z ).这就是说,当空间向量a 的起点移至坐标原点时,其终点的坐标就是向量a 的坐标. 3.向量坐标运算法则(类似于平面向量的坐标运算) (1)设a =(a 1, a 2, a 3),b =(b 1, b 2, b 3),则a +b =(a 1+b 1, a 2+b 2, a 3+b 3),a -b =(a 1-b 1, a 2-b 2, a 3-b 3) λa =(λa 1, λa 2, λa 3)(λ∈R )(2)若A (x 1, y 1, z 1),B (x 2, y 2, z 2),则AB →=(x 2-x 1, y 2-y 1, z 2-z 1). 4.空间向量平行的坐标表示a ∥b (a ≠0)⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ) 说明:即对应的坐标成比例(但没有平面向量平行的等积式)四.数学运用 1.例题:【例1】已知a =(1, -3, 8),b =(3, 10, -4),求a +b ,a -b ,3a . 解:a +b =(1, -3, 8)+(3, 10, -4)=(1+3, -3+10, 8-4)=(4, 7, 4),a -b =(1, -3, 8)-(3, 10, -4)=(1-3, -3-10, 8+4)=(-2, -13, 12), 3a =3×(1, -3, 8)=(3, -9, 24)【例2】已知空间四点A (-2, 3, 1),B (2, -5, 3),C (10, 0, 10)和D (8, 4, 9),求证:四边形ABCD 是梯形.证:依题意OA →=(-2, 3, 1),OB →=(2, -5, 3),所以AB →=OB →-OA →=(2, -5, 3)-(-2, 3, 1)=(4, -8, 2)同理DC →=(2, -4, 1),AD →=(10, 1, 8),BC →=(8, 5, 7) 由AB →=2DC →可知,AB →∥CD →,|AB →|≠|DC →|,又AD →与BC →不共线,所以四边形ABCD 是梯形. 说明:与平面向量一样,若A (x 1, y 1, z 1),B (x 2, y 2, z 2),则AB →=OB →-OA →=(x 2-x 1, y 2-y 1, z 2-z 1).这就是说,一个向量的坐标等于表示这个向量的有向线段的终点坐标减去它的起点坐标.【例3】已知a =(1, 6, -3),b =(1, -2, 9),c =(4, 0, 24),求证:a ,b ,c 共面. 解:因为a =(1, 6, -3),b =(1, -2, 9),所以a 与b 不共线.不妨设c =x a +y b ,则⎩⎪⎨⎪⎧x +y =46x -2y =0-3x +9y =24解得⎩⎨⎧x =1y =3,所以c =a +3b ,所以a ,b ,c 共面.【例4】在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是CC 1,B 1C 1,C 1D 1的中点,试建立空间直角坐标系,证明:平面MNP ∥平面A 1BD .解:以D 1为坐标原点,D 1A 1,D 1C 1,D 1D 所在直线为x ,y ,z 轴,建立空间直角坐标系.设正方体棱长为1,则A1(1, 0, 0),B (1, 1, 1),D (0, 0, 1),B 1(1, 1, 0),C 1(0, 1, 0),N (12, 1, 0),M (0, 1, 12),D 1(0, 0, 0),P (0,12, 0), 于是A 1B →=(0, 1, 1),A 1D →=(-1, 0, 1),NM →=(-12, 0, 12),PM→=(0, 12, 12),显然有NM →=12A 1D →,PM →=12A 1B →.所以,NM →∥A 1D →,PM →∥A 1B →,因此平面MNP ∥平面A 1BD .说明:同平面解析几何坐标法解题一样,关键是如何建立适当的坐标系.当然本题不用坐标法而用向量的方法也不难证明. 五.回顾小结:1.会正确的确定空间向量及点的坐标;2.向量的坐标判断两个空间向量平行的方法;六.课外作业:§3.1.5 空间向量的数量积第一课时教学目标1.在充分了解平面向量及空间向量的概念、向量的加、减以及数乘等运算基础上,进一步类比探究并获得空间向量数量积的概念、性质及运算律.2.掌握空间向量夹角和模的概念,学会用向量数量积求两直线所成的角,能判断两直线(向量)的位置关系(平行、垂直);3.了解空间向量数量积的几何意义. 教学重点,难点 空间向量数量积 教学过程一.问题情境 1.知识回顾(1)平面向量的数量积定义:已知两个非零向量a ,b ,有a ·b =|a ||b |cos θ,(0≤θ≤π),其中θ是向量a ,b 的夹角,并规定a ·b =0.(2)平面向量的夹角:将a →与b →平移至同起点处所成的0≤θ≤π 角.(同起点是关键) 2.问题:我们已经学过了平面向量夹角的定义和平面向量数量积的定义,那么类比平面向量知识,空间向量的夹角和数量积怎么定义? 二.数学理论由于任意两个空间向量都是共面向量,因此,两个空间向量的夹角以及它们的数量积就可以像平面向量那样来定义. 1.空间向量的夹角及其表示:如图,已知两非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与向量b 的夹角,记作<a ,b >;范围:0≤<a ,b >≤π,在这种规定下,两个向量的夹角就被唯一确定了,并且有<a ,b >=<b ,a >. 若<a ,b >=0,那么向量a 与b 同向; 若<a ,b >=π,那么向量a 与b 反向;若<a ,b >=π2,则称a 与b 互相垂直,记作:a ⊥b .注意:正确使用两个向量夹角的符号<a ,b >.例如:<AB →,AC →>=∠BAC . 2.向量的模:设OA →=a ,则有向线段OA →的长度叫做向量a 的长度或模,记作:|a |. 3.向量的数量积:已知a ,b 是空间两个非零向量,则|a ||b |cos<a ,b >叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos<a ,b >.规定:0向量与任何向量的数量积为0.注意:①两个向量的数量积是数量,而不是向量,符号由cos θ的符号所决定. ②零向量与任意向量的数量积等于零. 4.由空间向量数量积定义可知:空间两个非零向量a ·b 的夹角<a ,b >可以由cos<a ,b >=a ·b|a ||b |求得.5.空间向量数量积的性质:(1)cos<a ,b >=a ·b|a ||b |;(2)a ⊥b ⇔a ·b =0(a ,b 是两个非零向量);(3)|a |2=a ·a =a 2.注意:①性质(2)是证明两向量垂直的依据; ②性质(3)是求向量的长度(模)的依据。

3.1空间向量及其运算 第1课时

3.1空间向量及其运算 第1课时

教学案3.1 空间向量及其运算(第 1课时)(向量的加法、减法、数乘运算)【学习目标】了解空间向量的概念;掌握空间向量的加、减运算及数乘运算法则,能够正确应用空间向量的加法交换律、加法结合律及数乘的分配律进行运算。

【本课重点】空间向量的概念及加法、减法、数乘运算【本课难点】空间向量的理解和运算【教学过程】一、知识要点:1.空间向量的概念在空间,具有大小和方向的量叫;向量的大小叫做向量的或,记为;长度为零的向量叫做,记为;模为1的向量称为;方向相且模相等的向量称为相等向量;方向相且模相等的向量称为相反向量;2.空间向量与平面向量空间任意两个向量都可以平移到同一平面内,成为同一平面内的两个向量。

空间任意三个向量呢?3.向量的加、减运算法则及数乘运算法则4.向量的加法及数乘运算律:加法交换律:加法结合律:数乘分配律: 数乘结合律:二、应用举例:例1.化简下列各式:(1)AB +BA ; (2)AB ++;(3)AB +BC +CD +DE +EA归纳结论:(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:(2)首尾相接的若干向量构成一个封闭图形,则它们的和为零向量.即:例2.已知平行六面体ABCD -D C B A '''',化简下列向量表达式,并标出化简结果的向量:(1)AB +; (2)AB +AD +A A ;(3) ++21C C '; (4)31(A A '++)n 1n 1n 433221A A A A A A A A A A =++++- A A A A A A A A 1n 433221=++++例3.已知正方体ABCD -D C B A '''',点E 是上底面D C B A ''''的中心,求下列各式中x,y,z 的值。

(1)D B '=x +y +z A A ';(2)(2)=x +y +z A A '.【课堂小结】向量的加法可以用平行四边法则也可以用三角形法则,空间向量的加法与数乘向量的运算满足的运算律是:加法交换律,加法结合律,数乘分配律。

3.1 空间中向量的概念和运算

3.1 空间中向量的概念和运算
加法交换律:
对实数加法的分配律:
(1 2 )a 1 a 2 a
C
空间向量的数量积及运算律
向量的数量积:
a b a b cos b 1.( a) b (a b)
请牢记
B

2.a b b a 3.a (b c) a b a c
2.a b b a 0, a 0 a总与a平行
课程讲授 ——空间向量
向量的概念: 既有大小又有方向的量称为向量。 a, b, c,... 有向线段表示向量的:
A B
D
a AB CD AB
D
C 方向和长度相同两个向量相等。
向量的加减法: 空间中任何两个向量都可以看成同一个平面内 的向量。所以其加减法与平面向量相同。
如图AB BC CD与 AD有什么关系?
AB BC CD AD
C A A、B、C共面 A、C、D共面 B
与平面向量相同!
空间向量的运算律
ab ba 加法结合律: (a b) c a (b c) 对向量加法的分配律: (a b) b a
(1) AB AC 2 2 cos 600 2B (2) AD BD 2 2 cos 60 2
0
D G C
(3)GF AC 1 2 cos180 2
0
(4) EF BC 1 2 cos 60 1
0
注意: 两向量的夹角!
复习回顾
平面向量
1.向量的相关概念
(1)定义:既有大小,又有方向的量叫做向量.
(2)模:向量的长度叫做向量的模,记作 a 或 AB
(3) 零向量和单位向量:长度为零的向量叫做零向量, 长度为1个长度单位的向量叫做单位向量. (4)共线向量与相等向量:方向相同或相反的向量是共线向量; 长度相等且方向相同的向量是相等向量. 零向量方向不确定,它与任何向量共线.

3.1空间向量及其运算

3.1空间向量及其运算

当堂自测
4.已知 A,B,C 三点不共线,O 为平面 ABC 外一点,若 1→ 2→ → → 确定的点 P 与 A,B,C 共面,则 由向量OP= OA+ OB+λOC 5 3 2 λ=________ . 15
向量概念的应用
例 1 (1)下列关于空间向量的说法中正确的是( D ) A.若向量 a,b 平行,则 a,b 所在直线平行 B.若|a|=|b|,则 a,b 的长度相等而方向相同或相反 → ,CD → 满足|AB → |>|CD → |,则AB → >CD → C.若向量AB → 与CD → 满足AB → +CD → =0,则AB → ∥CD → D.若两个非零向量AB
范老师下班回家,先从学校大门口骑自行车向北行驶 2 000 m, 再向西行驶 2 500 m, 最后乘电梯上升 30 m 到 10 楼的住处. 在 这个过程中, 范老师从学校大门口回到住处所发生的总位移就是 三个位移的合成(如图所示),它们是不在同一平面内的位移.如 何刻画这样的位移呢?
复习与预习
当堂自测
1.在平行六面体 ABCD -A1B1C1D1 中,M 为 AC 与 BD 的交 → → → 点.若A1B1=a,A1D1=b,A1A=c,则下列 → 向量中与B 1M相等的向量是 ( A ) 1 1 1 1 A.- a+ b+c B. a+ b+c 2 2 2 2 1 1 1 1 C. a- b+c D.- a- b+c 2 2 2 2
[解析] (2)若 2ke1-e2 与 e1+2(k+1)e2 共线, 则 2ke1-e2=λ[e1+2(k
2k=λ, 1 +1)e2],∴ ∴k=- . 2 -1=2λ(k+1),
[小结 ] 可以利用向量之间的关系判断空间任意三点共线, 这 与利 用平 面向量 基本 定理 判断平 面内 三点共 线是 相似 的.结合共线向量的有关知识可知,要证空间中 E, F, B 三点共线,只需证明下面结论中的一个成立即可: → → → → → → → → (1)EB=mEF;(2)AB=AE+λEF;(3)AB=nAE+(1-n)AF.

3.1.1空间向量及其加减运算

3.1.1空间向量及其加减运算
(2)假命题,不相等的两个空间向量的模也可以相等, 只要它们的方向不相同即可.
(3)假命题,当两个向量的起点相同,终点也相同时, 这两个向量必相等,但两个向量相等却不一定有相同的起 点和终点.
(4)真命题,B→A与A→B仅是方向相反,它们的长度是相 等的.
归纳升华 1.在空间中,平行向量、向量的模、相等向量的概 念和平面向量完全一致. 2.两向量相等的充要条件是两个向量的方向相同、 模相等. 3.判断有关向量的命题时,要抓住向量的两个主要 元素:大小与方向,两者缺一不可,相互制约.
答案:B
[典例 2] 如图,已知长方体 ABCD-A′B′C′D′,化简 下列向量表达式,并在图中标出化简结果的向量.
(1)AA→′-C→B; (2)AA→′+A→B+B′→C′.
解: (1)A→A′-C→B=A→A′-D→A= A→A′+A→D=A→A′+A→′D′=A→D′.
(2)A→A′+A→B+B→′C′=(A→A′+A→B)+B→′C′=A→B′+B→′C′= A→C′,
第三章 空间向量与立体几何
3.1 空间向量及其运算 3.1.1 空间向量及其加减运算
[ 学 习 目 标 ] 1. 空 间 向 量 的 基 本 概 念 和 性 质 ( 难 点). 2.空间向量的加减法运算(重点).
1.空间向量的有关概念 (1)定义:在空间,把具有大小和方向的量叫做空间 向量. (2)长度:向量的大小叫做向量的长度或模.
列向量表达式,并标出化简结果所表示的向量. (1)A→B+B→C; (2)A→B+A→D+A→A1; (3)A→B-D→A-B→1B-C→C1. →→→ 解:(1)AB+BC=AC.
→→ → → → → (2)AB+AD+AA1=AC+CC1=AC1.

3.1 空间向量及其运算

3.1 空间向量及其运算

3.1 空间向量及其运算1.空间向量的概念空间向量的概念包括空间向量、相等向量、零向量、向量的长度(模)、共线向量等. 2.空间向量的加法、减法和数乘运算平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算对于有限个向量求和,交换相加向量的顺序其和不变.三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.加法和数乘运算满足运算律: ①交换律,即a +b =b +a ;②结合律,即(a ()()+=+a +b c a b+c ;③分配律,即()λμλμ+a =a +a 及()λλλ=+a +b a b (其中λμ,均为实数). 3.空间向量的基本定理(1)共线向量定理:对空间向量,a b (0)≠,b a b ∥的充要条件是存在实数λ,使λa =b .(2)共面向量定理:如果空间向量,a b 不共线,则向量c 与向量a,b 共面的充要条件是,存在惟一的一对实数x y ,,使c =x y a +b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组x ,y ,z ,使x y z p =a +b+c .其中{},,a b c 是空间的一个基底,a ,b ,c 都叫做基向量,该定理可简述为:空间任一向量p 都可以用一个基底{},,a b c 惟一线性表示(线性组合).4.两个向量的数量积两个向量的数量积是cos <>,a b =a b a b ,数量积有如下性质: ①cos <> ,a e =a a e (e 为单位向量);②0⇔ a b a b =⊥;③2a a =a ;④ ab a b ≤. 数量积运算满足运算律:①交换律,即 a b =b a ;②与数乘的结合律,即()()λλ a b =a b ;③分配律,即() a +b c =a c +b c .5.空间直角坐标系若一个基底的三个基向量是互相垂直的单位向量,叫单位正交基底,用{},,i j k 表示;在空间选定一点O 和一个单位正交基底{},,i j k ,可建立一个空间直角坐标系O xyz -,作空间直角坐标系O xyz -时,一般使∠xOy =135°(或45°),∠yOz =90°;在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系(立体几何中建立的均为右手系). 6.空间直角坐标系中的坐标运算给定空间直角坐标系O -xyz 和向量a ,存在惟一的有序实数组使123a a a a =i +j +k ,则123()a a a ,,叫作向量a 在空间的坐标,记作123()a a a ,,a =.对空间任一点A ,存在惟一的OA x y z =i +j +k ,点A的坐标,记作()A x y z x y z ,,,,,分别叫A的横坐标、纵坐标、竖坐标.7.空间向量的直角坐标运算律(1)若123123()()a a a b b b ,,,,,a =b =,则a +b 112233()a b a b a b =+++,,,-a b 112233()a b a b a b =---,,,123()a a a λλλλ=,,a ,112233()a b a b a b ,,a b =,112233()a b a b a b λλλλ⇔===∈R ,,a b ∥,1122330a b a b a b ⇔++=a b ⊥.(2)若111222()()A x y z B x y z ,,,,,,则212121()AB x x y y z z =---,,.即一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.8.直线的方向向量与向量方程(1)位置向量:已知向量a ,在空间固定一个基点O ,作向量OA =a ,则点A 在空间的位置被a 所惟一确定,a 称为位置向量.(2)方向向量与向量方程:给定一个定点A和一个向量a ,再任给一个实数t ,以A为起点作向量AP t =a ,则此向量方程称为动点P 对应直线l 的参数方程,向量a 称为直线l 的方向向量.当堂训练一、选择题(每小题6分,共36分)1.如图,在底面为平行四边形的四棱柱ABCD -A 1B 1C 1D 1中,M 是AC 与BD的交点,若AB=a ,11A D =b ,1A A =c ,则下列向量中与1B M 相等的向量是( )(A)-12a +12b +c (B)12a +12b +c(C)12a -12b +c (D)-12a -12b +c 2.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则sin〈CM ,1D N〉的值为( )(A)19 (B)49 5 (C)29 5 (D)233.有以下命题:①如果向量a ,b 与任何向量不能构成空间向量的一个基底,那么a ,b 的关系是不共线;②O ,A ,B ,C 为空间四点,且向量OA ,OB ,OC不构成空间的一个基底,那么点O ,A ,B ,C 一定共面;③已知向量a ,b ,c 是空间的一个基底,则向量a +b ,a -b ,c 也是空间的一个基底.其中正确的命题是( )(A)①② (B)①③ (C)②③ (D)①②③4.设A 、B 、C 、D 是空间不共面的四个点,且满足AB ²AC =0,AD ²AC =0,AD ²AB=0,则△BCD 的形状是( ) (A)钝角三角形 (B)直角三角形 (C)锐角三角形 (D)无法确定5.已知ABCD 为四面体,O 为△BCD 内一点(如图),则AO =13(AB +AC+AD)是O 为△BCD 重心的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分又不必要条件6.正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在1AC 上且AM =121MC,N 为B 1B 的中点,则|MN |为( ) (A)216 (B)66 (C)156 (D)153二、填空题(每小题6分,共18分)7.若空间三点A(1,5,-2),B(2,4,1),C(p,3,q +2)共线,则p +q = .8.已知O 是空间中任意一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA =2x BO +3y CO +4z DO,则2x +3y +4z = .9.空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值等于 .三、解答题(每小题15分,共30分)10.已知a =(1,-3,2),b =(-2,1,1),点A(-3,-1,4),B(-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE⊥b ?(O 为原点)11.如图,直三棱柱ABC -A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点.(1)求BN的模;(2)求cos 〈1BA ,1CB〉的值;(3)求证:A 1B ⊥C 1M.【探究创新】(16分)在棱长为1的正四面体OABC 中,若P 是底面ABC 上的一点,求|OP|的最小值. 同步提升一、选择题1.下列命题正确的有( )(1)若|a |=|b |,则a =b ;(2)若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 是平行四边形的充要条件; (3)若a =b ,b =c ,则a =c ;(4)向量a ,b 相等的充要条件是⎩⎪⎨⎪⎧|a |=|b |,a ∥b ;(5)|a |=|b |是向量a =b 的必要不充分条件; (6)AB →=CD →的充要条件是A 与C 重合,B 与D 重合. A .1个 B .2个 C .3个D .4个2.设A ,B ,C 是空间任意三点,下列结论错误的是( ) A.AB →+BC →=AC → B.AB →+BC →+CA →=0 C.AB →-AC →=CB → D.AB →=-BA →3.已知空间向量AB →,BC →,CD →,AD →,则下列结论正确的是( ) A.AB →=BC →+CD → B.AB →-DC →+BC →=AD → C.AD →=AB →+BC →+DC → D.BC →=BD →-DC →4.已知空间四边形ABCD ,连接AC ,BD ,则AB →+BC →+CD →为( )A .AD →B .BD →C .AC →D .05.点D 是空间四边形OABC 的边BC 的中点,OA →=a ,OB →=b ,OC →=c ,则AD →为( )A.12(a +b )-cB.12(c +a )-bC.12(b +c )-a D .a +12(b +c ) 6.已知P 是正六边形ABCDEF 外一点,O 为ABCDEF 的中心,则PA →+PB →+PC →+PD →+PE →+PF → 等于( )A.PO → B .3PO → C .6PO →D .07.设a 表示向东3 m ,b 表示向北4 m ,c 表示向上5 m ,则( )A .a -b +c 表示向东3 m ,向南4 m ,向上5 mB .a +b -c 表示向东3 m ,向北4 m ,向上5 mC .2a -b +c 表示向东3 m ,向南4 m ,向上5 mD .2(a +b +c )表示向东6 m ,向北8 m ,向上5 m8.空间四边形ABCD 中,若E 、F 、G 、H 分别为AB 、BC 、CD 、DA 边上的中点,则下列各式中成立的是( )A.EB →+BF →+EH →+GH →=0B.EB →+FC →+EH →+GE →=0 C.EF →+FG →+EH →+GH →=0 D.EF →-FB →+CG →+GH →=09、平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 和BD 的交点,若11B A =a ,11D A =b ,A A 1 =c ,则下列式子中与M B 1相等的是1A.-21a + 21b +cB.21a + 21b +c C. 21a - 21b +cD.- 21a - 21b +c10.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算的结果为向量1AC 的共有( ) (1)1CC )BC AB (++ (2)C D )D A AA (1111++ (3)111C B )BB AB (++ (4)11111C B )B A AA (++ A .1个 B .2个 C .3个 D .4个11.已知点G是正方形ABCD 的中心,P 是正方形ABCD 所在平面外的一点,则A 1PD PC PB PA +++等于( )A .4PGB .3PGC .2PGD .PG12.在空间四边形OABC 中, OA →+AB →-CB →等于( )A .OA →B .AB →C . OC →D .AC →二、填空题1、在空间直角坐标系中,点M 的坐标是(4,5,6),则点M 关于y 轴的对称点在坐标平面xOz 上的射影的坐标为_______.2、已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =3、已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 .4、如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的是①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.选做:已知在四面体ABCD 中,= a ,= b ,PC = c ,G ∈平面ABC . 若G 为△ABC 的重心,试证明31=PG (a +b +c );ABCDGP三、解答题1.已知A(3,2,1)、B(1,0,4),求: (1)线段AB 的中点坐标和长度;(2)到A 、B 两点距离相等的点P(x,y,z)的坐标满足的条件.2. 已知''''ABCD A B C D -是平行六面体.(1)化简'1223AA BC AB ++,并在图形中标出其结果;(2)设M 是底面A B C D 的中心,N 是侧面''BCC B 的对角线'BC 上的点,且':3:1BN NC =,设'MN AB AD AA αβγ=++,试求,,αβγ之值。

人教版数学高二数学选修2-1 3.1空间向量及其运算教材解读

人教版数学高二数学选修2-1 3.1空间向量及其运算教材解读

高中新课标数学选修(2-1)空间向量及其运算教材解读山东 尹承利一、空间向量及其运算 1.空间向量及其加减与数乘运算(1)空间向量:在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.零向量、单位向量、相反向量、相等向量、共线(平行)向量、方向向量等概念与平面向量的概念基本相同.(2)空间向量的加减与数乘运算①空间向量的加法、减法与数乘运算与平面向量的运算基本相同;②首尾相接的若干个向量之和,等于由起始向量的起始点指向末尾向量的终点的向量.如A B B C C D A D++=,A BB C C D D A +++=0等.2.共线向量的充要条件(1)共线向量的充要条件:对空间任意两个向量()≠0,,a b b a b的充要条件是存在实数λ,使abλ=.(2)空间直线的向量表过式:如果l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使O P O A t =+a. ①在l 上取A B=a,则①式可化为O PO A t A B=+. ②①和②都称为空间直线的向量表示式,由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.(3)利用向量之间的关系可以判断空间任意三点共线.其依据是:空间三点P A B ,,共线()P B t P A O P O A t A B t ⇔=⇔=+∈R .3.共面向量的充要条件(1)共面向理:平行于同一个平面的向量,叫做共面向量. 注:空间任意两个向量总是共面的.(2)共面向量的充要条件:如果两个向量,a b 不共线,那么向量p与向量a b ,共面的充要条件是存在惟一的有序实数对(),x y ,使p x =a y +b.(3)空间平面A B C 的向量表示式:空间一点P 位于平面A B C 内的充要条件是存在有序实数对x y ,,使A Px A B y A C=+;或对空间任意一点O ,有O PO A x A B y A C=++. ③③式称为平面A B C 的向量表示式.由此可知,空间中任意平面由空间一点及两个不共线向量惟一确定.(4)利用向量判断四点共面.其依据是:对于空间任一点O 和不共线的三点A B C ,,,满足向量关系式O Px O A y O B z O C=++,且当且仅当1x y z ++=时,四点P A B C ,,,共面.(即课本第95页思考2) 4.空间向量的数量积运算(1)空间两个向量的夹角:已知两个非零向量,a b 在空间任取一点O ,作O A =a,O B=b,则A O B ∠叫做向量,a b 的夹角,记作,a b.如果,a bπ2=,那么向量,a b 互相垂直,记作ab⊥.注:0πa b ,≤≤.(2)向量的数量积:两个非零向量,a b 的数量积c o s a b a b a b=,,.(3)数量积的性质:①零向量与任何向量的数量积为0,即aa =00··0=;②a aaa==22·,即a =;③c o s a b a b a b=,·;④ab a b ⊥⇔·0=.(4)数量积的运算律: ①()()a ba b λλ=··;②a bb a=··(交换律);③()a bc a b a c+=+···(分配律).注:向量的数量积不满足结合律,即对于三个均不为零向量的向量()()a b c a b c a b c ≠,,,··.(5)利用空间两个非零向量的数量积为零,可以推证空间线、面的垂直关系.如证明三垂线定理及逆定理(课本第98页例2)、直线和平面垂直的判定定理(例3)等.二、空间向量的坐标表示 1.空间向量基本定理(1)定理:如果三个向量a b c ,,不共面,那么对空间任一向量p,存在有序实数组{},,x y z ,使得p x =+a y b z +c,共中{},,a b c 叫做空间的一个基底,a b c ,,都叫做基向量.注:①空间任何三个不共面的向量都可构成空间的一个基成; ②空间任意一个向量都可以用三个不共面的向量表示出来.(2)单位正交基底:如果123e e e ,,是有公共起点O 的三个两两垂直的单位向量,则称{}123,,e e e 为空间的单位正交基底.2.空间向量运算的坐标表示设a123()=,,a a a ,b123()=,,b b b ,则(1)空间向量的直角坐标运算a b +=112233()+++,,a b a b a b ,ab -=112233()a b a b a b ---,,;λ=a 123()λλλ,,a a a ;a b=·112233++a b a b a b .(2)两个向量平行、垂直的充要条件的坐标表示 ①λ⇔=∥a b a b 112233()a b a b a b λλλλ⇔===∈R ,,;②ab ⊥1122330⇔++=a b a b a b 。

空间向量的运算(空间向量与立体几何知识点_空间向量总结)

空间向量的运算(空间向量与立体几何知识点_空间向量总结)

⑴ DM
1(a b) c 2
⑵ AG
A
1(a b c) 3
D
B
G
M
C
例3(课本例1)如图,已知平行四边形ABCD,从平 面AC外一点O引向量 OE kOA, OF kOB, OG kOC , OH kOD , 求证: ⑴四点E、F、G、H共面; ⑵平面EG//平面AC.
例3 (课本例1)已知 ABCD ,从平面AC外一点O引向量
是存在唯一有序实数对(x, y), 使 OP OA x AB y AC ③ 注:①、②、③式都称为平面的向量表示式,
即平面由空间一点及两个不共线向量唯一确定.
21
思考 2(课本 P88 思考) 已知空间任意一点 O 和不共线的三点 A、B 、C ,
满 足 向 量 关 系 式 OP xOA yOB zOC ( 其 中 x y z 1 )的点 P 与点 A、B 、C 是否共面?
量 p 与向量 a 、b 共面的充要条件是存在唯一的有
序实数对 ( x, y) 使 p xa yb .
bC
p
P
AaB
20
思考 1:如图,平面 为经过已知点 A 且平行两不共线
的非零向量 a 、b 的平面,如何表示平面 A 上的任一点 P
呢?
⑴∵ AP与a 、b 共面,
bC
p
P
AaB
∴ 唯一有序实数对(x, y),
A1 A2 A2 A3 A3 A4 An1 An An A1 0
A1
An 1
A2
An
A3
A4
⑵向量的减法 三角形法则
b a
减向量终点指向被减向量终点
一、空间向量的基本概念
空间向量 既有大小,又有方向的量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 1 1 1 2 1 1 2
1
1
1 1
1
1
1
4. 试用向量方法证明不等式:
a 2 b 2 ab
+
a 2 c 2 ac
> b 2 c 2 bc
(a,b,c为正实数).
2. 在正方体 ABCD-A1B1C1D1 中, 给出下面四个命题: 3 A B); ①(A A A D A B ) ( AB AA ) 0; ② A C( 0 A B AD ③ 与 的夹角为 60 ; ④此正方体的体积为:| AB AA AD |. 则错误命题的序号 是: . (把所有错误命题的序号都填上)
3、向量与平面平行:
a a

说明:空间任意的两向量都是共面的.
4、共面向量定理 : 如果两个向量 a, b 不共线,p与 a, b 向量共面 的充要条件是存在实数 x,y 使 p xa yb 问题:⑴平面上一点P 在直线AB上的充要条 件是什么? 对于任一点 O ,总有:
4、空间向量数量积的性质:
a b | a | | b | cos a, b
2 a b a b 0 2 2 3 | a | a a a
4 a b | a | | b |
用空间向量解决立体几何问题时, 一般可按以下程序思考: ①如何把已知条件转化为向量表示, 待解决问题需要用到哪些向量?可 用什么向量知识解决? ②考虑一些未知的向量能否用基向 量表示. ③如何对已经表示出来的向量进行 运算,才能获得需要的结论.
例4、如图所示,已知线段AB在平面α内,线 段AC⊥α,线段BD⊥AB,且与α所成角是30°. 如果AB=a,AC=BD=b,求C、D间的距离.
一、复习引入:
叙述空间向量基本定理.
设O,A,B,C是不共面的四点,则对空间任一点 P,都存在唯一的三个有序实数x,y,z,使
OP xOA yOB zOC
二、知识要点: 1 、空间向量的夹角及其表示; 2、向量的模 ; 3、向量的数量积:
三、典例分析: 例1、 向量方法探究:直线和平面垂直的判定定理
已知:m,n 是平面 内的两条 相交直线,直线 l 与平面 的 交点为 B,且 lm,ln,
求证: l
例2、已知空间四边形ABCD中,ABCD, ACBD,求证:ADBC. 说明:用向量解立体几何题的一般思路:把 线段或角度向量化,并用已知向量表示未知 向量,然后通过向量运算来计算或证明 . 证明:选取一组基底,设 AB a, AC b, AD c AB CD a (c b) 0 a c b a 同理: a b b c
S N
A M B
C
作业:
1、已知线段AB、BD在平面内,BD AB, 线段AC ,如果AB=a,BD=b,AC=c,求C、D 间的距离.
2、如图,在正方体ABCD—A1B1C1D1中,E为 D1C1的中点,试求A1C1与DE所成角.
3、在棱长为1的正方体ABCD-A1B1C1D1中,E,F 1 分别是D1D,DB中点,G在棱CD上, CG CD ,H 4 为C1G的中点, (1)求证:EFB1C; (2)求EF,C1G所成角的余弦; (3)求FH的长.
例 3、 已知空间四边形 OABC ,其对角 线 OB, AC , M , N 分别是对边 OA, BC 的中 点,点 G 在线段 MN 上,且 MG 2GN ,用 基底向量 OA, OB, OC 表示向量 OG
王新敞
奎屯 新疆
王新敞
奎屯
新疆
3.1.3 两个向量的数量积
(2) AB AD AA
A' G
B'
M
D
C
王新敞
奎屯
新疆AΒιβλιοθήκη B例2 、已知空间四边形ABCD,连结AC,BD,设 M,G分别是BC,CD的中点,化简下列各表达式, 并标出化简结果向量:
1 1 1 AB BC CD; 2 AB ( BD BC ); 3 AG ( AB AC ) 2 2
一、复习引入: 提问1:什么叫做向量?向量是怎样表示的呢? 向量的概念; ⑴向量的基本要素; ⑵向量的表示; ⑶向量的长度; ⑷特殊的向量; ⑸相等的向量; ⑹平行向量(共线向量).
提问2:向量有哪些运算?
运算类型 向量 加法 向量 减法 向量 乘法 向量的 数量积 几何方法 坐标方法 运算性质
提问3:有哪些重要定理、公式:
3.1.2空间向量及其运算
一、预习内容: ⑴怎样的向量叫做共线向量? ⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量? ⑹向量p与不共线向量a、b共面的 充要条件 是什么? ⑺空间一点P在平面MAB内的充要条件是什 么?
例 6.已知线段 AB、BD 在平面 内, BD AB , 线 段 AC , 如 果 AB=a,BD=b,AC=c,求 C、D 间的距离
C
c

A
a
b B
D
D1 A1
E B1 F
C1
D
C
A
B
• 空间向量及其运算小结: • 1.用空间向量解决立体几何问题时,一般可按以 下程序思考: • (1)如何把已知条件转化为向量表示,待解决问 题需要用到哪些向量?可用什么向量只是解决? • (2)考虑一些未知的向量能否用基向量表示. • (3)如何对已经表示出来的向量进行运算,才能 获得需要的结论. 2. 向量作为沟通“数”和“形”的桥梁,是利用 数形结合解题的一种重要载体.学习者要逐步掌握 向量运算的各种几何意义,才能较好的利用效率这 一工具来灵活解题.请注意以下的基本知识技能:
例2、已知平行四边形 ABCD ,从平面 AC 外一 点O引向量 OE kOA, OF kOB, OG kOC, OH kOD, (1)求证:四点E,F,G,H共面; (2)平面AC//平面EG.
b C b O a a B b A
注:空间向量的加法、减法及数乘运算是 平面向量对应运算的推广
3、平行六面体: 平行四边形ABCD平移向量 a 到A’B’C’D’的 轨迹所形成的几何体,叫做平行六面体.记作 ABCD—A’B’C’D’. 它的六个面都是平行四边形,每个面的边叫 做平行六面体的棱 .
例1、 已知平行六面体ABCD- ABC D,化 简下列向量表达式,标出化简结果的向量 . D' C' (1) AB BC
1 (3) AB AD CC 2 1 (4) ( AB AD AA) 3
三、课堂练习: 1、如图,在空间四边形ABCD 中, E , F 分别 1 EF ( AB DC ) 是AD与BC的中点,求证:
2
思考: 如图设A是△BCD所在平面外的一点, G是△BCD 的重心 . 则用:AB, AC , AD表示 AG.
练习:
1、已知平行六面体 ABCD ABCD 中,
AB 4, AD 3, AA 5, BAD 90 ,
BAA DAA 60 ,求 AC 的长
D' A' B' C'
D
C
A
B
2、已知 S 是边长为 1 的正三角形所在 平面外一点,且 SA SB SC 1 , M , N 分别 SC 的中点, 是 AB , 求异面直线 SM 与 BN 所 成角的余弦值.
二、新课知识要点: 1、共线向量: 表示空间向量的有向线段所在的直线互相 平行或重合,则这些向量叫做共线向量(平行 向量). 2、共线向量定理及其推论:
共线向量定理:空间任意 两个向量 a , b b 0 , a // b
的充要条件是存在实数 λ , 使 a . b
, 1.已知向量 a, b,c是空间的一个基底向 P a b,向量q a b 那 ( )
A B C D
向量 a, p, q 可构成空间的另一个基底 向量 b, p, q 可构成空间的另一个基底 向量 a, b, c 分别都不能与 构成空间的另一个基底
p, q
向量 c, p, q 可构成空间的另一个基底
⑴平面向量基本定理; ⑵两个向量平行的充要条件; ⑶两个向量垂直的充要条件;
3.1.1空间向量及其运算
二、新课讲授: 1、空间向量的概念:
⑴定义: 在空间中具有大小和方向的量叫作向量.
同向且等长的有向线段表示同一向量或相等 向量. ⑵向量的表示: 用有向线段表示
2、空间向量的运算: ⑴定义: 与平面向量运算一样,空间向量的加法、减 法与数乘向量运算如下(如图)
AD BC 0 a c b c c (b a) 0 即:
故ADBC.
例3、如图,在空间四边形OABC中,OA=8, AB=6,AC=4,BC=5, OAC=45°,OAB=60°, 求OA与BC的夹角的余弦值.
C
P
B P' B'
⑵若三向量 a, b , c 不共面,
则所有空间向量所组成的 集合是:
O A A'
{ p | p xa yb zc, x R, y R, z R}
空间向量基本定理推论:
设O,A,B,C是不共面的四点,则对空间任 一点P,都存在唯一的三个有序实数x,y,z,使
OP xOA yOB x y 1
M b a B A A' p P
相关文档
最新文档