八年级数学试卷

合集下载

初中数学八年级试卷及答案

初中数学八年级试卷及答案

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √16B. √25C. √-9D. √-42. 已知a=3,b=-2,则a-b的值是()A. 5B. -5C. 1D. -13. 下列各组数中,互为相反数的是()A. 3和-5B. -3和3C. -3和5D. 3和54. 如果a=2,那么方程2x-a=0的解是()A. x=2B. x=1C. x=0D. x=-15. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,3)6. 下列函数中,是正比例函数的是()A. y=2x+1B. y=3x-4C. y=5xD. y=x²+27. 在等腰三角形ABC中,AB=AC,若∠B=40°,则∠A的度数是()A. 40°B. 50°C. 60°D. 70°8. 一个长方体的长、宽、高分别为a、b、c,则它的体积V=()A. abcB. a²bC. b²cD. c²a9. 若|a|=5,|b|=3,则a+b的值可能是()A. 8B. 2C. -8D. -210. 在下列各式中,正确的是()A. √9=±3B. √16=±4C. √-4=2D. √-9=-3二、填空题(每题5分,共30分)11. 有理数a的绝对值是3,那么a的值是______。

12. 如果a=-2,那么|a|+|a|的值是______。

13. 在直角坐标系中,点M(2,-3)关于原点的对称点是______。

14. 若x²=16,则x的值是______。

15. 一个等腰三角形的底边长为8,腰长为6,则这个三角形的面积是______。

三、解答题(每题10分,共30分)16. 解方程:3x-5=2x+4。

17. 已知一个等腰三角形的底边长为10,腰长为13,求这个三角形的周长。

八年级数学试卷答案及答案

八年级数学试卷答案及答案

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.5B. √2C. -3D. 3/4答案:B解析:有理数是可以表示为两个整数之比的数,而√2是无理数,不能表示为两个整数之比。

2. 下列图形中,对称轴为直线y=x的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 梯形答案:B解析:等边三角形的对称轴为直线y=x。

3. 下列等式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)(a - b)C. a^2 + 2ab + b^2 = (a + b)^2D. a^2 - 2ab + b^2 = (a - b)^2答案:B、C、D解析:根据平方差公式和完全平方公式,选项B、C、D都是正确的。

4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = 2x^2D. y = √x答案:B解析:反比例函数的形式为y = k/x,其中k为常数。

选项B符合这个形式。

5. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x + 3 = 0C. 2x - 3 = 0D. 2x + 3 = 7x答案:A解析:选项A的方程为一次方程,有唯一解。

选项B、C、D的方程都至少有两个解。

二、填空题(每题5分,共25分)6. 已知a + b = 5,ab = 6,则a^2 + b^2 = __________。

答案:37解析:根据平方差公式,a^2 + b^2 = (a + b)^2 - 2ab = 5^2 - 26 = 37。

7. 已知y = kx + b,其中k和b为常数,且k < 0,b > 0,则函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限答案:D解析:当k < 0时,函数图象斜率为负,因此图象在第二、四象限。

8. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 2和3答案:C解析:这是一个二次方程,可以通过因式分解或者求根公式求解。

八年级数学权威试卷及答案

八年级数学权威试卷及答案

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001…2. 已知a、b是实数,且a + b = 0,则下列选项中正确的是()A. a = 0,b ≠ 0B. b = 0,a ≠ 0C. a = b = 0D. a、b可以任意取值3. 下列各数中,绝对值最小的是()A. -5B. -4C. 0D. 14. 如果|a| = 5,那么a的值是()A. ±5B. 5C. -5D. ±105. 下列函数中,自变量的取值范围是全体实数的是()A. y = 2x + 3B. y = √xC. y = x^2 - 4x + 4D. y = 1/x6. 已知一次函数y = kx + b的图象经过点(1,2),则下列选项中正确的是()A. k = 2,b = 1B. k = 1,b = 2C. k = 2,b = 0D. k = 1,b = 17. 如果a、b是方程x^2 - 4x + 3 = 0的两个实数根,则下列选项中正确的是()A. a + b = 2B. ab = 3C. a + b = 4D. ab = 48. 在等腰三角形ABC中,AB = AC,且∠BAC = 60°,则∠B的度数是()A. 30°B. 45°C. 60°D. 90°9. 在梯形ABCD中,AD // BC,AB = CD,若ABCD的面积是S,则三角形ABD的面积是()A. S/2B. S/3C. 2S/3D. S10. 已知等边三角形ABC的边长为a,则其内切圆半径r是()A. a/3B. a/2C. √3/2aD. √3/3a二、填空题(每题5分,共25分)11. 如果a = -3,b = 2,那么a^2 - 2ab + b^2的值是______。

12. 若实数x满足不等式2x - 1 > 0,则x的取值范围是______。

八年级数学大题试卷

八年级数学大题试卷

一、解答题(共50分)1. (15分)已知函数f(x) = 2x + 3,求函数f(x)的图像与x轴的交点坐标。

2. (15分)在等腰三角形ABC中,AB=AC,∠B=50°,求∠A的度数。

3. (15分)已知正方形ABCD的边长为4cm,点E在BC边上,BE=2cm,求三角形ABE的周长。

4. (15分)某工厂生产一批产品,原计划每天生产120件,实际每天比计划多生产了10件,用了5天完成了生产任务。

求这批产品共有多少件?二、证明题(共20分)1. (10分)已知三角形ABC中,AB=AC,∠B=60°,求证:BC⊥AD(其中D为BC的中点)。

2. (10分)在等腰三角形ABC中,AB=AC,∠B=45°,求证:三角形ABC是等边三角形。

三、综合题(共20分)1. (10分)小明骑自行车从家出发去图书馆,已知他每小时骑行的速度为15km/h,家到图书馆的距离为30km。

小明在途中遇到了一位同学,两人一起骑行,共同到达图书馆。

已知两人一起骑行的时间为1小时,求小明同学骑自行车的速度。

2. (10分)某商场进行促销活动,顾客购物满100元即可获得一张优惠券,优惠券面值20元。

小明购物满150元,他获得了两张优惠券。

小明可以用这两张优惠券购买以下哪种商品?(选项中商品价格均大于20元)A. 60元B. 80元C. 100元D. 120元答案:一、解答题1. 解:令2x + 3 = 0,得x = -1.5,所以函数f(x)的图像与x轴的交点坐标为(-1.5, 0)。

2. 解:∠B=50°,∠C=∠B=50°,∠A=180°-∠B-∠C=180°-50°-50°=80°。

3. 解:三角形ABE的周长=AB+BE+AE=4+2+4=10cm。

4. 解:设这批产品共有x件,根据题意得:120×5+10×5=x,解得x=650。

八年级初中数学试卷电子版

八年级初中数学试卷电子版

一、选择题(每题3分,共30分)1. 若a > b,则下列不等式中正确的是:A. a + 1 > b + 1B. a - 1 < b - 1C. a + 2 > b + 2D. a - 2 < b - 22. 下列各数中,不是有理数的是:A. 3/4B. √2C. -5D. 0.253. 在直角坐标系中,点P(-2,3)关于x轴的对称点是:A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,3)4. 下列函数中,是反比例函数的是:A. y = x + 2B. y = 2xC. y = 3/xD. y = 45. 一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是:A. 24cm²B. 30cm²C. 36cm²D. 48cm²6. 下列图形中,不是轴对称图形的是:A. 正方形B. 等边三角形C. 长方形D. 等腰梯形7. 若x² - 5x + 6 = 0,则x的值为:A. 2或3B. 1或4C. 2或4D. 1或38. 下列关于平行四边形的说法正确的是:A. 对角线互相垂直B. 对边相等C. 对角相等D. 以上都是9. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数是:A. 75°B. 105°C. 120°D. 135°10. 下列函数中,是二次函数的是:A. y = x² + 3x + 2B. y = x³ + 2x² + 3x + 1C. y = x² - 4x + 5D. y = 2x² + 5x - 3二、填空题(每题3分,共30分)1. 若a = 2,b = -3,则a² - b² = _______。

2. 下列各数中,最小的数是:-3/4, 0, -√2, 2。

新课标试卷八年级数学

新课标试卷八年级数学

一、选择题1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C解析:绝对值表示数与0的距离,显然0的绝对值最小。

2. 如果a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 2答案:A解析:根据不等式的性质,两边同时加上或减去同一个数,不等号的方向不变。

3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 长方形答案:A解析:正方形具有轴对称性和中心对称性,而其他选项只具有其中一种性质。

4. 下列函数中,表示一次函数的是()A. y = 2x + 3B. y = 2x^2 + 1C. y = 3x + 4D. y = x^2 + 2x + 1答案:A解析:一次函数的一般形式为y = kx + b,其中k和b为常数,A选项符合此形式。

5. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°答案:C解析:三角形内角和为180°,∠A + ∠B + ∠C = 180°,代入∠A = 45°,∠B = 60°,解得∠C = 75°。

二、填空题6. 已知一元二次方程x^2 - 5x + 6 = 0,求该方程的两个根。

答案:x1 = 2,x2 = 3解析:根据因式分解法,将方程左边分解为(x - 2)(x - 3) = 0,得到两个根x1 = 2,x2 = 3。

7. 若a、b、c是等差数列的连续三项,且a + b + c = 15,求等差数列的公差。

答案:公差d = 5解析:等差数列的性质是相邻两项之差相等,即b - a = c - b,代入a + b + c = 15,得到3b = 15,解得b = 5,因此公差d = b - a = 5。

八年级上册数学试卷全套

八年级上册数学试卷全套

一、选择题(每题3分,共30分)1. 若方程 \(2x - 3 = 7\) 的解为 \(x\),则 \(x\) 的值为:A. 2B. 3C. 4D. 52. 在直角坐标系中,点A(2,3)关于原点的对称点坐标为:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)3. 下列函数中,是反比例函数的是:A. \(y = x^2\)B. \(y = 2x + 3\)C. \(y = \frac{1}{x}\)D. \(y = 3x\)4. 下列各式中,正确的是:A. \((a + b)^2 = a^2 + b^2\)B. \((a - b)^2 = a^2 - b^2\)C. \((a + b)^2 = a^2 + 2ab + b^2\)D. \((a - b)^2 = a^2 - 2ab + b^2\)5. 在梯形ABCD中,AD平行于BC,且AD = 4cm,BC = 6cm,梯形的高为3cm,则梯形ABCD的面积是:A. 9cm²B. 12cm²C. 15cm²D. 18cm²6. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为:A. 20cmB. 22cmC. 24cmD. 26cm7. 下列数中,属于有理数的是:A. \(\sqrt{2}\)B. \(\pi\)C. \(\frac{3}{4}\)D. \(0.1010010001...\)8. 若一个等差数列的首项为2,公差为3,则该数列的第10项是:A. 25B. 28C. 31D. 349. 下列图形中,不是轴对称图形的是:A. 正方形B. 等边三角形C. 长方形D. 非规则四边形10. 若一个圆的半径为5cm,则该圆的周长是:A. 15πcmB. 25πcmC. 10πcmD. 20πcm二、填空题(每题3分,共30分)1. 若 \(x^2 - 4x + 4 = 0\),则 \(x\) 的值为______。

八年级上册试卷含答案数学

八年级上册试卷含答案数学

一、选择题(每题3分,共30分)1. 已知x+2=5,则x的值为()A. 2B. 3C. 4D. 52. 下列各数中,正数是()A. -3B. 0C. 3D. -13. 下列各数中,0.1的相反数是()A. 0.1B. -0.1C. 1D. -14. 下列各数中,绝对值最大的是()A. -2B. -3C. 2D. 35. 下列各数中,有理数是()A. √2B. πC. 0.25D. √36. 已知a=2,b=-3,则a+b的值为()A. -1B. 1C. 5D. -57. 已知x²=4,则x的值为()A. -2B. 2C. ±2D. 08. 下列各数中,正比例函数y=kx(k≠0)的图象是一条直线的是()A. y=2x+3B. y=3x-2C. y=3x²D. y=2x9. 下列各数中,反比例函数y=k/x(k≠0)的图象是一条双曲线的是()A. y=3/xB. y=2/xC. y=4/xD. y=5/x10. 已知a=3,b=-2,则|a-b|的值为()A. 5B. 1C. 0D. -5二、填空题(每题3分,共30分)11. 若a=2,b=-3,则a-b的值为________。

12. 若|a|=5,则a的值为________。

13. 若x²=16,则x的值为________。

14. 若y=3x+2,当x=1时,y的值为________。

15. 若y=2/x,当x=3时,y的值为________。

16. 若y=kx,当x=2时,y的值为4,则k的值为________。

17. 若y=3/x,当x=-2时,y的值为________。

18. 若a=2,b=3,则|a-b|的值为________。

三、解答题(每题10分,共40分)19. 解下列方程:(1)x-3=5(2)2x+1=9(3)3x-4=220. 已知a=2,b=-3,求下列代数式的值:(1)a²-b²(2)a²+2ab+b²(3)(a+b)²21. 已知y=3x-2,当x=4时,求y的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014/2015学年度第二学期期末质量检测八年级数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是 A .500名学生 B .所抽取的50名学生对“世界读书日”的知晓情况 C .50名学生 D .每一名学生对“世界读书日”的知晓情况 2.下列安全标志图中,是中心对称图形的是ABC D3.下列计算正确的是 A=B=C.3=D .632=⋅4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球是白球的概率是A .12 B .13 C .14D .235.分式31x -有意义,则x 的取值范围是A .x=1B .x≠1C .x=-1D .x≠-1 6.若反比例函数的图象过点(2,1),则这个函数的图象一定过点 A.(2,-1) B.(1,-2) C.(-2,1)D.(-2,-1)7.如图,平行四边形ABCD 中,下列说法一定正确的是 A .AC =BD B .AC ⊥BD C .AB =CDD .AB =BC8.如图,在矩形ABCD 中,点E 、F 分别在边AB ,BC 上,且AE =31AB .将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q .对于下列结论:①EF =2BE ,②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是 A .①② B .②③ C .①③ D .①④二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在答题卡相应位置上)第8题图ABC DEFQP (B ) ACBD第7题图图3第17题图第18题图9,则x 的取值范围是 ▲ .10.若菱形两条对角线的长分别为6和8,则这个菱形的面积为 ▲ . 11.若关于x 的分式方程311=---xm x x 有增根,则这个增根是 ▲ . 12.已知y 是x 的反比例函数,当x > 0时,y 随x 的增大而减小.请写出一个..满足以上条件的函数表达式 ▲ .13.计算=-+)23)(23( ▲ . 14.已知114a b -=,则2227a ab ba b ab---+的值等于 ▲ . 15.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3.则纸箱中蓝色球有 ▲ 个. 16.如图,矩形ABCD 中,4=AB ,6=BC ,P 是CD 边上的中点,E 是BC 边上的一动点,M ,N分别是AE 、PE 的中点,则随着点E 的运动,线段MN 长的取值或取值范围为 ▲ .17.直线kx y =)0(>k 与双曲线xy 2=交于),(11y x A 、),(22y x B 两点,则122174y x y x -的值是 ▲ . 18.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB 的长为 ▲ .三、解答题(本大题共有9小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 19.(本题满分5分)计算:|3|)21(2282-+-⨯- 20.(本题满分5分)解方程:01113=--+x x 21.(本题满分6分) 化简并求值:aa a a a +-÷--22421,其中23-=a22.(本题满分6分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.A BC请根据图中的信息,解决下列问题: (1)求条形统计图中a 的值;(2)求扇形统计图中18﹣23岁部分所占的百分比;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数. 23.(本题满分8分)已知,如图,CE 是ABC ∆的角平分线,点D 、F 分别在AC 、BC 上,且DE ∥BC ,DF ∥AB .求证:CD BF =24.(本题满分10分)甲、乙两台机器加工相同的零件,甲机器加工160个零件所用的时间与乙机器加工120个零件所用的时间相等.已知甲、乙两台机器每小时共加工35个零件,求甲、乙两台机器每小时各加工多少个零件?25.(本题满分12分)如图,一次函数b ax y +=的图象与反比例函数y = – 3x的图像交于),3(n B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称.(1)求A 、B 两点的坐标以及一次函数的函数关系式; (2)求ABC ∆的面积.(3)在 x 轴上是否存在点P ,使得PB PA -求出点P 的坐标,若不存在,请说明理由.26.(本题满分12分)(1)如图1,E 、F 是正方形ABCD 的边AB 及DC 延长线上的点,则BG 与BC 的数量关系是 ▲ .(2)如图2,D 、E 是等腰ABC ∆的边AB 及AC 延长线上的点,且CE BD =,连接DE 交BC 于点F ,BC DG ⊥交BC 于点G ,试判断GF 与BC 的数量关系,并说明理由;(3)如图3,已知矩形ABCD 的一条边4=AD ,将矩形ABCD 沿过A 的直线折叠,使得顶点B 落在CD 边上的P 点处。

动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且PM BN =,连接MN 交PB 于点F ,作PB ME ⊥于点E ,且5=EF ,试根据上题的结论求出矩形ABCD 的面积E图1 图2 图327.(本题满分12分)阅读理解:对于任意正实数a 、b ,∵2≥0, ∴a b -≥0,∴a b +≥a =b 时,等号成立.结论:在a b +≥a 、b 均为正实数)中,若ab 为定值p ,则a +b ≥a=b 时,a +b 有最小值根据上述内容,填空:若m >0,只有当m = 时,mm 4+有最小值,最小值为 .探索应用:如图,已知)0,2(-A ,)3,0(-B ,P 为双曲线xy 6=(x >0)上的任意一点,过点P 作PC ⊥x 轴于点C , PD ⊥y 轴于点D .求四边形ABCD 面积的最小值,并说明 此时四边形ABCD 的形状.实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共490元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本..........最低?最低平均每千米的运输成本是多少元?2014/2015学年度第二学期期末质量检测 八年级数学试题参考答案及评分标准(阅卷前请认真校对,以防答案有误!)一、选择题(每小题3分,共24分)二、填空题(每小题2分,共20分)9.1-≥x 10.24 11.x=1 12.答案不唯一,如xy 1= 13.-1 14.6 15.5016.1017.618.2三、解答题(共76分) 19.(本题5分)1………………5分(化简每对1个得1分) 20、(本题5分)2=x …………4分 检验…………5分、 21、(本题6分)21+a …………………………… …………4分33…………………………………………6分 (如学生算到211++-a a 就代入计算,结果正确扣2分,结果不正确得2分) 22. (1)被调查的人数=330÷22%=1500人,a =1500﹣450﹣420﹣330=1500﹣1200=300人;………2分 (2)1500450×100%=30°…………………4分 (3)∵12﹣35岁网瘾人数约为2000万, ∴12~23岁的人数约为2000万×1500450300+=1000万.………6分23、(本题满分8分)证明四边形BFDE 是平行四边形………3分 DE=DC …………………6分 BF=CD …………………8分 24、(本题10分)甲机器每小时加工20个零件,乙机器每小时加工15个零件 (其中正确列出方程得6分,正确求解2分,检验2分) 25、(本题12分) (1)A (-1,3)、B (3,-1)…………2分一次函数的函数关系式2+-=x y ………5分 (2)8=∆ABC S ………… 9分 (3)P(5,0)…………12分 26、(本题12分)(1)BC BG 21=…………2分 (2) BC GF 21=…………4分 理由(略)…………8分(3)20…………12分27、(本题12分)阅读理解:若m >0,只有当m =2(或m 4)时,mm 4+有最小值,最小值为4 .……2分 探索应用:四边形ABCD 面积的最小值为12,…………6分此时四边形ABCD 的形状为菱形…………9分实际应用:当x 为700时,该汽车平均每千米的运输成本..........最低,最低平均每千米的运输成本是3元…………12分。

相关文档
最新文档