工程问题的解题思路

合集下载

工程问题解题的思路和方法

工程问题解题的思路和方法

工程问题解题的思路和方法解决工程问题的思路和方法可以分为以下几个步骤:1. 确定问题:首先需要明确问题的定义和要求,理解问题的背景和限制条件。

2. 分析问题:对问题进行分解,确定问题的关键因素和影响因素。

分析问题的过程中,可以使用系统思维和因果图等方法,以找出问题的根本原因。

3. 收集数据:收集与问题相关的数据和信息。

可以通过实地调查、实验、测量等手段来获取数据,也可以参考相关文献、专家意见等进行数据收集。

4. 建立模型:根据问题的特点和要求,选择适合的数学模型或工程模型来描述问题,并对模型进行验证和优化。

5. 解决问题:根据建立的模型,利用适当的方法和技术进行问题求解。

可以采用数值计算、优化算法、仿真实验等方法进行问题求解,并进行结果的分析和评估。

6. 实施方案:根据问题的解决方案,进行实施和操作。

在实施过程中,需要考虑资源的调配、时间的安排、风险的控制等方面。

7. 监测和评估:对解决方案进行监测和评估,以确保解决方案的有效性和可持续性。

可以通过实验验证、系统运行监测、数据分析等手段进行监测和评估。

在解决工程问题的过程中,还需要注意以下几个方面:1. 多角度思考:从不同的角度和维度分析问题,考虑各种可能的解决方案和影响因素。

2. 团队合作:工程问题通常较为复杂,需要多个专业领域的人员合作解决。

通过合作可以充分发挥各个专业领域的优势,提高问题解决的效率和质量。

3. 创新思维:工程问题往往需要创新的解决方案。

在问题求解过程中,需要鼓励和培养创新思维,尝试不同的方法和途径。

4. 持续学习:工程问题解决是一个不断学习和改进的过程。

需要保持学习的态度,持续提高自身的技术和专业知识,以适应问题解决的需求。

工程问题解题方法和技巧

工程问题解题方法和技巧

工程问题解题方法和技巧工程问题解题方法和技巧是工程师在实际工作中必备的能力之一。

无论是在设计阶段还是在施工阶段,工程师都需要具备解决问题的能力,以确保工程项目能够顺利完成。

以下是一些常用的工程问题解题方法和技巧,供工程师参考。

1.确定问题的本质:在解决工程问题之前,首先需要明确问题的本质和原因。

工程问题可能有多个表象,但真正的问题可能只有一个或者一个核心问题。

通过仔细分析和研究,找出问题的本质,才能更精准地解决问题。

2.收集信息和数据:解决工程问题需要有充足的信息和数据支持。

工程师需要广泛地收集相关的信息和数据,包括设计文档、技术规范、施工记录等。

通过收集和整理这些信息和数据,可以更全面地了解问题的背景和相关因素。

3.进行系统分析:在获得足够的信息和数据后,工程师需要进行系统分析。

系统分析是指对问题进行整体、综合的分析,从多个角度和层面考虑问题的原因和解决方法。

通过系统分析,工程师可以更好地理解问题的本质和复杂性。

4.制定解决方案:在系统分析的基础上,工程师需要制定解决方案。

解决方案应该是基于科学原理和实践经验的,能够解决问题的同时尽量降低成本和风险。

解决方案应该经过充分的论证和评估,确保其可行性和有效性。

5.实施解决方案:制定好解决方案后,工程师需要将其实施到实际工程中。

在实施过程中,需要严格按照解决方案的要求进行操作,并及时记录和追踪进展情况。

实施解决方案需要密切关注各项指标和数据的变化,及时调整和优化解决方案。

6.沟通和协作:在解决工程问题的过程中,工程师需要与团队成员和相关方进行沟通和协作。

沟通和协作能够促进问题的及时解决和有效实施,减少误解和纠纷。

7.学习和改进:解决工程问题是一个不断学习和改进的过程。

工程师应该通过总结和反思,不断改进自己的解决问题的能力。

同时,也应该积极借鉴和学习他人的经验和教训,以提高自己的工程素质和能力。

此外,还有一些具体的技巧和方法可以帮助工程师更好地解决问题。

工程问题的解题思路

工程问题的解题思路

工程问题的解题思路工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。

我们通常所说的:“工程问题”,一般是把工作总量作为单位“1”,因此工作效率就是工作时间的倒数。

它们的基本关系式是:工作总量÷工作效率=工作时间。

工程问题是小学分数应用题中的一个重点,也是一个难点。

下面列举有关练习中常见的几种题型,分别进行思路分析,并加以简要的评点,旨在使同学们掌握“工程问题”的解题规律和解题技巧。

例1一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?[思路说明]①把这项工程的工作总量看作“1”。

甲队修建需要12天,修建1天完成这项工程的1/12;乙队修建需要20天,修建1天完成这项工程的1/20。

甲、乙两队共同修建1天,完成这项工程的1/12+1/20=2/15,工作总量“1”中包含了多少个2/15,就是两队共同修建完成这项工程所需要的天数。

1÷(1/12+1/20)=1÷2/15=15/2(天)②设这项工程的全部工作量为60(12和20的最小公倍数),甲队一天的工作量为60÷12=5,乙队一天的工作量为60÷20=3,甲、乙两队合建一天的工作量为5+3=8。

用工作总量除以两队合建一天的工作量,就是两队合建的天数。

60÷(60÷12+60÷20)=60÷(5+3)=60÷8=15/2(天)评点这是一道工程问题的基本题,也是工程问题中常见的题型。

上面列举的两种解题方法,前者比较简便。

这种解法把工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。

工程问题一般采用这种方法求解。

练习:一段公路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成,甲、乙、丙三队合修,需要几天完成?例2一项工程,甲队独做8天完成,乙队独做10天完成,两队合做,多少天完成全部工程的3/4?[思路说明]①把这项工程的工作总量看作“1”,甲队独做8天完成,一天完成这项工程的1/8;乙队独做10天完成,一天完成这项工程的1/10。

小学数学应用题:工程问题解题思路

小学数学应用题:工程问题解题思路

小学数学应用题:工程问题解题思路【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。

这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=总工作量÷(甲工作效率+乙工作效率)【解题思路和方法】变通后可以利用上述数量关系的公式。

例1:一批零件,甲独做6小时完成,乙独做8小时完成。

现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?解题思路:设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。

因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以(1)每小时甲比乙多做多少零件?24÷[1÷(1/6+1/8)]=7(个)(2)这批零件共有多少个?7÷(1/6-1/8)=168(个)解二上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3由此可知,甲比乙多完成总工作量的4-3 / 4+3 =1/7所以,这批零件共有24÷1/7=168(个)例2:一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。

现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?解题思路:必须先求出各人每小时的工作效率。

如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是60÷12=560÷10=6 60÷15=4因此余下的工作量由乙丙合做还需要(60-5×2)÷(6+4)=5(小时)也可以用(1-1/12*2)/(1/10+1/15)例3一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。

八年级数学工程问题解题技巧

八年级数学工程问题解题技巧

八年级数学工程问题解题技巧工程问题是一个经典的数学问题,主要涉及到工作量、工作效率和工作时间的计算。

在八年级数学中,工程问题是一个重要的知识点,需要掌握一些解题技巧。

解题技巧1. 理解基本概念:首先要明确工作量、工作效率和工作时间的基本概念。

工作量通常用单位“件”表示,工作效率用单位时间内完成的工作量表示,工作时间是完成一项工作所需的总时间。

2. 建立数学模型:对于一个工程问题,通常可以通过建立数学方程来求解。

常用的方程有:工作量 = 效率× 时间,或者时间 = 工作量 / 效率。

根据题目信息,可以建立相应的方程。

3. 分析比例关系:在某些工程问题中,工作效率和工作时间之间存在一定的比例关系。

通过分析这种比例关系,可以简化问题并找到解决方案。

4. 利用代数方法求解:一旦建立了数学方程,就可以使用代数方法求解。

这可能涉及到方程的移项、合并同类项、解方程等步骤。

5. 检验答案:最后一步是检验答案的正确性。

可以通过将答案代入原方程或进行一些简单的计算来验证答案是否正确。

示例题目:一项工程,甲单独做需要15天完成,乙单独做需要10天完成。

如果甲先单独做4天,然后乙加入合作,那么完成这个工程还需要多少天?解题思路:1. 首先确定甲和乙的工作效率:甲单独做需要15天完成,所以甲的工作效率是1/15;乙单独做需要10天完成,所以乙的工作效率是1/10。

2. 接下来分析甲和乙的工作时间:甲单独工作了4天,所以完成了4/15的工作量。

剩下的工作量是1 - 4/15 = 11/15。

3. 然后计算甲和乙合作完成剩余工作量所需的时间:由于甲和乙的工作效率分别是1/15和1/10,所以他们合作的工作效率是1/15 + 1/10 = 1/6。

设他们合作完成剩余工作量所需的时间为x天,则有方程:(1/6) × x = 11/15。

4. 最后解方程求出x的值:解方程得到x = 。

由于时间不能是小数,所以需要向上取整为3天。

工程问题的解题思路一元一次方程

工程问题的解题思路一元一次方程

在解决工程问题时,经常会遇到需要运用一元一次方程的情况。

一元一次方程是数学中常见的问题类型,它可以通过代数式来描述一个未知数和一定数值之间的关系。

在工程中,解决一元一次方程问题需要系统性的思考和分析,因此在本文中,我将从浅入深地介绍工程问题中一元一次方程的解题思路,并共享一些个人观点和理解。

1. 了解一元一次方程的基本概念我们需要了解一元一次方程的基本概念。

一元一次方程是指只含有一个未知数,并且未知数的最高次幂为1的方程。

一般形式可以表示为ax+b=0,其中a和b为已知数,x为未知数。

在工程中,我们经常会遇到类似于“某物体的重量减去5等于10”的问题,这就可以用一元一次方程来表示和解决。

2.分析工程问题并提取关键信息在解决工程问题的一元一次方程时,首先需要将问题分解并提取出关键信息。

一个典型的工程问题可能是“甲乙两人合力拉一根长40m的绳子,甲拉的力是乙的3倍,求甲乙两人各自的拉力是多少?”这个问题中,我们需要提取出“甲拉的力是乙的3倍”这个关键信息,并将其转化为一元一次方程的形式。

这个步骤需要逻辑清晰和思维严谨,以确保问题的关键信息被全面提取。

3.建立一元一次方程一旦关键信息被提取出,我们就可以开始建立一元一次方程了。

以前面提到的问题为例,设甲的拉力为x,乙的拉力为y,则根据“甲拉的力是乙的3倍”这个信息,可以建立方程x=3y。

此时我们就成功地将问题转化为一元一次方程的形式。

4.求解方程并验证结果建立方程后,接下来就是求解方程并验证结果了。

在这个例子中,我们可以将x=3y代入长度40m的绳子的情况下,利用一元一次方程求解出甲、乙两人各自的拉力分别是多少。

还需要验证方程的结果是否符合实际情况,因为有时候方程的解并不一定是合理的。

5.总结与展望在工程问题中,解题思路的关键是要有一定的数学思维和逻辑能力,能够将复杂的工程问题转化为简单的数学形式。

也需要灵活运用一元一次方程的知识,并且结合实际情况,才能做出准确的解答。

工程问题六年级数学解题

工程问题六年级数学解题

工程问题在六年级数学中是一个常见的问题,通常涉及到工作量、时间和效率等概念。

以下是一些解决工程问题的基本步骤和思路:
1.理解问题:首先,要仔细阅读题目,理解问题的背景和要求。

明确哪些是已知条
件,哪些是未知条件。

2.确定工作量:确定需要完成的工作量,通常以单位时间内的完成量来表示。

3.确定时间和效率:根据已知条件,确定完成工作所需的时间和效率。

如果题目中没
有给出,可以通过比较工作量和时间来计算效率。

4.建立数学模型:根据工作量、时间和效率之间的关系,建立数学模型。

通常可以使
用以下公式:
工作量= 效率×时间
5.解方程:根据已知条件和建立的数学模型,解方程求出未知量。

例如,题目中给出甲、乙两队合做20天可完成一项工程,先由甲队独做8天,再由乙队独做12天,还剩这项工程的8/15。

可以设甲队单独完成这项工程需要x 天,乙队单独完成这项工程需要y天。

根据题意可以列出以下方程组:
1.甲、乙两队合做20天可完成一项工程,即1/x + 1/y = 1/20
2.先由甲队独做8天,再由乙队独做12天,还剩这项工程的8/15,即8/x + 12/y = 1 -
8/15
解这个方程组就可以得到x和y的值,即甲、乙两队单独完成这项工程所需的时间。

初一数学工程问题解题技巧

初一数学工程问题解题技巧

初一数学工程问题解题技巧
工程问题是应用题中的一种类型,这类问题常常涉及到工作效率、工作时间和工作量之间的关系。

以下是初一数学工程问题的解题技巧:
1. 理解基本概念:工程问题中的基本概念包括工作效率、工作时间和工作量。

工作效率指单位时间内完成的工作量,通常用单位时间内完成的工作量来表示,如每天完成的工作量、每小时完成的工作量等。

工作时间指完成工作量所需的时间。

工作量指需要完成的总任务量。

2. 运用公式:工程问题中有一些常用的公式,例如:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。

理解并灵活运用这些公式是解决工程问题的关键。

3. 建立方程:根据题目中的已知条件,建立方程是解决工程问题的重要方法。

通过设立未知数,用代数式表示工作效率、工作时间或工作量等,然后根据公式列出方程,解方程即可求出未知数的值。

4. 注意单位:在工程问题中,单位非常重要。

确保所有的工作量、工作效率和工作时间都使用相同的单位,否则可能会导致错误的答案。

5. 画图辅助理解:对于一些复杂的工程问题,可以通过画图来帮助理解和分析问题。

画图可以直观地展示工作量、工作效率和工作时间之间的关系,有助于找到解题的思路。

6. 多做练习:解决工程问题需要熟练掌握相关的概念和方法。

通过多做练习题,可以加深对工程问题的理解,提高解题的能力和技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程问题的解题思路
工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。

我们通常所说的:“工程问题”,一般是把工作总量作为单位“1”,因此工作效率就是工作时间的倒数。

它们的基本关系式是:工作总量÷工作效率=工作时间。

工程问题是小学分数应用题中的一个重点,也是一个难点。

下面列举有关练习中常见的几种题型,分别进行思路分析,并加以简要的评点,旨在使同学们掌握“工程问题”的解题规律和解题技巧。

例1一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?
[思路说明]①把这项工程的工作总量看作“1”。

甲队修建需要12天,修建1天完成这项工程的1/12;乙队修建需要20天,修建1天完成这项工程的1/20。

甲、乙两队共同修建1天,完成这项工程的1/12+1/20=2/15,工作总量“1”中包含了多少个2/15,就是两队共同修建完成这项工程所需要的天数。

1÷(1/12+1/20)=1÷2/15=15/2(天)
②设这项工程的全部工作量为60(12和20的最小
公倍数),甲队一天的工作量为60÷12=5,乙队一天的工作量为60÷20=3,甲、乙两队合建一天的工作量为5+3=8。

用工作总量除以两队合建一天的工作量,就是两队合建的天数。

60÷(60÷12+60÷20)=60÷(5+3)=60÷8=15/2(天)
评点这是一道工程问题的基本题,也是工程问题中常见的题型。

上面列举的两种解题方法,前者比较简便。

这种解法把工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。

工程问题一般采用这种方法求解。

练习:一段公路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成,甲、乙、丙三队合修,需要几天完成?
例2一项工程,甲队独做8天完成,乙队独做10天完成,两队合做,多少天完成全部工程的3/4?
[思路说明]①把这项工程的工作总量看作“1”,甲队独做8天完成,一天完成这项工程的1/8;乙队独做10天完成,一天完成这项工程的1/10。

甲、乙两队合做一天,完成这项工程的1/8+1/10=9/40,工作总量“1”中包含多少个甲乙效率之和,就是甲乙合做
所需要的天数。

甲乙合做所需时间的3/4,就是甲乙合做完成全部工程的3/4所需的时间。

1÷(1/8+1/10)×3/4
=1÷9/40×3/4=10/3(天)
②把甲、乙两队合做的工作量3/4,除以甲、乙两队的效率之和1/8+1/10=9/40,就是甲乙合做完成全部工程的3/4所需要的时间。

3/4÷(1/8+1/10)=3/4÷9/40=10/3(天)
评点思路①是先求出两队合做一项工程所需的时间,再用乘法求出完成全部工程的3/4所需的时间。

思路②是把“3/4”看作工作总量,工作总量除以两队效率之和,就可以求出完成全部工程的3/4所需的时间。

两种思路简捷、清晰,都是很好的解法。

练习:一项工程,单独完成,甲队需8天,乙队需12天。

两队合干了一段时间后,还剩这项工程的1/6没完成。

问甲、乙两队合干了几天?
例3东西两镇,甲从东镇出发,2小时行全程的1/3,乙队从西镇出发,2小时行了全程的1/2。

两人同时出发,相向而行,几小时才能相遇?
[思路说明]①由甲2小时行全程的1/3。

可知甲行完全程要2÷1/3=6(小时);由乙2小时行全程的
1/2,可知乙行完全程要2÷1/2=4(小时)。

求出了甲、乙行完全程各需要的时间,时间的倒数便是各自的速度,进而可求出两人速度之和,把东西两镇的路程看作“1”,除以速度之和,就可求出两人同时出发相向而行的相遇时间。

综合算式:
1÷(1/(2÷1/3)+1/(2÷1/2))
=1÷(1/6+1/4)=1÷5/12=12/5(小时)
②由甲2小时行了全程的1/3,可知甲每小时行全程的1/3÷2=1/6;由乙2小时行全程的1/2,可知乙每小时行全程的1/2÷2=1/4。

把东西两镇的路程“1”,除以甲、乙的速度之和,就可得到两人同时出发相向而行的相遇时间。

综合算式:
1÷(1/3÷2+1/2÷2)
=1÷(1/6+1/4)=1÷5/12=12/5(小时)
评点本题没有直接告诉甲、乙行完全程各需的时间,所以求出甲、乙行完全程各需的时间或各自的速度,是解题的关键所在。

练习:打印一份稿件,小张5小时可以打完份稿件的1
/3,小李3小时可以打完这份稿件的1/4,如果两人合打多少小时完成?
例4一项工程,甲、乙合做6天可以完成。

甲独做18天可以完成,乙独做多少天可以完成?
[思路说明]把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。

把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18=1/9。

工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。

1÷(1/6-1/18)=1÷1/9=9(天)
评点这是一道较复杂的工程问题,是工程问题的主要题型之一。

主要考查同学们运用分数的基本知识及工程问题的数量关系,解决实际问题的能力。

解答这类工程问题的关键是:先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。

有的同学在解这道题时,由于审题马虎,而且受基本工程问题解法的影响,错误地列成:1÷(1/6+1/18),这是同学们应引起注意的地方。

练习:一批货物,用大小两辆卡车同时运送,5小时可
以运完。

如果用小卡车单独运,15小时可以运完。

问大卡车单独运几小时可以运完?
例5加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。

如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?
[思路说明]题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。

加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。

甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。

把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。

综合算式:
[1-(1/10+1/15)×5]÷1/12
=[1-1/6×5]÷1/12
=1/6÷1/12=2(天)
评点:这是一道较复杂的工程问题,是工程问题中的主要题型之一,也是升学或毕业考试中最常见的试题之一。

它的特点是求剩余部分的工作量完成的时间。

关键是正确求
出剩余部分的工作量。

从工作总量“1”中减去已完成的工作量,就是剩余部分的工作量。

有的同学由于审题不细,又受前面几例工程问题的解法的影响,容易错误地列成:[1÷(1/10+1/15)×5]÷1/12.练习:加工一批零件,甲独做要8天完成,乙独做要7天完成,丙独做要14天完成,三人合作2天后,甲因病休息,乙、丙两人继续合做还要几天完成?
例6一件工程,甲、乙合作6天可以完成。

现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。

这件工程如果由甲单独做,需要几天完成?
[思路说明]一件工程,甲、乙合作6天可以完成,可知甲、乙合作1天完成这件工程的1/6,甲、乙合作2天,完成这件工程的1/6×2=1/3。

用工作总量“1”减去甲、乙合作2天的工作量1/3,所得的差1-1/3=2/3,就是余下的工作量。

又知余下的工程由乙独做用了8天正好做完,用余下的工作量除以8,就可以求出1天的工作量,即乙的工作效率。

把甲、乙工作效率之和减去乙的工作效率,就可得到甲的工作效率。

求出了甲的工作效率,只要把工作总量“1”除以甲的工作效率,就可得到甲独做这件工程所需要的天数了。

综合算式:
1÷[1/6-(1-1/6×2)÷8]
=1÷[1/6-(1-1/3)÷8]=1÷[1/6-2/3÷8]
=1÷[1/6-1/12]=1÷1/12=12(天)
评点这也是一道复杂的工程问题。

解题的关键是正确求出甲的工作效率。

要求出甲的工作效率,解题的步骤较多,只有熟悉和掌握工程问题的结构特点和解题思路,熟练掌握前面5道例题的解题方法及解题的技能、技巧,才能正确顺利地解答本题。

练习:一项工程,甲、乙两队合做9天完成,乙、丙两队合做12天完成,现在甲、乙两队合做了3天,接着乙、丙两队又合做了6天,最后由丙队单独12天完成了整个工程。

如果整个工程由甲、丙两队合做需要几天完成?。

相关文档
最新文档