信号完整性
第9章-信号完整性分析

Page 14
6.Impedance(最大/最小阻抗)
最大/最小阻抗用于定义所允许电阻的最大和最小值。
7.Signal Top Value(高电平信号的最小电压值)
高电平信号的最小电压值用于定义信号在高电平状态所允许的最小电 压值。
图9-14 快捷菜单
Page 13 清华大学出版社 2015-7-10
13条信号完整性分析规则: 1.Signal Stimulus(激励信号)
激励信号是在信号完整性分析中使用的激励信号的特性。
2.Overshoot-Falling Edge(信号超调的下降边沿)
信号超调的下降边沿用于定义信号下降沿允许的最大超调值。
Page 4 清华大学出版社 2015-7-10
差的信号完整性并不是某一单一因素造成的,而是由板 级设计中多种因素共同作用引起的。大致可以归结为以 下几个方面: 系统和器件频率的上升;一般认为,当系统和器件频率 大于等于50MHz时,信号完整性问题就会越来越突出。 元器件和PCB的参数; 元器件在PCB上的布局; 高速信号的布线。
10. Flight Time-Falling Edge(下降沿的最大延迟时间)
下降沿的最大延迟时间用于定义信号下降沿的最大允许延迟时间。
11. Slope-Rising Edge(上升沿斜率)
上升沿斜率用于定义上升沿从阈值电压VT到高电平VIH的最大延迟 时间。
12. Slope-Falling Edge(下降沿斜率)
Page 3Байду номын сангаас
信号完整性不好的原因

信号完整性不好的原因1.信号传输介质的质量不佳:信号传输介质如电缆或光纤等,如果质量不佳或老化严重,会导致信号衰减、干扰、失真等问题,从而影响信号的完整性。
例如,电缆中的绝缘层损坏或老化会导致信号泄露,降低信号完整性。
2.杂散干扰:设备周围的电磁场干扰、辐射噪声、接地问题等都可能导致信号的杂散干扰。
这些干扰源可以是其他设备、电源线或磁场等,它们在信号传输的过程中引入了附加噪声,从而破坏信号的完整性。
3.传输距离过长:信号传输的距离过长会引起信号衰减,尤其是高频信号更为明显。
当信号到达接收端时,由于衰减导致的信号失真可能使其无法被正确解码或识别。
4.多径传播:在无线传输中,由于反射、折射等现象造成的多路径传播会使接收端收到多个不同的信号,其中包含有关同一信号的多个副本。
这些副本可能存在路径衰减、相位错位等问题,导致信号的完整性受到破坏。
5.时钟同步问题:在一些应用中,特别是在高速数据传输中,时钟同步是至关重要的。
如果发送端和接收端的时钟不同步,可能会导致数据的传输速率不匹配,从而影响信号的完整性。
6.设计不当:信号完整性问题也可能源于设计不当。
例如,布线设计不合理、信号层与电源层的绕线布局不当、接地布局不恰当等,都可能导致信号互相干扰,从而降低信号完整性。
7.温度和湿度变化:环境因素如温度和湿度的变化可能导致信号传输介质的物理性质发生变化,从而影响信号的传输质量。
例如,高温环境会导致电缆中的电阻值增加,从而影响信号传输的完整性。
为了提高信号的完整性,可以采取以下措施:1.使用高质量的信号传输介质:选择品质良好、适用于特定应用场景的电缆、光纤等信号传输介质。
2.使用合适的屏蔽方式:对于存在干扰问题的信号传输,可以采用合适的屏蔽方式,如使用屏蔽电缆、增加屏蔽层等来降低干扰。
3.设备的正确接地:良好的接地可以减少干扰引入和信号回流,提高信号的完整性。
4.选择合适的传输距离:避免信号传输距离过长,适当增加信号放大器或中继设备。
信号完整性测试报告

信号完整性测试报告1. 引言信号完整性测试是电子设备设计和制造过程中的关键步骤之一。
它旨在评估信号传输路径中的数据完整性,以确保信号在各个环节中没有失真或丢失。
本报告将介绍信号完整性测试的目的、测试方法、测试结果及建议。
2. 测试目的信号完整性测试的主要目的是验证信号在传输过程中的质量。
通过测试,可以确定信号是否满足设计要求,并找出潜在的问题。
这些问题可能包括信号失真、时钟抖动、串扰干扰等。
通过测试,可以提前发现并解决这些问题,确保信号的可靠传输。
3. 测试方法3.1 测试设备在进行信号完整性测试之前,需要准备以下测试设备:•示波器:用于观察信号波形和测量信号参数。
•信号发生器:用于产生测试信号。
•矢量网络分析仪:用于测量信号的频率响应和传输损耗。
3.2 测试流程信号完整性测试的基本流程如下:1.设置测试设备:连接示波器、信号发生器和矢量网络分析仪,并确保其正常工作。
2.准备测试样品:将待测试的电子设备或电路板连接到测试设备上。
3.产生测试信号:使用信号发生器产生测试信号,并将其输入到待测试的设备或电路板上。
4.观察信号波形:使用示波器观察信号波形,检查是否存在任何失真或干扰。
5.测量信号参数:使用示波器测量信号的幅度、频率、上升时间等参数。
6.使用矢量网络分析仪:如果需要更详细的信号特性分析,可以使用矢量网络分析仪进行频率响应和传输损耗的测量。
3.3 数据记录与分析在进行信号完整性测试期间,需要记录所有测试数据,并进行分析。
这些数据包括信号波形、信号参数测量结果以及任何异常情况的记录。
通过对测试数据的分析,可以确定信号的质量是否符合设计要求,并找出潜在的问题。
4. 测试结果与建议根据信号完整性测试的结果,可以得出以下结论和建议:•如果信号波形正常且符合设计要求,说明待测试的设备或电路板的信号传输路径基本上没有失真或干扰。
建议进行进一步的功能测试和验证。
•如果信号波形存在失真或干扰,需要进一步分析问题的原因。
PCB设计中的信号完整性分析方法

PCB设计中的信号完整性分析方法PCB设计是现代电子产品开发中不可或缺的一环。
而信号完整性是保证电子产品性能和可靠性的重要因素之一。
本文将介绍PCB设计中常用的信号完整性分析方法。
一、信号完整性的重要性信号完整性是指信号在电路板上的传输过程中,能够保持其原有的波形、速度和幅度,没有失真、噪声或者延迟。
信号完整性的不良会导致各种问题,如时钟偏移、串扰、干扰等,从而影响整个系统的性能和稳定性。
二、信号完整性分析方法1. 布线规则设计在PCB设计过程中,通过合理的布线规则设计可以减少信号的串扰和耦合。
比如,避免信号线之间的交叉、保持适当的距离、分层布线等。
2. 传输线理论传输线理论是用于分析高速信号传输的一种方法。
通过建立传输线模型,可以预测信号在传输过程中的行为。
在信号完整性分析中,可以使用传输线理论对信号的波形、传播时间和幅度进行分析。
3. 电磁仿真电磁仿真是一种基于数值计算的信号完整性分析方法。
通过建立PCB的电磁场模型,可以确定信号在电路板上的传播路径和互连耦合情况。
常用的电磁仿真软件包括HFSS、ADS等。
4. 时域分析时域分析是一种基于时间的信号完整性分析方法。
通过观察信号的波形和过渡边沿,可以判断信号是否出现失真、震荡或者反射等问题。
常用的时域分析工具包括示波器、逻辑分析仪等。
5. 频域分析频域分析是一种基于频率的信号完整性分析方法。
通过对信号的频谱进行分析,可以判断信号是否出现带宽限制、谐振或者频率响应不平坦等问题。
常用的频域分析工具包括频谱分析仪、网络分析仪等。
6. 时序分析时序分析是一种基于时钟的信号完整性分析方法。
通过分析信号在时钟边沿触发的时间关系,可以判断信号的稳定性和时钟偏移情况。
常用的时序分析工具包括时序分析仪、时钟提取软件等。
三、信号完整性验证流程针对PCB设计中的信号完整性问题,通常可以采用以下的验证流程:1. 设计规则检查(DRC):通过软件工具检查布线是否符合设计规则,是否存在潜在的信号完整性问题。
信号完整性分析

添加标题
添加标题
添加标题
添加标题
信号完整性分析在高速数字系统中 的应用
信号完整性分析在数字信号处理系 统中的应用
高速数字接口设计
应用场景:高速数字接口设计是信号完整性分析的重要应用场景之一
设计目标:保证信号传输的稳定性和可靠性
设计挑战:高速数字接口设计面临着信号传输速度、信号完整性、信号干扰等问题
建立信号完整 性分析的数学 模型
验证模型的准 确性和可靠性
优化模型,提 高分析结果的 准确性和可靠 性
仿真分析
仿真模型搭建:根 据实际电路搭建仿 真模型
仿真参数设置:设 置仿真参数,如频 率、阻抗等
仿真结果分析:分 析仿真结果,如信 号质量、时延等
仿真优化:根据仿 真结果进行优化, 如调整电路参数、 增加滤波器等
结果解读与优化建议
结果解读:根据分析结果,判断信号的完整性 优化建议:针对分析结果,提出针对性的优化方案 实施方案:根据优化建议,制定实施计划并执行 效果评估:对优化后的信号进行再次分析,评估优化效果
信号完整性分析的 应用场景
高速数字系统设计
信号完整性分析在数字电路设计中 的应用
信号完整性分析在数字通信系统中 的应用
信号完整性分析的 流程
确定分析目标
确定信号完整性分析的目标, 如提高信号传输质量、降低信 号干扰等
确定分析的范围,如系统级、 模块级、芯片级等
确定分析的指标,如信号传输 延迟、信号抖动、信号失真等
确定分析的方法,如仿真分析、 实验验证等
建立模型
确定信号完整 性分析的目标 和需求
收集和分析信 号完整性相关 的数据
添加副标题
信号完整性分析
汇报人:
电路设计中的信号完整性SI问题分析与解决

电路设计中的信号完整性SI问题分析与解决引言:在现代电子设备中,信号完整性是一个至关重要的问题。
由于信号的传输速度越来越高,信号完整性问题变得尤为突出。
本文将分析信号完整性(Signal Integrity,简称SI)问题在电路设计中的重要性,并介绍一些常见的SI问题及其解决方法。
一、信号完整性的重要性信号完整性是指在信号传输过程中保持信号波形的准确性和完整性,确保信号的正确传递和解读。
如果信号受到干扰、衰减或失真,可能会导致数据的错误传输或丢失。
这对于各种电子设备,尤其是高速数据传输的系统来说,都是一项极其重要的考虑因素。
二、常见的SI问题1. 反射干扰反射干扰是信号在多个传输线之间传播时产生的一种干扰现象。
当信号到达传输线末端时,一部分信号能够反射回来,与输入信号相叠加,引起波形失真。
这种干扰主要由于阻抗不匹配引起。
2. 串扰干扰串扰干扰是指在多条相邻的传输线上,信号在传输过程中相互影响的现象。
这种干扰主要由于电磁场相互耦合引起,导致信号波形失真,降低信号质量。
3. 时钟抖动时钟抖动是指时钟信号在传输中出现的随机时移现象。
时钟抖动可能导致时序错误,使系统无法正确同步,进而影响整个系统的性能。
三、SI问题的解决方法1. 降低阻抗不匹配为了解决反射干扰问题,可以通过匹配传输线和负载的阻抗,减少信号反射。
采用合适的终端电阻,可以使信号在传输线上的反射最小化。
2. 优化布线方式在设计电路板布线时,应尽量避免传输线之间的相互干扰。
合理安排和分隔传输线的布局,使用屏蔽层和地平面层等技术手段,可有效减少串扰干扰。
3. 使用信号完整性分析工具借助信号完整性分析工具,可以模拟和分析信号在电路板上的传输过程,帮助发现潜在的SI问题。
通过调整设计参数,优化电路板布线,可以提前预防并解决SI问题。
4. 时钟校准技术对于时钟抖动问题,可以采用时钟校准技术来调整时钟信号的时序和相位。
通过使用高精度的时钟源和时钟校准电路,可以有效减少时钟抖动带来的问题。
第二讲——信号完整性

高速数字电路的特征(续4)
图中表示用傅立叶展开式来拟合方波的情况。当用5阶波形叠加时,其 信号与原方波还有明显的差别;若用10阶波形叠加时,则与原方波相பைடு நூலகம்差无几;若再用20阶的波形叠加的话,其改善程度已经不明显。所以 对方波信号的分析一般到10倍 f。(f。为方波的基频)即可。
信号分类
单端信号 差分信号 一次开关(Incident switching) 反射开关(Reflected switching)
一般IC对于过冲的高度和宽度的容忍度都有指标。因为过冲会使IC内部的ESD防护 二极管导通,通常电流有100mA左右。信号长期的过冲会使IC器件降质,并是电 源噪声和EMI的来源之一。
2. 振铃(Ringing/Ring Back) 振铃会使信号的threshold域值模糊,而且容易引起EMI。
3. 非单调性(Non-monotonic) 电平上升过程中的平台会产生非单调性,这有可能对电路有危害,特别是针对异步 信号如:Reset、Clock等会有影响。
2. 上升/下降沿时间 信号是否被看作为高速信号,和信号的周期关系不大。只要信号的 上升沿或下降沿很陡,它都有可能是高速信号。当然如果信号的周 期较短,其上升下降沿必然很陡,当然也就是高速信号了。
信号完整性复习

第一章概论狭义的信号完整性(SI),是指信号电压(电流)完美的波形形状及质量。
广义的信号完整性(SI),指在高速产品中,由互连线引起的所有信号电压电平和电流不正常现象,包括:噪声、干扰和时序等。
由于物理互连造成的干扰和噪声,使得连线上信号的波形外观变差,出现非正常形状的变形,称为信号完整性被破坏。
信号完整性问题是物理互连在高速情况下的直接结果。
信号完整性强调信号在电路中产生正确响应的能力。
信号无失真:信号经过一个系统后,各个参数被等比例地放大或缩小。
高速的含义:(严格地,高频不一定高速,低频也不一定低速)当系统中的数字信号的上升边小于1ns或时钟频率超过100MHz时,我们称之为高速运行。
物理互连的电阻、电容、电感和传输线效应影响了系统性能。
作者Eric将后果归结为四类SI问题:反射(reflection);串扰(crosstalk);电源噪声(同步开关SSN、地弹、轨道塌陷);电磁干扰(EMI)。
反射(reflection)是指传输线上有回波。
信号功率(电压和电流)的一部分经传输线上传输到负载端,但是有一部分被反射回来形成振铃(ringing),振铃就是反复出现过冲和下冲。
(过冲是指第一个峰值或谷值超过设定电压;下冲类似)。
振铃现象实际上是由阻抗突变产生的反射引起的。
减小阻抗突变问题的方法就是让整个网络中的信号所感受的阻抗保持不变当信号从驱动源输出时,构成信号的电流和电压将互连线看做一个阻抗网络。
当信号沿网络传播时,它不断感受到互连线引起的瞬态阻抗变化。
如果信号感受到的阻抗保持不变,则信号就保持不失真。
一旦阻抗发生变化,信号就会在变化处产生反射,并在通过互连线的剩余部分时发生失真。
如果阻抗改变的程度足够大,失真就会导致错误的触发。
串扰crosstalk)是指两个不同的电性能网络之间的相互作用。
通常,每一个网络既产生串扰,也会被干扰。
电源噪声主要指同步开关噪声(SSN)。
地弹是返回路径中两点之间的电压,它是由于回路中电流变化而产生的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号完整性研究:什么是信号完整性?如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。
早一天遇到,对你来说是好事。
在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。
器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。
但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。
另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。
因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。
广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。
主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。
信号完整性问题的根源在于信号上升时间的减小。
即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。
下面谈谈几种常见的信号完整性问题。
反射:图1显示了信号反射引起的波形畸变。
看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。
如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。
很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。
或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。
其实这个小电阻的作用就是为了解决信号反射问题。
而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。
这个解决方法叫阻抗匹配,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的地位。
图片1串扰:如果足够细心你会发现,有时对于某根信号线,从功能上来说并没有输出信号,但测量时,会有幅度很小的规则波形,就像有信号输出。
这时你测量一下与它邻近的信号线,看看是不是有某种相似的规律!对,如果两根信号线靠的很近的话,通常会的。
这就是串扰。
当然,被串扰影响的信号线上的波形不一定和邻近信号波形相似,也不一定有明显的规律,更多的是表现为噪声形式。
串扰在当今的高密度电路板中一直是个让人头疼的问题,由于布线空间小,信号必然靠得很近,因此你比须面对它,只能控制但无法消除。
对于受到串扰的信号线,邻近信号的干扰对他来说就相当于噪声。
串扰大小和电路板上的很多因素有关,并不是仅仅因为两根信号线间的距离。
当然,距离最容易控制,也是最常用的解决串扰的方法,但不是唯一方法。
这也是很多工程师容易误解的地方。
轨道塌陷:噪声不仅存在于信号网络中,电源分配系统也存在。
我们知道,电源和地之间电流流经路径上不可避免存在阻抗,除非你能让电路板上的所有东西都变成超导体。
那么,当电流变化时,不可避免产生压降,因此,真正送到芯片电源管脚上的电压会减小,有时减小得很厉害,就像电压突然产生了塌陷,这就是轨道塌陷。
轨道塌陷有时会产生致命的问题,很可能影响你的电路板的功能。
高性能处理器集成的门数越来越多,开关速度也越来越快,在更短的时间内消耗更多的开关电流,可以容忍的噪声变得越来越小。
但同时控制噪声越来越难,因为高性能处理器对电源系统的苛刻要求,构建更低阻抗的电源分配系统变得越来越困难。
你可能注意到了,又是阻抗,理解阻抗是理解信号完整性问题的关键。
信号完整性问题涉及面比较广,这里只是简单介绍几种现象,希望这篇文章能让你对信号完整性有个初步的认识。
信号完整性,将是每个硬件工程师的必修课。
早一天接触,早一天受益。
信号完整性研究:何时会遇到信号完整性问题多年前,在我开始研究信号完整性问题时也曾经有过这样的疑问,随着对信号完整性理解的深入,便没有再仔细考虑。
后来在产品开发过程中,朋友、同事经常向我提出这一问题。
有些公司制作复杂电路板时,硬件总也调不通,于是找到我,当我解决了问题,并告诉他们,原因就在于没有处理好信号完整性设计,负责开发的硬件工程师也会提出同样的问题。
他们通常的说法是:高速电路中会有问题,可是什么情况下必须进行专门的信号完整性设计?不断的有人问我,我不得不作更深入的思考。
说实话,这个问题很难回答,或者说他们这种问法很难回答。
他们的意思可以解释为,速度高了就要考虑信号完整性,低速板不存在这个问题,那总要有个临界频率,这个频率是多少?有人曾提出过这样的论点,当外部总线频率超过80MHz时,就要进行专门的分析设计,低于这一频率,不用考虑信号完整性问题。
对这一论点,我不敢苟同。
仔细分析,他们这种问法的背后是对信号完整性的一种误解。
如果必须有一个答案的话,我想答案应该是:只要信号畸变到了无法容忍的程度就要考虑信号完整性问题。
呵呵,看起来像是在胡说八道,不过这确实是能找到的最好的答案了。
要想弄清这个问题,必须先了解信号完整性的实质到底是什么。
产生信号完整性的原因很多,频率(值得推敲,暂且借用提问者的说法)只不过是其中的一个而已,怎么能单单用频率来强行地划分界线!顺便说一句,很多人说频率的影响,其实这个词很值得推敲。
频率到底指的是哪个部分的频率?电路板上有主时钟频率,芯片内部主频,外部总线带宽,数字信号波形带宽,电磁辐射频率,影响信号完整性的频率到底指的是哪一个?问题根源在于信号上升时间。
信号完整性最原始的含义应该是:信号是否能保持其应该具有的波形。
很多因素都会导致信号波形的畸变,如果畸变较小,对于电路板不会产生影响,可是如果畸变很大,就可能影响电路的功能。
系统频率(芯片内部主频以及外部频率)、电磁干扰、电源波纹噪声,数字器件开关噪声、系统热噪声等都会对信号产生影响,频率并不具有特殊的地位,你不能把所有的注意力都放在频率这个因素上。
那么这里又会出现另一个问题,波形畸变多大,会对电路板功能产生影响。
这没有确定统一的指标,和具体应用以及电路板的其他电气指标有关。
对于数字信号而言,对畸变的容忍度较大。
能有多大的容忍度,还要考虑电路板上的电源系统供电电压波纹有多大,系统的噪声余量有多大,所用器件对于信号建立时间和保持时间的要求是多少等等。
对于模拟信号,相对比较敏感,容忍度较小,至于能容忍多大的畸变,和系统噪声,器件非线性特性,电源质量等等有关。
是不是听起来很晦涩!确实,要说清楚这个问题并不容易,因为牵扯到了太多的因素在内。
下面这个数字信号波形的例子能让你有一个简单直观的理解。
这是一个受反射影响的方波数字信号,波形的畸变仅仅是反射的结果,没有迭加其他噪声。
假设低电平逻辑小于0.7v,高电平大于2v。
对于高电平来说,震荡的低谷部分可能会冲到2v以下,此时电路处于不定态,可能引起电路误动作。
所以,迭加在高电平上的波纹幅度不能太大。
由于电路存在噪声,电源也有波纹,这些最终都会迭加到信号波形上,所以你计算波纹幅度的时候要考虑这些因素,而这些因素和你的电路板其他部分设计有关。
所以你无法确定一个统一的畸变标准,只能根据你具体电路的设计和应用综合考虑。
最终的原则只有一个:通过信号完整性设计、电源完整完整性设计等手段,将总的信号畸变控制在一定范围内,保证电路板正常稳定工作。
工程中,解决信号完整性的问题是一个系统的工程,并不是一两种方法就可以包打天下的。
什么时候会碰到信号完整性问题也不是可以硬性的划一道线来区分,一句话,要根据你的实际情况来定。
可能你会感觉,这么多不确定的因素,还怎么在最初设计的时候考虑信号完整性问题?嗯,没问题的,其实对于所有影响信号质量的因素,你都可以通过一定的设计技术来控制。
对于电源波纹问题,那是电源完整性的问题,又是一个系统的工程。
而其他的电磁干扰,电磁兼容等则是另外一个系统工程。
总之,信号完整性问题涉及的知识较多,是一个跨学科的知识体系。
网上关于信号完整性基础知识讲解很多,但很少有讲得很深入的。
要想学好信号完整性,你需要有一定的精力投入,但可以告诉你,只要掌握学习方法,其实不难。
一旦你学好它,回报是非常高的,毕竟这方面的人才现在是奇缺阿,很多公司给信号完整性工程师开价都在25W以上,如果你很牛的话,呵呵,决不是这个价。
信号完整性研究:信号上升时间与带宽在前文中我提到过,要重视信号上升时间,很多信号完整性问题都是由信号上升时间短引起的。
本文就谈谈一个基础概念:信号上升时间和信号带宽的关系。
对于数字电路,输出的通常是方波信号。
方波的上升边沿非常陡峭,根据傅立叶分析,任何信号都可以分解成一系列不同频率的正弦信号,方波中包含了非常丰富的频谱成分。
抛开枯燥的理论分析,我们用实验来直观的分析方波中的频率成分,看看不同频率的正弦信号是如何叠加成为方波的。
首先我们把一个1.65v的直流和一个100MHz的正弦波形叠加,得到一个直流偏置为1.65v的单频正弦波。
我们给这一信号叠加整数倍频率的正弦信号,也就是通常所说的谐波。
3次谐波的频率为300MHz,5次谐波的频率为500MHz,以此类推,高次谐波都是100MHz的整数倍。
图1是叠加不同谐波前后的比较,左上角的是直流偏置的100MHz基频波形,右上角时基频叠加了3次谐波后的波形,有点类似于方波了。
左下角是基频+3次谐波+5次谐波的波形,右下角是基频+3次谐波+5次谐波+7次谐波的波形。
这里可以直观的看到叠加的谐波成分越多,波形就越像方波。
图1因此如果叠加足够多的谐波,我们就可以近似的合成出方波。
图2是叠加到217次谐波后的波形。
已经非常近似方波了,不用关心角上的那些毛刺,那是著名的吉博斯现象,这种仿真必然会有的,但不影响对问题的理解。
这里我们叠加谐波的最高频率达到了21.7GHz。
图2上面的实验非常有助于我们理解方波波形的本质特征,理想的方波信号包含了无穷多的谐波分量,可以说带宽是无限的。
实际中的方波信号与理想方波信号有差距,但有一点是共同的,就是所包含频率很高的频谱成分。
现在我们看看叠加不同频谱成分对上升沿的影响。
图3是对比显示。
蓝色是基频信号上升边,绿色是叠加了3次谐波后的波形上升边沿,红色是基频+3次谐波+5次谐波+7次谐波后的上升边沿,黑色的是一直叠加到217次谐波后的波形上升边沿。
图3通过这个实验可以直观的看到,谐波分量越多,上升沿越陡峭。
或从另一个角度说,如果信号的上升边沿很陡峭,上升时间很短,那该信号的带宽就很宽。
上升时间越短,信号的带宽越宽。
这是一个十分重要的概念,一定要有一个直觉的认识,深深刻在脑子里,这对你学习信号完整性非常有好处。