能被3,4,6,9整除的数的特征教案
上海市六年级数学_第一章_数的整除教案

教案标题:数的整除教学目标:1.理解整除的概念,能够将一个数整除的概念与能够被另一个数整除的概念进行区分。
2.能够判断一个数能否被另一个数整除。
3.能够运用整除的概念解决实际问题。
教学重点:1.判断一个数能否被另一个数整除。
2.运用整除的概念解决实际问题。
教学难点:1.运用整除的概念解决实际问题。
教学准备:教师准备教学课件、活动PPT,学生准备教材、作业本、计算器等。
教学过程:一、导入(15分钟)1.讲解整除的概念:整除是指一个数能够被另一个数整除,即没有余数。
2.通过举例说明整除的概念:案例一:18能否被3整除?如果能,写出18÷3=6案例二:15能否被4整除?如果不能,写出15÷4=…,余数是多少?引导学生总结整除的判断方法:如果一个数除以另一个数的余数为0,那么这个数能被另一个数整除。
二、展示(25分钟)1.讲解整除的性质:a.“整除”具有传递性:如果a能整除b,b能整除c,则a能整除c。
b.“整除”具有消去性:如果a能整除b,那么a能整除b的倍数。
c.“整除”不具有互换性:如果a能整除b,那么b不能整除a。
2.运用整除的概念解决实际问题:案例一:班上有60个学生,如果要将他们按照每排6个人进行排队,至少需要排几排?案例二:一个教室里有90张桌子,每张桌子上放6个学生的书包,那么这个教室至少需要排几排?案例三:一个数能否被4和6同时整除?3.学生通过小组互动的方式解决问题,并将答案呈现在教材上。
三、拓展(20分钟)1.运用整除的概念解决更复杂的问题:案例一:小明准备将一些书放到一些箱子里,每个箱子里放24本书,如果小明一共有120本书,请问他至少需要准备几个箱子?案例二:一些村子收集了一些牛奶瓶,如果每箱能装36个牛奶瓶,如果一共收集了90个牛奶瓶,请问这些牛奶瓶至少需要准备几个箱子?2.学生自主解决问题,并将答案呈现在教材上。
四、总结(15分钟)1.整理整除的定义和判断方法。
数的整除特征(一)教案

数的整除特征(一)新课引入:数的整除问题是整数的内容中最基本的问题。
常见数的整除特征如下:(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!如121,1375。
(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
如312。
新课讲授:例1.在能被2,3,5整除。
能被2,3,5和5整除的数的特征是个位上的数字必须是0,里填能被3+9+0的和能被3整除,那有几种呢?填1,4,7.符合条件的有2190,2490,2790。
小学数学《3的倍数的特征》教案三篇

小学数学《3的倍数的特征》教案三篇学校数学《3的倍数的特征》教案【篇一】教学内容:教材19页内容,能被3整除的数的特征。
教学要求使同学初步把握能被3整除的数的特征,能正确推断一个数能被3整除的数的特征,培育同学抽象、概括的力量。
教学重点:能被3整除的数的特征。
教学难点:会推断一个数能否被3整除教学方法:三疑三探教学模式教具学具:课件等。
教学过程一、设疑自探(10分钟)(一)基本练习1、能被2、5整除的数有什么特征?2、能同时被2 和5整除的数有什么特征?(二)揭示课题我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来讨论能被3整除的数的特征(板书课题)(三)让同学依据课题提问题。
老师:看到这个课题,你想提出什么问题?(老师对同学提出的问题进行评价、规范、整理后说明:老师依据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能依据自探提示仔细探究,就能弄明白这些问题。
)(四)出示自探提示,组织同学自探。
自探提示:自学课本19页内容,思索以下问题:1、观看3的倍数,你发觉能被3整除的数有什么特征?举例验证。
2、能被2、3整除的数有什么特征?3、能被2、3、5整除的数有什么特征?二、解疑合探(15分钟)1、检查自探效果。
根据学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织同学合探解决。
依据同学回答随机板书主要内容。
2、着重强调;一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)1、同学质疑。
老师:对于本节学习的学问,你还有什么不明白的地方,请说出来让大家帮你解决?2、解决同学提出的问题。
(先由其他同学释疑,同学解决不了的,可依据状况或组织同学争论或老师释疑。
)四、运用拓展(11分钟)(一)同学自编习题。
1、让同学依据本节所学学问,编一道习题。
2、展现同学高质量的自编习题,沟通解答。
高中数学数字整除问题教案

高中数学数字整除问题教案
教学目标:
1. 掌握整除的概念和判定方法。
2. 训练学生分析问题并运用整除性质进行解题。
3. 提高学生数学推理和逻辑思维能力。
教学重点:
1. 整除的定义和性质。
2. 数学问题中的整除运用。
教学难点:
1. 理解和掌握整除的应用。
2. 运用整除性质解决复杂问题。
教学准备:
1. 教师准备相关教学资料和教学案例。
2. 学生准备好纸笔进行课堂练习。
教学过程:
一、导入:
教师通过引导学生回顾整除的定义和判定方法,提出本节课要讨论整除问题,并引入相关实际问题。
二、讲解:
1. 整除的定义和性质:通过案例或实例讲解整除的概念和性质,引导学生理解整除乘法法则和整除性质。
2. 数学问题中的整除运用:通过实际问题讲解如何运用整除性质解决问题。
三、练习:
教师出示一些数字整除问题,让学生进行思考和运用整除性质解题,并进行课堂讲解和订正。
四、作业:
布置相关数字整除问题作业,让学生巩固所学知识。
五、总结:
通过课堂讨论和总结,引导学生理解整除的重要性和应用,并巩固整个内容。
教学延伸:
教师可以结合实际生活中的整除问题,引导学生思考和解决,提高学生数学推理和应用能力。
《的倍数的特征》教案

(1)理解3的倍数特征:对于学生来说,理解各位数之和能被3整除的概念可能较为困难。
举例:如27是3的倍数,因为2+7=9,9能被3整除。
(2)判断一个数是否为4的倍数:学生可能难以把握个位数为0、2、4、6、8的数都是4的倍数这一规律。
举例:128是4的倍数,因为128的个位数是8。
(3)应用倍数知识解决实际问题:学生可能不知道如何将倍数知识应用于生活实际问题。
3.重点难点解析:在讲授过程中,我会特别强调3、4、5倍数的特征。对于难点部分,比如3的倍数特征,我会通过具体的数字例子和数位上的规律来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与倍数相关的实际问题,如“找出教室里哪些物品的数量是4的倍数”。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用计数棒或者卡片来演示如何找出10的倍数。
4.数学交流:在小组合作中,培养学生用数学语言表达和交流,增强团队合作识;
5.空间观念:通过倍数的认识,拓展学生对数字间关系的认识,培养空间观念。
三、教学难点与重点
1.教学重点
(1)理解倍数的概念:重点强调一个数的倍数是指可以被这个数整除的数,使学生明确倍数的定义。
举例:如6的倍数包括6、12、18等,这些都是6的整数倍。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“倍数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“为什么商店里的商品价格经常会选择5的倍数?”
数学教案-能被3整除的数的特征

数学教案-能被3整除的数的特征一、教学目标1.让学生理解能被3整除的数的特征。
2.培养学生运用特征判断一个数能否被3整除的能力。
3.激发学生学习数学的兴趣,培养学生的逻辑思维能力。
二、教学重难点重点:掌握能被3整除的数的特征。
难点:灵活运用特征,判断一个数能否被3整除。
三、教学过程1.导入新课(1)教师出示一些数:12、15、18、21、24、27、30。
(2)引导学生观察这些数,提问:这些数有什么共同特点?(3)学生回答:这些数都能被3整除。
2.探索新知(1)教师引导学生回顾已学的知识:一个数能被2整除的特征是什么?(2)学生回答:一个数能被2整除,当且仅当它的个位是0、2、4、6、8。
(3)教师提问:那么,一个数能被3整除的特征是什么呢?(4)学生分组讨论,教师巡回指导。
(5)学生分享讨论成果,得出结论:一个数能被3整除,当且仅当它各个数位上的数字之和能被3整除。
3.案例分析(1)教师出示案例:123、456、789。
(2)引导学生运用刚才得出的结论,判断这些数能否被3整除。
(3)学生回答:123能被3整除,因为1+2+3=6,6能被3整除;456不能被3整除,因为4+5+6=15,15不能被3整除;789能被3整除,因为7+8+9=24,24能被3整除。
4.练习巩固(1)教师出示练习题,让学生判断下列各数能否被3整除:321、654、987、234、567。
(2)学生独立完成练习,教师巡回指导。
(3)学生展示练习成果,教师点评。
(1)教师引导学生回顾本节课所学内容,提问:你们学会了什么?(2)学生回答:我们学会了判断一个数能否被3整除的特征。
6.课后作业(1)让学生回家后,运用本节课所学知识,判断下列各数能否被3整除:111、222、333、444、555。
(2)教师提醒学生,作业完成后,与家长分享学习成果。
四、教学反思1.本节课通过引导学生回顾已学的知识,让学生在原有知识的基础上,探索新知。
探究因数和倍数之间的关系:教案设计

本文将探究因数和倍数之间的关系,并设计教案来辅助学生深入理解这种关系。
一、因数和倍数的定义我们需要明确因数和倍数的概念。
因数是一个数能被整除的因子,例如,6的因数为1、2、3和6。
而倍数则是某个数的整数倍,例如,6的倍数有6、12、18等。
二、因数与倍数的关系我们来探究因数和倍数之间的关系。
显然,每个数的因数都能够整除该数,如果x是y的因数,y一定是x的倍数。
例如,6是12的因数,因为12可以被6整除;同时,12是6的倍数,因为12是6的两倍。
这表明因数和倍数是一种对称关系。
如果x和y之间有倍数关系,y一定是x的因数,因为y能够整除x。
例如,12是6的倍数,12是6的因数。
这意味着因数和倍数之间是一种互逆关系。
三、探究因数和倍数的关系为了更好地帮助学生理解因数和倍数之间的关系,我们可以设计以下探究活动。
1.探究因数和倍数的互逆关系让学生观察以下数字序列:1,2,3,4,5,6,7,8,9,10。
请他们寻找数字2的所有倍数,并记录下它们对应的因数。
让他们再寻找数字3的所有因数,并记录下它们对应的倍数。
学生应该会注意到,数字2和3之间存在互逆关系,即2的倍数是3的因数,而3的倍数是2的因数。
2.探究因数和倍数之间的对称关系在这个活动中,教师可以向学生出示一组数字,让他们找出数字2和3的所有因数和倍数。
教师可以让学生讨论它们之间的关系是否对称,即2的因数是否是3的倍数,3的因数是否是2的倍数。
通过这个活动,学生将能够更好地理解因数和倍数之间的对称性。
3.应用因数和倍数的关系教师可以给学生一些数字,让他们找到这些数字的因数和倍数,并说明它们之间的关系。
例如,给定数字18和24,学生应该能够确定它们都是6的倍数,而6是它们的公因数。
这将有助于学生在日常生活中应用因数和倍数关系。
四、总结因数和倍数之间的关系是一种互逆、对称的关系。
学生可以通过实际观察和探索来深入理解这种关系。
在设计教案时,我们应该充分利用各种教学资源和活动,帮助学生掌握因数和倍数之间的关系,并引导他们在实际应用中发挥出所学知识的作用。
六年级数学上册《数的整除》教案

六年级数学上册《数的整除》教案一、教学内容本节课选自六年级数学上册,第三章《数的整除》的第一小节。
详细内容包括:整除的概念、特征和性质,整除与除尽的区别,以及整数的约数和倍数。
二、教学目标1. 理解整除的概念,掌握整除的特征和性质。
2. 能够判断一个数是否能被另一个数整除,并能运用整除解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点难点:整除与除尽的区别,整数的约数和倍数。
重点:整除的概念和性质,以及整除的判断方法。
四、教具与学具准备教具:黑板、粉笔、多媒体设备。
学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入利用多媒体展示学校运动会场景,提出问题:“如果每个班级有6个人,怎样才能平均分配到比赛项目中?”2. 例题讲解(1)讲解整除的概念,通过例题36÷6=6,解释整除的定义。
(2)分析整除的性质,如:如果一个数能被另一个数整除,那么这个数的倍数也能被整除。
3. 随堂练习(2)找出36的所有约数,并判断哪些是它的倍数。
4. 知识巩固(1)让学生用自己的话解释整除与除尽的区别。
(2)举例说明整除在实际问题中的应用。
(2)拓展思考:一个数的约数和倍数之间有什么关系?六、板书设计1. 板书数的整除2. 主要内容:(1)整除的定义(2)整除的性质(3)整除与除尽的区别(4)整数的约数和倍数七、作业设计1. 作业题目:(2)找出40的所有约数,并判断哪些是它的倍数。
2. 答案:(1)能被整除的数:20、24、27。
(2)40的约数:1、2、4、5、8、10、20、40。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生在轻松的氛围中学习整除的概念和性质。
在讲解例题时,注意引导学生运用逻辑思维分析问题。
课后,鼓励学生进行拓展思考,加深对整数的约数和倍数关系的理解。
在下一节课中,可以继续探讨因数和倍数的拓展知识,提高学生的数学素养。
重点和难点解析1. 实践情景引入的设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:1.3能被3,4,6,9整除的数的特征(第3课时)
一、教学目标
1.经历观察与思考,概括出能被3,4,6整除的数的特征;
2.并会运用判断一个正整数能否被3,4,6整除;
二、教学重、难点:能被3、4,6整除的数的特征
三、教学过程
1.游戏导入:能被3整除的数的特征
游戏1:请按照座位顺序(从前至后U型弯)依次报数,遇到3的倍数请拍手,不要报出声。
其他不是3的倍数的同学请直接报数。
归纳能被3整除的数的特征:各个位数之和能被3整除
例题:以432为例说明结论的正确性
=++
解:因为432400302
=⨯+⨯+
41003102
=⨯++⨯++
4(991)3(91)2
=⨯++⨯++
49943932
49939432
=⨯+⨯+++
一定能被3整除能否被3整除
练习1:判断下列各数能否被3整除:84,123,437,111 114,707052等
练习2:请尝试用例题的方法说明432不仅能被3整除,而且还能被9整除.
拓展游戏2:猜数字游戏(能被9整除的数的特征)
游戏规则:心里想好一个多位数,然后把这个数减去它的各位数字之和,然后再所得的差中留下任何一个数字,但不能留0,把其余各位数字以任意顺序告诉老师,老师能立即猜到你留下的这个数字是几?
如心里想8764 按游戏规则8764—(8+7+6+4)=8739 如心里藏8,那么则告诉
老师7,3,9(7,3,9可以任意顺序排)老师能猜出数字是8吗?为什么? 解:假设任意数字为
()100010010()
(9991)(991)(91)()999999()
999999abcd a b c d a b c d a b c d a b c d a b c d a b c a b c d a b c d a b c
-+++=+++-+++=++++++-+++=++++++-+++=++ 所以按游戏规则,心里得到的数一定是9的倍数,能被9整除的数的特征是:各个位数之和能被9整除。
判断:432能不能被9整除。
3. 能被4整除的数的特征:如果一个数的末两位数能被4整除,那么这个数能被4整除。
以832为例证明:
因为832=8×100+32
同样可以判断:一个数能否被25整除,证明如上。
练习: 判断下列各数能否被4整除:482, 2556,8762, 12368,213186等
4. 能被6整除的数的特征:能同时被2和3整除(因为6=2×3,2与3互质,所以如果这个数既能被2整除又能被3整除,那么根据整除的性质3(如果两个整数a ,b 都能被整数c 整除,那么ab 也能被c 整除),可判定这个数能被6整除)
一定能被4整除 判断:能否被4整除
例题1:
练
习1:
练习2:
四、挑战
1.模仿能被4或25整除的数的特征,讨论能被8或125整除的数的特征,并举
例?
2.模仿能被6整除的数的特征的讨论,讨论能被12整除的数的特征?能被15
整除的数的特征?能被36整除的数的特征?…
五、作业(可选择)
例1 在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?
234,789,7756,8865,3728.8064。
解:能被4整除的数有7756,3728,8064;
能被8整除的数有3728,8064;
能被9整除的数有234,8865,8064。
例2 在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?
解:如果56□2能被9整除,那么
5+6+□+2=13+□
应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;
如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;
如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。
例3 从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。
解:因为组成的三位数能同时被2,5整除,所以个位数字为0。
根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。
例4 五位数能被72整除,问:A与B各代表什么数字?
分析与解:已知能被72整除。
因为72=8×9,8和9是互质数,所以
既能被8整除,又能被9整除。
根据能被8整除的数的特征,要求能被8整除,由此可确定B=6。
再根据能被9整除的数的特征,的各位数字之和为
A+3+2+9+B=A+3-f-2+9+6=A+20,
因为l≤A≤9,所以21≤A+20≤29。
在这个范围内只有27能被9整除,所以A=7。
解答例4的关键是把72分解成8×9,再分别根据能被8和9整除的数的特征去讨论B和A所代表的数字。
在解题顺序上,应先确定B所代表的数字,因为B代表的数字不受A的取值大小的影响,一旦B代表的数字确定下来,A所代表的数字就容易确定了。
例5六位数是6的倍数,这样的六位数有多少个?
分析与解:因为6=2×3,且2与3互质,所以这个整数既能被2整除又能被3整除。
由六位数能被2整除,推知A可取0,2,4,6,8这五个值。
再由六位数能被3整除,推知
3+A+B+A+B+A=3+3A+2B
能被3整除,故2B能被3整除。
B可取0,3,6,9这4个值。
由于B可以取4个值,A可以取5个值,题目没有要求A≠B,所以符合条件的六位数共有5×4=20(个)。
例6 要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?
分析与解:因为36=4×9,且4与9互质,所以这个六位数应既能被4整除又能被9整除。
六位数能被4整除,就要能被4整除,因此C可取1,3,5,7,9。
要使所得的商最小,就要使这个六位数尽可能小。
因此首先是A尽量小,其次是B尽量小,最后是C尽量小。
先试取A=0。
六位数的各位数字之和为12+B+C。
它应能被9整除,因此B+C=6或B+C=15。
因为B,
C应尽量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使尽可能小,应取B=1,C=5。
当A=0,B=1,C=5时,六位数能被36整除,而且所得商最小,为150156÷36=4171。
练习
1.6539724能被4,8,9,24,36,72中的哪几个数整除?
2.个位数是5,且能被9整除的三位数共有多少个?
3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除。
在这样的四位数中,最大的和最小的各是多少?
4.五位数能被12整除,求这个五位数。
5.有一个能被24整除的四位数□23□,这个四位数最大是几?最小是几?
6.从0,2,3,6,7这五个数码中选出四个,可以组成多少个可以被8整除的没有重复数字的四位数?
7.在123的左右各添一个数码,使得到的五位数能被72整除。
8.学校买了72只小足球,发票上的总价有两个数字已经辨认不清,只看到是□67.9□元,你知道每只小足球多少钱吗?
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。