2020-2021学年湖北省武汉市问津联盟高一上学期期中数学试卷(解析版)

合集下载

2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷(附答案详解)

2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷(附答案详解)

2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.将方程x2−8x=10化成一元二次方程的一般形式,其中二次项系数为1,常数项为()A. −8B. 8C. 10D. −102.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.3.若将抛物线y=2x2向上平移3个单位,所得抛物线的解析式为()A. y=2x2+3B. y=2x2−3C. y=2(x−3)2D. y=2(x+3)24.如图,在⊙O中,∠BOC=100°,则∠A等于()A. 100°B. 50°C. 40°D. 25°5.抛物线y=−3(x−1)2−2的顶点坐标是()A. (1,2)B. (−1,2)C. (−1,−2)D. (1,−2)6.用配方法解方程x2+10x+9=0,配方正确的是()A. (x+5)2=16B. (x+5)2=34C. (x−5)2=16D. (x+5)2=257.如图,Rt△ABC中,∠BAC=30°,∠C=90°,将△ABC绕点A旋转,使得点C的对应点C′落在AB上,则∠BB′C′的度数为()A. 12°B. 15°C. 25°D. 30°8.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参赛球队的个数是()A. 5个B. 6个C. 7个D. 8个9.如图,四边形ABCD为⊙O的内接四边形,∠AOD+∠BOC=180°.若AD=2,BC=6,则△BOC的面积为()A. 3B. 6C. 9D. 1210.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个相等的实数根.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.已知方程x2−4x+1=0的两个根是x1和x2,则x1+x2=______.12.已知点A(−2,a)与点B(b,3)关于原点对称,则a−b=______13.已知点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,则y1,y2的大小关系是:y1______y2.(填“>”或“<”)14.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程是______.15.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加______m.16.如图,矩形ABCD中,AB=2,AD=√3,O为AB的中点,将OA绕着点O旋转得到OE,连接DE.以DE为边作等边△DEF(点D、E、F按顺时针方向排列),连接CF,则CF的最小值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:x2−x−1=0.四、解答题(本大题共7小题,共64.0分)18.二次函数y=ax2−2x+c中的x,y满足如表:x…−10123…y…0−3−4−3m…(1)求抛物线的解析式;(2)求m的值.19.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.20.请用无刻度直尺画出下列图形,并保留作图痕迹.(1)将线段AB绕点B顺时针旋转90°,得到线段BD;(2)过C作线段AB的垂线段CE,垂足为E;(3)作∠ABD的角平分线BF.21.如图,AB为⊙O的直径,C是⊙O上的一点,连接AC,BC.D是BC⏜的中点,过D作DE⊥AB于点E,交BC于点F.(1)求证:BC=2DE;(2)若AC=6,AB=10,求DF的长.22.某超市销售一种成本为每千克40元的水产品,若按每千克50元销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1)直接写出月销售量y(千克)与售价x(元/千克)之间的函数关系式:______;月销售利润w(元)与售价x(元/千克)之间的函数关系式:______;(2)该超市想在月销售量不低于250千克的情况下,使月销售利润达到8000元,销售单价应定为每千克多少元?(3)售价定为每千克多少元时会获得最大利润?求出最大利润.23.[学习概念]有一组对角互余的凸四边形称为对余四边形.[理解运用](1)如图1,在对余四边形ABCD中,连接AC,∠D=30°,∠ACD=105°,AB=AC,求∠BAD的度数;(2)如图2,在凸四边形ABCD中,DA=DB,DA⊥DB,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形?并证明你的结论;(3)[拓展提升]如图3,在对余四边形ABCD中,∠A=45°.∠ABD+∠BDC=180°,BC=4.求AB+CD的长.24.已知抛物线y=ax2经过点A(2,1).(1)求抛物线的解析式;(2)如图1,直线l经过点A且与抛物线对称轴右侧交于点B,若△ABO的面积为6,求直线l的解析式;(3)如图2,直线CD与抛物线交于C、D两点,与y轴交于点(0,m),直线PC、PD与抛物线均只有一个公共点,点P的纵坐标为n,求m与n的数量关系.答案和解析1.【答案】D【解析】解:方程整理得:x2−8x−10=0,其中二次项系数为1,常数项为−10.故选:D.方程整理后为一般形式,找出二次项系数与一次项系数即可.此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c= 0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.【答案】C【解析】解:A、B、D中图形都不是中心对称图形,C中图形是中心对称图形,故选:C.根据中心对称图形的概念判断即可.本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:由“上加下减”的原则可知,将二次函数y=2x2向上平移3个单位可得到函数y=2x2+3,故选:A.直接根据“上加下减、左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.4.【答案】B∠BOC=50°.【解析】解:∵∠BOC=100°,∴∠A=12故选:B.根据圆周角定理可求得∠A=50°.本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.【答案】D【解析】解:∵y=−3(x−1)2−2是抛物线的顶点式,∴顶点坐标为(1,−2).故选:D.直接根据顶点式的特点求顶点坐标.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).6.【答案】A【解析】解:x2+10x+9=0,x2+10x=−9,x2+10x+52=−9+52,(x+5)2=16.故选:A.移项,配方(方程两边都加上一次项系数的一半的平方),即可得出答案.本题考查了用配方法解一元二次方程的应用,关键是能正确配方.7.【答案】B【解析】解:由旋转的性质可知,∠B′AB=∠BAC=30°,AB=AB′,(180°−30°)=75°,∴∠ABB′=∠AB′B=12∵∠BCB=90°,∴∠BB′C=90°−75°=15°,故选:B.利用旋转的性质,三角形面积和定理求解即可.本题考查旋转变化的性质,三角形内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.【答案】B【解析】解:设参赛球队的个数是x,每个队都要赛(x−1)场,但两队之间只有一场比赛,由题意得:x(x−1)2=15,解得:x1=6,x2=−5(不合题意,舍去),则参赛球队的个数是6个;故选:B.根据赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=x(x−1)2,由此列出方程,然后求解即可.本题考查了由实际问题抽象一元二次方程的应用,读懂题意,得到总场数与球队之间的关系是解决本题的关键.9.【答案】A【解析】解:延长BO交⊙O于E,连接CE,则∠COE+∠BOC=180°,∠BCE=90°,即CE⊥BC,∵∠AOD+∠BOC=180°,∴∠AOD=∠COE,∴AD⏜=CE⏜,∴AD=CE=2,∵BC=6,∴△BEC的面积为12BC⋅CE=12×6×2=6,∵OB=OE,∴△BOC的面积=12△BEC的面积=12×6=3,故选:A.延长BO交⊙O于E,连接CE,可得∠COE+∠BOC=180°,∠BCE=90°,由∠AOD+∠BOC=180°,∠AOD=∠COE,推出AD=CE=2,根据三角形的面积公式可求得△△BEC的面积.BEC的面积为6,由OB=OE,可得△BOC的面积=12本题主要考查了圆心角所对弧、弦的关系,圆周角定理,三角形面积公式,正确作出辅助线是解决问题的关键.10.【答案】C【解析】【分析】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为;抛物线与y轴的交点坐标抛物线,当a>0,抛物线开口向上;对称轴为直线x=−b2a为(0,c);当b2−4ac>0,抛物线与x轴有两个交点;当b2−4ac=0,抛物线与x轴有一个交点;当b2−4ac<0,抛物线与x轴没有交点.由抛物线与x轴有两个交点得到b2−4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=−1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(−1,2)得a−b+c=2,由抛物线的对称轴为直=−1得b=2a,所以c−a=2;根据二次函数的最大值问题,当x=−1时,线x=−b2a二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,所以说方程ax2+bx+c−2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−b2a=−1,∴b=2a,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,∴方程ax2+bx+c−2=0有两个相等的实数根,所以④正确.故选C.11.【答案】4【解析】解:根据题意得x1+x2=−−41=4.故答案为4.根据根与系数的关系求解.本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.12.【答案】−5【解析】解:由题意,得:a=−3,b=2,a−b=−3−2=−5,故答案为:−5.根据关于原点对称的点的坐标,可得答案.本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a,b是解题关键.13.【答案】>【解析】解:∵点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,∴当x=−2时,y1=12−2=10,当x=1时,y2=3−2=1,∴y1>y2,故答案为>.将点A(−2,y1),点B(1,y2)分别代入y=3x2−2,求出相应的y1、y2,即可比较大小.本题考查二次函数的图象上点的特点;能够用代入法求二次函数点的坐标是解题的关键.14.【答案】36(1−x)2=25【解析】【分析】本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.可先表示出第一次降价后的价格,那么第一次降价后的价格×(1−降低的百分率)=25,把相应数值代入即可求解.【解答】解:第一次降价后的价格为36×(1−x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1−x)×(1−x),则列出的方程是36(1−x)2=25.故答案为:36(1−x)2=25.15.【答案】(2√6−4)【解析】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(−2,0),到抛物线解析式得出:a=−0.5,所以抛物线解析式为y=−0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=−1时,对应的抛物线上两点之间的距离,也就是直线y=−1与抛物线相交的两点之间的距离,可以通过把y=−1代入抛物线解析式得出:−1=−0.5x2+2,解得:x=±√6,所以水面宽度增加到2√6米,比原先的宽度当然是增加了2√6−4,故答案为:(2√6−4).根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=−1代入抛物线解析式得出水面宽度,即可得出答案.此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.16.【答案】2√3−1【解析】解:如图,连接DO,延长OA到T,使得AT=OA,连接DT,FT,CT.∵四边形ABCD是矩形,∴∠OAD=90°,∵AD=√3,OA=OB=1,=√3,∴tan∠AOD=ADAO∴∠AOD=60°,∠ADO=30°,∴OD=2AO,∵AO=AT,∴OT=2AO,∴OT=OD,∴△ODT 是等边三角形,∵△DEF 是等边三角形,∴∠ODT =∠EDF =60°,DO =DT ,DE =DF ,∴∠DEO =∠FDT ,∴△DEO≌△FDT(SAS),∴FT =OE =OA =1,∵∠B =90°,BT =2+1=3,BC =√3,∴CT =√BT 2+BC 2=√32+(√3)2=2√3,∵CF ≥CT −TF ,∴CF ≥2√3−1,∴CF 的最小值为2√3−1.故答案为:2√3−1.如图,连接DO ,延长OA 到T ,使得AT =OA ,连接DT ,FT ,CT.证明△DEO≌△FDT(SAS),推出FT =OE =OA =1,利用勾股定理求出CT ,根据CF ≥CT −TF ,可得CF ≥2√3−1,由此即可解决问题.本题考查旋转变换的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.【答案】解:x 2−x −1=0,x =−b±√b 2−4ac 2a=1±√1+42×1=1±√52, ∴x 1=1+√52,x 2=1−√52.【解析】本题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式.确定a ,b ,c 的值,然后检验方程是否有解,若有解,代入公式即可求解.解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a 、b 、c 的值.18.【答案】解:(1)由题意可知,抛物线y =ax 2−2x +c 经过(−1,0),(0,−3), ∴{a +2+c =0c =−3, 解得:{a =1c =−3, 所以抛物线的解析式为:y =x 2−2x −3;(2)把x=3代入y=x2−2x−3,可得y=9−6−3=0,所以m=0.【解析】(1)取两组对应值代入y=ax2−2x+c得到关于a、c的方程组,然后解方程组即可;(2)把x=3代入二次函数的解析式求解即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.【答案】解:设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+ 2x)cm,根据题意得:(80+2x)(50+2x)=5400,解得:x1=−70(不符合题意,舍去),x2=5.答:金色纸边的宽度为5cm.【解析】设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题目条件列出方程,求出其解就可以.本题考查了根据矩形的面积公式的列一元二次方程解决实际问题的运用及一元二次方程解法的运用.解答时检验根是否符合题意是容易被忽略的地方.20.【答案】解:(1)如图,线段BD即为所求.(2)如图,线段CE即为所求.(3)如图,射线BF即为所求.【解析】(1)根据旋转变换的性质画出图形即可.(2)取格点T,连接CT交AB于点E,线段CE即为所求.(3)取格点,G,H,连接GH,AD交于点F,作射线BF,射线BF即为所求.本题考查作图−旋转变换,角平分线,垂线段等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:延长DE交⊙O于点G,如图所示:∵AB为⊙O的直径,DE⊥AB,∴DE=GE,BD⏜=BG⏜,∵D是BC⏜的中点,∴CD⏜=BD⏜=BG⏜,∴BC⏜=DG⏜,∴BC=DG=2DE;(2)解:连接BD、OD,如图所示:∵CD⏜=BG⏜,∴∠DBC=∠BDF,∴DF=BF,∵AB为⊙O的直径,AB=10,∴∠ACB=90°,OB=OD=5,∴BC=√AB2−AC2=√102−62=8,BC=4,由(1)得:DE=12∵DE⊥AB,∴OE=√OD2−DE2=√52−42=3,∴BE=OB−OE=2,设DF=BF=a,则EF=4−a,在Rt△BEF中,由勾股定理得:22+(4−a)2=a2,,解得:a=52∴DF=5.2【解析】(1)延长DE交⊙O于点G,先由垂径定理得DE=GE,BD⏜=BG⏜,再证出BC⏜=DG⏜,由圆心角、弧、弦的关系即可得出结论;(2)连接BD、OD,先由圆周角定理得∠DBC=∠BDF,得DF=BF,由圆周角定理得BC=4,再由勾股定理求出OE=3,则BE=∠ACB=90°,勾股定理得BC=8,则DE=12OB−OE=2,设DF=BF=a,则EF=4−a,然后在Rt△BEF中,由勾股定理得出方程,解方程即可.本题考查了圆周角定理、垂径定理、圆心角、弧、弦的关系、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.22.【答案】y=−10x+1000w=−10x2+1400x−40000【解析】解:(1)月销售量y(千克)与售价x(元/千克)之间的函数关系式:y=500−10(x−50)=−10x+1000,即y=−10x+1000;月销售利润w(元)与售价x(元/千克)之间的函数关系式:w=(x−40)y=(x−40)(−10x+1000)=−10x2+1400x−40000,即w=−10x2+1400x−40000,故答案为:y=−10x+1000,w=−10x2+1400x−40000;(2)根据题意得:−10x2+1400x−40000=8000,解得:x1=80,x2=60,又∵月销售量不低于250千克,则有:−10x+1000≥250,解得:x≤75,∴x1=80>75(舍去),答:销售单价应定为60元时,月销售利润达到8000元;(3)由(2)得:w=−10x2+1400x−40000=−10(x−70)2+9000,∵a=−10<0,∴抛物线的开口向下,抛物线有最高点,函数有最大值,当x=70时,w取最大值,最大值为9000元,答:售价定为每千克70元时会获得最大利润?最大利润为9000元.(1)根据一个月可售出500千克,减去因涨价而减少的数量得到月销售量y(千克)与售价x(元/千克)之间的函数关系式,根据(售价−成本)×月销售量得到月销售利润w(元)与售价x(元/千克)之间的函数关系式;(2)将月销售利润8000元代入w=−10x2+1400x−40000,解方程即可得到结果;(3)将w=−10x2+1400x−40000化为顶点式就可以求出结果.本题考查了二次函数的应用,一元二次方程的运用,解答时求出函数的解析式是解题的关键.23.【答案】解:(1)∵四边形ABCD是对余四边形,依题意得,∠B+∠D=90°,∵∠D=30°,∴∠B=90°−∠D=60°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACD=105°,∴∠BCD=∠ACB+∠ACD=165°,在四边形ABCD中,∠BAD=360°−∠B−∠ACD−∠D=360°−60°−165°−30°= 105°;(2)四边形ABCD为对余四边形,证明:∵AD⊥BD,∴∠ADB=90°,∵DA=DB,∴∠BAD=∠ABD=45°,如图2,过点D作DM⊥CD,使CD=CM,连接CM,BM,∴∠DMC=∠DCM=45°,∵∠ADB=∠CDM=90°,∴∠ADB+∠BDC=∠CDM+∠BDC,∴∠ADC=∠BDM.在△ADC和△BDM中,{DA=DB∠ADC=∠BDM DC=DM,∴△ADC≌△BDM(SAS),∴AC=BM.在Rt△MDC中,根据勾股定理得,CM2=CD2+DM2=2CD2,∵2CD2+CB2=AC2,∴CM2+CB2=BM2,∴△BCM是直角三角形,且∠BCM=90°,∵∠DCM=45°,∴∠DCB=∠BCM−∠DCM=45°,∴∠DCB+∠DAB=90°,∴四边形ABCD为对余四边形;(3)如图3,过点B作BE⊥BC交CD的延长线于点E,∵四边形ABCD为对余四边形,依题意得,∠A+∠C=90°,∵∠A=45°,∴∠C=∠E=45°=∠A,∵∠ABD+∠BDC=180°,∠BDE+BDC=180°,∴∠ABD=∠EDB,在△ABD和△EDB中,{∠A=∠E∠ABD=∠EDB BD=DB,∴△ABD≌△EDB(AAS),∴AB =ED ,EB =BC =4,在Rt △EBC 中,根据勾股定理得,BE 2+BC 2=CE 2,∴CE =4√2, 即AB +CD =4√2.【解析】(1)先根据对余四边形求出∠B =60°,进而得出∠ACB =60°,∠BCD =165°,最后用四边形内角和定理,即可得出结论;(2)先判断出∠BAD =∠ABD =45°,进而判断出∠ADC =∠BDM ,即可判断出△ADC≌△BDM(SAS),得出AC =BM.再根据勾股定理得出CM 2=CD 2+DM 2=2CD 2,进而判断出∠BCM =90°,即可得出结论;(3)先判断出∠C =∠E =45°=∠A ,再判断出∠ABD =∠EDB ,进而得出△ABD≌△EDB(AAS),得出AB =ED ,EB =BC =4,最后用勾股定理求出CE =4√2,即可得出结论.此题是四边形综合题,主要考查了新定义,等边三角形的判定和性质,勾股定理,全等三角形的判定和性质,直角三角形的判定和性质,构造出全等三角形是解本题的关键.24.【答案】解:(1)∵抛物线y =ax 2经过点A(2,1). ∴1=4a ,解得a =14,∴抛物线解析式为y =14x 2;(2)∵点A(2,1).∴直线OA 为y =12x ,如图1,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,∴12OE ×2=6,∴OE =6,∴点E(0,6),设直线BE 为y =12x +6,解{y =12x +6y =14x2得{x =6y =9或{x =−4y =4,∴B(6,9),设直线l 的解析式为y =kx +b ,∴{2k +b =16k +b =9,解得{k =2b =−3, ∴直线l 的解析式为y =2x −3;(3)设直线CD 的解析式为y =kx +m ,由{y =kx +m y =14x2去掉y 整理得14x 2−kx −m =0. 设C 、D 的坐标分别为(x C ,y C ),(x D ,y D ),∴x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,由{y =ax +c y =14x 2整理得,14x 2−ax −c =0. ∵CP 与抛物线只有一个公共点,∴△=a 2+c =0,∴c =−a 2,∴14x 2−ax +a 2=0,解得x C =2a ,同理:设直线DP 的解析式为y =bx +d ,可得x D =2b ,∴2a ⋅2b =−4m ,∴ab =−m ,联立{y =ax +c y =bx +d ,即{y =ax −a 2y =bx −b 2, 解得{x =a +b y =ab, ∴P(a +b,ab),∵点P 的纵坐标为n ,∴n =ab =−m .【解析】(1)利用待定系数法求抛物线解析式解答即可;(2)求得直线OA 的解析式,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,根据三角形面积求得OE ,得到E 的坐标,进而求得直线BE 的解析式,与抛物线解析式联立,解方程组求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式;(3)设直线CD 的解析式为y =kx +m ,与抛物线解析式联立整理得14x 2−kx −m =0.根据根与系数的关系得到x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,联立抛物线x2−ax−c=0.根据题意△=a2+c=0,解析式得到14x2−ax+a2=0,解得x C=2a,同理:设直线DP的解析式求得c=−a2,即可得到14为y=bx+d,可得x D=2b,所以4ab=−m,直线CP和直线DP联立,解方程求得交点P((a+b,ab),即可求得n=−m.本题考查了待定系数法求二次函数的解析式,待定系数法求一次函数的解析式,两条直线相交或平行问题,直线与抛物线的交点问题,方程思想的运用是解题的关键.。

2020-2021学年湖北省武汉市武昌区七校联考七年级(上)期中数学试卷(附答案详解)

2020-2021学年湖北省武汉市武昌区七校联考七年级(上)期中数学试卷(附答案详解)

2020-2021学年湖北省武汉市武昌区七校联考七年级(上)期中数学试卷1.如果以东为正方向,向东走8米记作+8米,那么−2米表示()A. 向北走了2米B. 向西走了2米C. 向南走了2米D. 向东走了2米2.用科学记数法表示的数为2.25×105,则原数是()A. 22500B. 225000C. 2250000D. 22503.下列式子是单项式的是()A. 5a−bB. x+1C. 1a D. m24.下面计算正确的是()A. 3x2−x2=3B. a2+4a3=5a5C. 0.25ab−14ba=0 D. 2+3x=5x 5.下列大小比较正确的是()A. −4>−3B. −65<−76C. |−12|<|−13| D. a2≥a6.下列变形正确的是()A. −2(x−2)=−2x−4B. 3(x−1)−x=3x−1−xC. 5x+(5−2x)=5x−5+2xD. 3(x+2)−(x−1)=3x+6−x+17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为()A. 8x+3=7x+4B. 8x−3=7x+4C. x−38=x+47D. x+38=x−478.下列式子中:①ab<0;②a+b=0;③ab <−1;④a|a|=−|b|b,其中能得到a,b异号的有()A. 1个B. 2个C. 3个D. 4个9.已知有理数a,b在数轴上表示的点如图所示,化简|b−a|−|a+2b|+|−a−b|=()A. aB. −a −4bC. 3a +2bD. a −2b10. 已知有理数a ,b ,c 满足a <0<b <c ,则代数式|x −a+b 3|+|x −a+c 2|+|x +c−a 2|的最小值为( )A. cB.2b−a 3C.a+9c−2b6D.3c−2b−11a611. 有理数2的相反数是______ .12. 已知5x 2y a 与−3x a y b 是同类项,则(a +b)2= ______ . 13. 若a ,b 互为相反数,c ,d 互为倒数,则a+b 3+2cd = ______ .14. 已知关于x 的一元一次方程mx 2+nx +5=0的解为x =1,则m +n = ______ . 15. 我们知道,无限循环小数可以转化为分数,例如0.3⋅转化为分数时,可设0.3⋅=x ,则3.3⋅=10x ,两式相减得3=9x ,解得x =13,即0.3⋅=13,则0.1⋅2⋅转化为分数是______ .16. 已知关于x 的绝对值方程2||x −1|−2|=a 有三个解,则a = ______ . 17. 计算:(1)−3+5−3×2;(2)−24÷5−24×(−23+712−38). 18. 解方程(1)8x =−2(x +4); (2)3x+52−2x−13=5.19.已知:多项式A=2m2+mn+n2,B=−m2+mn−n2,求:(1)4A−B;(2)当m=2,n=−2时,求4A−B的值.20.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负):(1)产量最多的一天比产量最少的一天多生产自行车多少辆?(2)根据记录的数据可知,该厂本周实际生产自行车多少辆?21.已知ax3+bx2+cx+d=(x−2)3,小明发现当x=1时,可以得到a+b+c+d=−1.(1)−a+b−c+d=______ ;(2)求8a+4b+2c的值.22.一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了2.5ℎ.已知水流的速度是3km/ℎ.(1)求船在静水中的平均速度;(2)一个小艇从甲码头到乙码头所用时间是从乙码头到甲码头所用时间的一半,求小艇从甲码头到乙码头所用时间.23.观察下列具有一定规律的三行数:(1)第一行第n个数为______ (用含n的式子表示);(2)取出每行的第m个数,这三个数的和为482,求m的值;(3)第四行的每个数是将第二行相对应的每个数乘以k得到的,若这四行取出每行的第n个数,发现无论n是多少,这四个数的和为定值,则k=______ .24.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示−20,点B表示m,点C表示40,我们称点A和点C在数轴上相距60个长度单位,用式子表示为AC=60,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,运动到B 点停止;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后立刻恢复原速,当P停止运动后,Q也随之停止运动,设运动的时间为t秒,问:(1)BC=______ (用含m的式子表示);(2)若P、Q两点在数轴上点O至点B之间的D点相遇,D点表示10,求m;(3)在(2)的条件下,当PQ=40时,求t.答案和解析1.【答案】B【解析】解:向东走8米记作+8米,则−2米表示为向西走2米,故选:B.根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:2.25×105=225000,故选:B.根据将科学记数法a×10−n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数,可得答案.用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向后移几位.3.【答案】D【解析】解:A、5a−b是多项式,不合题意;B、x+1是多项式,不合题意;C、1是分式,不合题意;aD、m是单项式,符合题意.2故选:D.直接利用数或字母的积组成的式子叫做单项式,即可得出答案.此题主要考查了单项式,正确掌握相关定义是解题关键.4.【答案】C【解析】解:A、3x2−x2=2x2,故本选项不合题意;B、a2与4a3不是同类项,所以不能合并,故本选项不合题意;ba=0,故本选项符合题意;C、0.25ab−14D 、2与3x 不是同类项,所以不能合并,故本选项不合题意; 故选:C .根据合并同类项法则逐一判断即可,在合并同类项时,系数相加减,字母及其指数不变. 本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.5.【答案】B【解析】解:A 、∵|−4|=4,|−3|=3,4>3, ∴−4<−3, 故本选项不合题意; B 、∵|−65|=65=3630,|−76|=76=3530,3630>3530, ∴−65<−76, 故本选项符合题意;C 、∵|−12|=12=36,|−13|=13=26,36>26, ∴|−12|>|−13|, 故本选项不合题意;D 、当0<a <1时,a 2<a ,例如(12)2=14<12, 故本选项不合题意; 故选:B .选项A 、B 根据两个负数比较大小,绝对值大的反而小判断即可;选项C 根据绝对值的性质去绝对值符号再比较大小即可;选项D 通过列举例子判断即可.本题主要考查了有理数大小的比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.6.【答案】D【解析】解:A 、原式=−2x +4,不符合题意; B 、原式=3x −3−x ,不符合题意; C 、原式=5x +5−2x ,不符合题意; D 、原式=3x +6−x +1,符合题意.将各选项分别去括号合并即可得到结果.此题考查了整式加减中的去括号,熟练掌握运算法则是解本题的关键.7.【答案】D【解析】解:设这个物品的价格是x元,则可列方程为:x+38=x−47,故选:D.根据“(物品价格+多余的3元)÷每人出钱数=(物品价格−少的钱数)÷每人出钱数”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.8.【答案】C【解析】解:①由ab<0,可得a,b异号,符合题意;②由a+b=0,可得a,b是互为相反数,有可能都为0,不合题意;③由ab<−1,可得a,b异号,符合题意;④由a|a|=−|b|b,可得a,b异号,符合题意;故选:C.直接利用有理数的乘法、加法运算法则、绝对值的性质分别分析得出答案.此题主要考查了有理数的乘法、加法运算法则、绝对值的性质,正确掌握相关运算法则是解题关键.9.【答案】A【解析】解:由数轴知b<−1<0<a<1,所以b−a<0,a+2b<0,−a−b>0,则原式=a−b+a+2b−a−b=a,结合数轴知b<−1<0<a<1,据此判断出b−a<0,a+2b<0,−a−b>0,再利用绝对值的性质去绝对值符号、合并即可得出答案.本题主要考查数轴,解题的关键是结合数轴判断出b−a、a+2b、−a−b与0的大小.10.【答案】A【解析】解:∵a<0<b<c,∴a−c2<a+b3<a+c2,∵|x−a+b3|+|x−a+c2|+|x+c−a2|=|x−a+b3|+|x−a+c2|+|x−a−c2|,∴|x−a+b3|+|x−a+c2|+|x+c−a2|表示为在数轴上,数x对应的点到三个数a−c2、a+b3、a+c2对应的点的距离之和,如图,当x=a+b3时,数x对应的点到三个数a−c2、a+b3、a+c2对应的点的距离之和最小,最小值为a+c2−a−c2=c,即代数式|x−a+b3|+|x−a+c2|+|x+c−a2|的最小值为c.故选:A.利用a、b、c的大小关系得到a−c2<a+b3<a+c2,由于|x−a+b3|+|x−a+c2|+|x+c−a2|=|x−a+b3|+|x−a+c2|+|x−a−c2|,根据绝对值的定义,代数式的值可表示为在数轴上,数x对应的点到三个数a−c2、a+b3、a+c2对应的点的距离之和,然后利用当x=a+b3时,数x对应的点到三个数a−c2、a+b3、a+c2对应的点的距离之和最小,从而得到代数的最小值.本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了数轴上两点间的距离.11.【答案】−2【解析】解:有理数2的相反数是−2.故答案为:−2.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.12.【答案】16【解析】解:∵5x2y a与−3x a y b是同类项,∴a=2,b=2,∴(a+b)2=(2+2)2=16.故答案为:16.根据同类项的定义求出a,b的值,再代入要求的式子进行计算即可得出答案.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.13.【答案】2【解析】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b3+2cd=03+2×1=0+2=2,故答案为:2.根据a,b互为相反数,c,d互为倒数,可以得到a+b=0,cd=1,从而可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.【答案】−5【解析】解:∵关于x的方程mx2+nx+5=0是一元一次方程,∴m=0,∴方程mx2+nx+5=0为nx+5=0,把x=1代入nx+5=0可得:n+5=0,解得n=−5,所以m+n=−5,故答案为:−5.根据题意m =0,把x =1代入方程即可得出一个关于n 的一元一次方程,解方程求得n ,进而即可求得m +n 的值.本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.15.【答案】433【解析】解:设0.1⋅2⋅=x ,则12.1⋅2⋅=100x ,两式相减得:12=99x ,解得:x =1299=433,即0.1⋅2⋅=433, 故答案为:433.设0.1⋅2⋅=x ,则12.1⋅2⋅=100x ,两式相减得出12=99x ,求出x 即可.本题考查了等式的性质,解一元一次方程,有理数等知识点,能得出关于x 的方程是解此题的关键.16.【答案】4【解析】解:因为2||x −1|−2|=a ,所以|x −1|−2=±12a ,即|x −1|=2±12a ,所以x −1=±(2±12a),所以x =1±(2±12a),则x =3+12a 或3−12a 或−1−12a 或−1+12a ,因为方程有三个解,所以有两个解相同,当3+12a =3−12a 时,a =0,原方程的解为x =3或−1,不合题意;当3+12a =−1−12a 时,a =−4,原方程的解为x =1或5或−3,符合题意; 当3+12a =−1+12a 时,等式不成立,a 无解;当3−12a =−1−12a 时,等式不成立,a 无解;当3−12a =−1+12a 时,a =4,原方程的解为x =5或1或−3,符合题意;当−1−12a =−1+12a 时,a =0,原方程的解为x =3或−1,不合题意;又由题意可知a >0,所以a =4,故答案为4.根据根据绝对值的定义先求出x ,再根据方程有三个解,列出方程即可解决问题. 本题考查了含绝对值符号的一元一次方程,正确掌握绝对值的定义和解一元一次方程的方法是解题的关键.17.【答案】解:(1)原式=−3+5−6=−9+5=−4;(2)原式=−16÷5−24×(−23)−24×712−24×(−38)=−165+16−14+9 =395.【解析】(1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式利用乘方的意义,以及乘法分配律计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)8x =−2(x +4),去括号,得8x =−2x −8,移项,得8x +2x =−8,合并同类项,得10x =−8,系数化为1,得x =−45;(2)3x+52−2x−13=5,去分母,得3(3x +5)−2(2x −1)=30,去括号,得9x +15−4x +2=30,移项,得9x−4x=30−15−2,合并同类项,得5x=13,.系数化为1,得x=135【解析】(1)方程去括号,移项,合并同类项,系数化为1即可;(2)方程去分母,去括号,移项,合并同类项,系数化为1即可.本题主要考查了解一元一次方程,解一元一次方程的步骤有去分母,去括号,移项,合并同类项,系数化为1.19.【答案】解:(1)4A−B=4(2m2+mn+n2)−(−m2+mn−n2)=8m2+4mn+4n2+m2−mn+n2=9m2+5n2+3mn.(2)当m=2,n=−2时,4A−B=9×22+5×(−2)2+3×2×(−2)=36+20−12=44.【解析】(1)把A与B代入4A−B,去括号合并即可得到结果;(2)将m=2,n=−2代入4A−B可求出答案.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)15−(−10)=25(辆),答:产量最多的一天比产量最少的一天多生产自行车25辆.(2)1400+5−2−4+13−10+15−9=1408(辆),答:该厂本周实际生产自行车1408辆.【解析】(1)根据有理数的减法运算,可得答案;(2)根据有理数的加法,可得答案.本题考查了正数和负数,利用了有理数的加减法运算.21.【答案】−27【解析】解:(1)当x=−1时,ax3+bx2+cx+d=−a+b−c+d=(−1−2)3=−27.故答案为:−27;(2)当x=0时,ax3+bx2+cx+d=d=(0−2)3=−8,当x=2时,ax3+bx2+cx+d=8a+4b+2c+d=(2−2)3=0,则8a+4b+2c=8.(1)令x=−1即可求得−a+b−c+d的值;(2)令x=0即可确定出d的值,再令x=2即可求得8a+4b+2c的值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.22.【答案】解:设船在静水中的平均速度为x km/ℎ,根据往返路程相等,列得2(x+3)=2.5(x−3),解得x=27.答:在静水中的速度为27km/ℎ.(2)设小艇在静水中速度为ykm/ℎ,从甲码头到乙码头所用时间为th,由题意可得:t(y+3)=2t(y−3),∵t≠0,∴y+3=2(y−3),解得y=9,甲乙码头距离=(27+3)×2=60(km),=5(ℎ),小艇从甲码头到乙码头所用时间:609+3答:小艇从甲码头到乙码头所用时间为5小时.【解析】(1)等量关系为:顺水速度×顺水时间=逆水速度×逆水时间.即2×(静水速度+水流速度)=2.5×(静水速度−水流速度);(2)由等量关系为:顺水速度×顺水时间=逆水速度×逆水时间,列出方程,可求小艇在静水中速度,即可求解.此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度−水流速度,列出方程求解.23.【答案】n2−4【解析】解:(1)∵1=12,4=22,9=32,16=42,25=52,…,∴第一行第n个数为n2,故答案为:n2;(2)由表格可知,第二行的第n个数为n2−2,第三行的第n个数为2n2,∴第一行的第m个数为m2,第二行的第m个数为m2−2,第三行的第m个数为2m2,∵取出每行的第m个数,这三个数的和为482,∴m2+(m2−2)+2m2=482,解得m1=11,m2=−11(舍去),即m的值是11;(3)∵第四行的每个数是将第二行相对应的每个数乘以k得到的,∴第四行的第n个数为k(n2−2),n2+(n2−2)+2n2+k(n2−2)=n2+n2−2+2n2+kn2−2k=(4+k)n2−(2+2k),∵这四行取出每行的第n个数,发现无论n是多少,这四个数的和为定值,∴4+k=0,解得k=−4,故答案为:−4.(1)根据表格中的数据,可以发现第一行数字的变化特点,从而可以写出第n个数;(2)根据表格中的数据,可以写出第二行和第三行的第n个数字,然后根据取出每行的第m个数,这三个数的和为482,可以求出m的值;(3)根据题意可以写出第四行的第n个数,然后根据这四行取出每行的第n个数,发现无论n是多少,这四个数的和为定值,可以求得k的值.本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出相应的m和k的值.24.【答案】40−m【解析】解:(1)BC=40−m.故答案为:40−m;(2)202+101=20(秒),40−m+m−102=20,解得m=30;(3)当t≤10时,P:−20+2t,Q:40−t,依题意有(40−t)−(−20+2t)=40,解得t=203;当10<t<25时,PQ≠40;当t≥25时,P:t−10,Q:25−t,依题意有(t−10)−(25−t)=40.解得t=752.综上:t=203或752.(1)根据两点间的距离公式即可求解;(2)先求出动点P的运动时间,再根据时间的等量关系列出方程计算即可求解;(3)分三种情况:当t≤10时;当10<t<25时;当t≥25时;进行讨论即可求解.本题考查了一元一次方程的应用,数轴,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用,易错点是分类计算时不重不漏.。

湖北省武汉市部分重点高中2020-2021学年高一上学期期中联考数学试题含答案

湖北省武汉市部分重点高中2020-2021学年高一上学期期中联考数学试题含答案

湖北省武汉市部分重点高中2020-2021学年高一上学期期中联考数学试题含答案B.g(x)x 1x1C.h(x)x2 1D.k(x)x 210.已知函数f(x)x33x22x,g(x)ax2bx c,若f(x)g(x)2,则aA.1B.1C.2D. 211.已知函数f(x)x22x1,g(x)x1,则f(g(x))A.x22x2B.x22x3C.x23x2D.x23x 312.已知函数f(x)x2x2,g(x)x1,则f(g(x))A.x22x3B.x22x3C.x22x3D.x22x 3武汉市部分重点中学2020-2021学年度上学期期中联考高一数学试卷1.函数 $f(x)=\frac{3x^2}{1-x}-\frac{2}{3x+1}$ 的定义域是A。

$(-\infty,-1)\cup(1,\infty)$B。

$(-\infty,-1)\cup(-1,1)$C。

$[-1,1]$D。

$(-\infty,-\frac{1}{3})\cup(\frac{1}{3},\infty)$2.集合 $A=\{xy=2(2-x)\}$,$B=\{yy=2x,x>1\}$,则$A\cap B$=A。

$[0,2]$B。

$(1,2]$C。

$[1,2]$D。

$(1,+\infty)$3.已知命题 $p:\forall x>0,\ (x+1)e^x>1$,则命题 $p$ 的否定为A。

$\exists x\leq 0,\ (x+1)e^x\leq 1$B。

$\exists x>0,\ (x+1)e^x\leq 1$C。

$\exists x>0,\ (x+1)e^x\leq 1$D。

$\exists x\leq 0,\ (x+1)e^x\leq 1$4.设 $a=0.6^{0.6}$,$b=0.6^{1.2}$,$c=1.2^{0.6}$,则$a$,$b$,$c$ 的大小关系是A。

$a<b<c$B。

潍坊市2020-2021学年高一上学期期中数学试题(解析版)

潍坊市2020-2021学年高一上学期期中数学试题(解析版)
【详解】解: 不等式组 解得 ,所以不等式组的解集是 ,
关于 的不等式 解集包含 ,令 ,
,解得 ,
故选: .
【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.
二、多项选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.
9.下列命题中是假命题的是().
A. , B. ,
C. , D. ,
【答案】ACD
【解析】
【分析】
举反例即可判断选项A、C,解方程 即可判断选项B、D.
(1)求 ;
(2)若 ,求实数 的取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;
(2)分集合C为空集和不是空集两种情况分别建立不等式(组),可求得所求的范围.
【详解】解:( 时,满足 ,即 ,解得 .
【详解】对于A选项,函数 为奇函数,且该函数在定义域上不单调,A选项中的函数不合乎要求;
对于B选项,函数 为奇函数,且该函数在定义域上为减函数,B选项中的函数合乎要求;
对于C选项,当 时, ,则 ,
当 时, ,则 ,
又 ,所以,函数 为奇函数,
当 时,函数 单调递减;当 时,函数 单调递减.
由于函数 在 上连续,所以,函数 在 上为减函数,C选项中的函数合乎要求;
画出函数的图象,如图所示:
对于 :根据函数的图象, 的定义域为 ,值域为 ,故 错误;

2020-2021学年湖北省鄂东南新高考联盟高一(上)期末数学试卷(解析版)

2020-2021学年湖北省鄂东南新高考联盟高一(上)期末数学试卷(解析版)

2020-2021学年湖北省鄂东南新高考联盟高一(上)期末数学试卷一、选择题(共8小题).1.设集合A={x|x﹣1≤0},B={x|x2﹣x﹣6<0},则A∩B=()A.(﹣1,2)B.(﹣2,1]C.[1,2)D.[﹣2,3)2.sin454°+cos176°的值为()A.sin4°B.cos4°C.0D.2sin4°3.函数f(x)=lnx﹣的零点所在的大致区间是()A.(,1)B.(1,e)C.(e,e2)D.(e2,e3)4.设p:实数a,b满足a>1且b>1,q:实数a,b满足,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.已知0.4771<lg3<0.4772,则下列各数中与最接近的是()A.1033B.1053C.1073D.10936.把函数的图象向左平移φ(0<φ<π)个单位可以得到函数g(x)的图象,若g(x)是偶函数,则φ的值为()A.B.C.或D.或7.已知,则=()A.B.C.D.8.已知函数,若不等式f(3x﹣9x)+f(m•3x﹣3)<0对任意x∈R 均成立,则m的取值范围为()A.(﹣∞,2﹣1)B.C.D.二、选择题(共4小题).9.如果角α与角γ+45°的终边相同,角β与γ﹣45°的终边相同,那么α﹣β的可能值为()A.90°B.360°C.450°D.2330°10.下列函数中,既是偶函数又是区间(1,+∞)上的增函数有()A.y=3|x|+1B.y=ln(x+1)+ln(x﹣1)C.y=x2+2D.11.已知f(x)=cos(sin x),g(x)=sin(cos x),则下列说法正确的是()A.f(x)与g(x)的定义域都是[﹣1,1]B.f(x)为偶函数且g(x)也为偶函数C.f(x)的值域为[cos1,1],g(x)的值域为[﹣sin1,sin1]D.f(x)与g(x)最小正周期为2π12.高斯(Gauss)是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如:[﹣2.3]=﹣3,[15.31]=15.已知函数,G(x)=[f(x)],则下列说法正确的有()A.G(x)是偶函数B.G(x)的值域是{﹣1,0}C.f(x)是奇函数D.f(x)在R上是增函数三、填空题:(本题共4小题,每小题5分,共20分.)13.已知扇形的弧长为6,圆心角弧度数为2,则其面积为.14.已知实数a,b满足log4(a+9b)=log2,则a+b的最小值是.15.已知函数f(x)的定义域为(0,+∞),且f(x)=2f()﹣1,则f(x)=.16.已知函数f(x)=A sin(2x+φ)﹣(A>0,0<φ<),g(x)=,f(x)的图象在y轴上的截距为1,且关于直线x=对称.若对于任意的x1∈[﹣1,2],存在x2∈[0,],使得g(x1)≥f(x2),则实数m的取值范围为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知全集U=R,集合A={x|≤0},B={x|x2﹣2ax+(a2﹣1)<0}.(1)当a=2时,求(∁U A)∩(∁U B);(2)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.18.已知函数f(x)=sin(﹣ωx)(ω>0),且其图象上相邻最高点、最低点的距离为.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若已知sinα+f(α)=,求的值.19.李庄村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?20.已知函数f(x)=2sinωx,其中常数ω>0.(Ⅰ)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象求y=g(x)的图象离原点O最近的对称中心.21.已知连续不断函数,.(1)求证:函数f(x)在区间上有且只有一个零点;(2)现已知函数g(x)在上有且只有一个零点(不必证明),记f(x)和g (x)在上的零点分别为x1,x2,试求x1+x2的值.22.已知f(x)=log2(4x+1)﹣kx(k∈R).(1)设g(x)=f(x)﹣a+1,k=2,若函数g(x)存在零点,求a的取值范围;(2)若f(x)是偶函数,设h(x)=log2(b•2x),若函数f(x)与h(x)的图象只有一个公共点,求实数b的取值范围.参考答案一、选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A={x|x﹣1≤0},B={x|x2﹣x﹣6<0},则A∩B=()A.(﹣1,2)B.(﹣2,1]C.[1,2)D.[﹣2,3)解:由A={x|x﹣1≤0}={x|x≤1},B={x|x2﹣x﹣6<0}={x|﹣2<x<3},则A∩B={x|﹣2<x≤1},故选:B.2.sin454°+cos176°的值为()A.sin4°B.cos4°C.0D.2sin4°解:sin454°+cos176°=sin94°﹣cos4°=cos4°﹣cos4°=0,故选:C.3.函数f(x)=lnx﹣的零点所在的大致区间是()A.(,1)B.(1,e)C.(e,e2)D.(e2,e3)解:由于连续函数f(x)=lnx﹣满足f(1)=﹣1<0,f(e)=1﹣>0,且函数在区间(0,e)上单调递增,故函数f(x)=lnx﹣的零点所在的区间为(1,e).故选:B.4.设p:实数a,b满足a>1且b>1,q:实数a,b满足,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当a>1且b>1时,ab>1,a+b>2成立,即充分性成立,反之当a=4,b=1时,满足足但a>1且b>1不成立,即必要性不成立,即p是q的充分不必要条件,故选:A.5.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.已知0.4771<lg3<0.4772,则下列各数中与最接近的是()A.1033B.1053C.1073D.1093解:∵围棋状态空间复杂度的上限M约为3361,可观测宇宙中普通物质的原子总数N约为1080.∴M≈3361,N≈1080,根据对数性质有3=10lg3≈100.477,∴M≈3361≈(100.477)361≈10172.2,∴≈=1092.2≈1093,故选:D.6.把函数的图象向左平移φ(0<φ<π)个单位可以得到函数g(x)的图象,若g(x)是偶函数,则φ的值为()A.B.C.或D.或解:把函数的图象向左平移φ(0<φ<π)个单位,可以得到函数g(x)=sin(2x+2φ﹣)的图象,若g(x)是偶函数,则2φ﹣=+kπ,k∈Z,∴分别令k=0、k=1,可得φ=,或φ=,故选:D.7.已知,则=()A.B.C.D.解:因为,所以sin(+θ)=﹣,则=cos[﹣(+θ)]=sin(+θ)=﹣.故选:B.8.已知函数,若不等式f(3x﹣9x)+f(m•3x﹣3)<0对任意x∈R 均成立,则m的取值范围为()A.(﹣∞,2﹣1)B.C.D.解:因为f(﹣x)+f(x)=﹣2x+ln()+2x+ln()=ln1=0,所以函数f(x)是奇函数,由复合函数的单调性可知y=ln()在R上单调递增,而y=2x在R上也单调递增,所以函数f(x)在R上单调递增,所以不等式f(3x﹣9x)+f(m•3x﹣3)<0对任意x∈R均成立等价于f(3x﹣9x)<﹣f(m •3x﹣3)=f(3﹣m•3x),即3x﹣9x<3﹣m•3x,即m<对任意x∈R均成立,因为≥,所以m<.故选:A.二、选择题:(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得3分)9.如果角α与角γ+45°的终边相同,角β与γ﹣45°的终边相同,那么α﹣β的可能值为()A.90°B.360°C.450°D.2330°解:如果角α与γ+45°终边相同,则α=2mπ+γ+45°,m∈Z角β与γ﹣45°终边相同,则β=2nπ+γ﹣45°.n∈Z,∴α﹣β=2mπ+γ+45°﹣2nπ﹣γ+45°=2(m﹣n)π+90°,(k=m﹣n+1),即α﹣β与90°角的终边相同,观察选项,选项AC符合题意,故选:AC.10.下列函数中,既是偶函数又是区间(1,+∞)上的增函数有()A.y=3|x|+1B.y=ln(x+1)+ln(x﹣1)C.y=x2+2D.解:根据题意,依次分析选项:对于A,y=3|x|+1,其定义域为R,有f(﹣x)=3|﹣x|+1=3|x|+1=f(x),即函数f(x)为偶函数,在区间(1,+∞)上,y=3|x|+1=y=3x+1,为增函数,符合题意,对于B,y=ln(x+1)+ln(x﹣1),有,解可得x>1,即函数的定义域为(1,+∞),不是偶函数,不符合题意,对于C,y=x2+2为二次函数,开口向上且对称轴为y轴,既是偶函数又是区间(1,+∞)上的增函数,符合题意,对于D,y=x2+,其定义域为R,有f(﹣x)=(﹣x)2+=x2+=f(x),即函数f(x)为偶函数,可令t=x2,可得t=x2在(1,+∞)递增;y=t+在(1,+∞)递增,则函数y=x2+为增函数,符合题意,故选:ACD.11.已知f(x)=cos(sin x),g(x)=sin(cos x),则下列说法正确的是()A.f(x)与g(x)的定义域都是[﹣1,1]B.f(x)为偶函数且g(x)也为偶函数C.f(x)的值域为[cos1,1],g(x)的值域为[﹣sin1,sin1]D.f(x)与g(x)最小正周期为2π解:对于A,f(x)与g(x)的定义域都是R,所以A错;对于B,因为f(﹣x)=f(x),g(﹣x)=g(x),f(x)和g(x)都是偶函数,所以B对;对于C,因为sin x∈[﹣1,1]⊂(﹣,),所以f(x)的值域为[cos1,1],因为cos x∈[﹣1,1]⊂(﹣,),sin t在(﹣,)内单调递增,所以g(x)的值域为[﹣sin1,sin1],所以C对;对于D,f(x)=cos(sin x)=cos|sin x|,π是f(x)一个周期,所以D错.故选:BC.12.高斯(Gauss)是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如:[﹣2.3]=﹣3,[15.31]=15.已知函数,G(x)=[f(x)],则下列说法正确的有()A.G(x)是偶函数B.G(x)的值域是{﹣1,0}C.f(x)是奇函数D.f(x)在R上是增函数解:根据题意,对于A,G(1)=[f(1)]=0,G(﹣1)=[f(﹣1)]=﹣1,G(1)≠G(﹣1),则函数G(x)不是偶函数,A错误,对于B,=﹣,由1+2x>1,则﹣<f(x)<,则有G(x)的值域是{﹣1,0},B正确,对于C,,其定义域位R,由f(﹣x)=﹣=﹣,则f(﹣x)+f(x)=0,即函数f(x)为奇函数,C正确,对于D,=﹣,设t=1+2x,则y=﹣,t=2x+1在R上是增函数,y=﹣,在(1,+∞)也是增函数,则f(x)在R上是增函数,D正确,故选:BCD.三、填空题:(本题共4小题,每小题5分,共20分.)13.已知扇形的弧长为6,圆心角弧度数为2,则其面积为9.解:半径r===3,根据扇形面积公式S=|α|r2=×2×32=9,故答案为:9.14.已知实数a,b满足log4(a+9b)=log2,则a+b的最小值是16.解:∵log4(a+9b)=log2=log4()2,∴a+9b=ab,即=1,∴a+b=(a+b)•()=1+9++≥10+2=16,当且仅当=,即a=3b=12时,等号成立,∴a+b的最小值是16.故答案为:16.15.已知函数f(x)的定义域为(0,+∞),且f(x)=2f()﹣1,则f(x)=+.解:考虑到所给式子中含有f(x)和f(),故可考虑利用换元法进行求解.在f(x)=2f()﹣1,用代替x,得f()=2f(x)﹣1,将f()=﹣1代入f(x)=2f()﹣1中,可求得f(x)=+.故答案为:+16.已知函数f(x)=A sin(2x+φ)﹣(A>0,0<φ<),g(x)=,f(x)的图象在y轴上的截距为1,且关于直线x=对称.若对于任意的x1∈[﹣1,2],存在x2∈[0,],使得g(x1)≥f(x2),则实数m的取值范围为.解:f(x)的图象在y轴上的截距为1,且关于直线x=对称.∴f(0)=A sinφ﹣=1,sin(2×+φ)=±1.又A>0,0<φ<,∴φ=,A=.∴f(x)=sin(2x+)﹣,x∈[0,],∴(2x+)∈,∴sin(2x+)∈,∴f(x)∈.∴f(x)min=1.g(x)==﹣m,∵x∈[﹣1,2],∴g(x)min=﹣m.若对于任意的x1∈[﹣1,2],存在x2∈[0,],使得g(x1)≥f(x2),则g(x1)min≥f(x2)min,∴﹣m≥1,解得m≤﹣.∴实数m的取值范围为.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知全集U=R,集合A={x|≤0},B={x|x2﹣2ax+(a2﹣1)<0}.(1)当a=2时,求(∁U A)∩(∁U B);(2)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.解:(1)A={x|≤0}={x|2≤x<5},B={x|x2﹣2ax+(a2﹣1)<0}={x|a﹣1<x<a+1}.当a=2时,B=(1,3),则∁U A={x|x≥5或x<2},∁U B={x|x≥3或x≤1},则(∁U A)∩(∁U B)={x|x≥5或x≤1.(2)若x∈A是x∈B的必要不充分条件,则B⫋A,则,得,得3≤a≤4,即实数a的取值范围是[3,4].18.已知函数f(x)=sin(﹣ωx)(ω>0),且其图象上相邻最高点、最低点的距离为.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若已知sinα+f(α)=,求的值.解:(Ⅰ)∵函数f(x)=sin(﹣ωx)=cosωx,故其周期为,最大值为1.设图象上最高点为(x1,1),与之相邻的最低点为(x2,﹣1),则|x2﹣x1|==.∵其图象上相邻最高点与最低点之间的距离为=,解得ω=1,∴函数f(x)=cos x.(Ⅱ)∵sinα+f(α)=,∴sinα+cosα=,两边平方可得:1+2sinαcosα=,解得:2sinαcosα=﹣,cosα﹣sinα=±,∴===±.19.李庄村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?解:(1)当0≤x≤30时,L(x)=2+0.5x;当x>30时,L(x)=2+30×0.5+(x﹣30)×0.6=0.6x﹣1,∴(注:x也可不取0);(2)当0≤x≤30时,由L(x)=2+0.5x=35得x=66,舍去;当x>30时,由L(x)=0.6x﹣1=35得x=60,∴李刚家该月用电60度;(3)设按第二方案收费为F(x)元,则F(x)=0.58x,当0≤x≤30时,由L(x)<F(x),得:2+0.5x<0.58x,解得:x>25,∴25<x≤30;当x>30时,由L(x)<F(x),得:0.6x﹣1<0.58x,解得:x<50,∴30<x<50;综上,25<x<50.故李刚家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.20.已知函数f(x)=2sinωx,其中常数ω>0.(Ⅰ)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象求y=g(x)的图象离原点O最近的对称中心.解:(Ⅰ)∵函数f(x)=2sinωx在[﹣,]上单调递增,∴ω•≤,∴0<ω≤.(Ⅱ)令ω=2,将函数y=f(x)=2sin2x的图象向左平移个单位,可得y=2sin2(x+)的图象;再向上平移1个单位,得到函数y=g(x)=2sin2(x+)+1的图象,令2sin(2x+)=0,可得2x+=kπ,k∈Z,求得x=﹣,故g(x)的图象的对称中心为(﹣,1),k∈Z,故g(x)的图象离原点O最近的对称中心为(﹣,1).21.已知连续不断函数,.(1)求证:函数f(x)在区间上有且只有一个零点;(2)现已知函数g(x)在上有且只有一个零点(不必证明),记f(x)和g(x)在上的零点分别为x1,x2,试求x1+x2的值.【解答】(1)证明:函数,因为,,所以,又y=sin x和y=在区间上单调递增,故函数f(x)在区间上单调递增,由零点的存在性定理可得函数f(x)在区间上有且只有一个零点;(2)解:因为函数f(x)在区间上有且只有一个零点,所以,即,即=0,因为函数g(x)在上有且只有一个零点x2,所以,则x1+x2=.22.已知f(x)=log2(4x+1)﹣kx(k∈R).(1)设g(x)=f(x)﹣a+1,k=2,若函数g(x)存在零点,求a的取值范围;(2)若f(x)是偶函数,设h(x)=log2(b•2x),若函数f(x)与h(x)的图象只有一个公共点,求实数b的取值范围.解:(1)由题意函数g(x)存在零点,即f(x)=a﹣1有解.又f(x)=log2(4x+1)﹣2x=log2()=log2(1+),易知f(x)在(﹣∞,+∞)上是减函数,又1+>1,log2()>0,即f(x)>0,所以a﹣1∈(0,+∞),所以a的取值范围是a∈(1,+∞).(2)∵f(x)=log2(4x+1)﹣kx的定义域为R,f(x)是偶函数,∴f(﹣1)=f(1),∴log2(+1)+k=log2(4+1)﹣k,∴k=1检验f(x)=log2(4x+1)﹣x=log2(2x+2﹣x),f(﹣x)=log2(4﹣x+1)+x=log2(2x+2﹣x),∴f(x)=f(﹣x),∴f(x)为偶函数,函数f(x)与h(x)的图象有且只有一个公共点,∴方程f(x)=g(x)只有一解,即方程2x+=b•2x﹣b有且只有一个实根,令t=2x>0,则方程(b﹣1)t2﹣bt﹣1=0有且只有一个正根,①当b=1时,t=﹣,不合题意,②当b≠1时,若方程有两相等正根,则△=(﹣4b)2﹣4×3(b﹣1)×(﹣3)=0,且>0,解得b=﹣3③若一个正根和一个负根,则<0,即b>1时,满足题意,∴实数a的取值范围为{b|b>1或b=﹣3}.。

2020-2021学年湖北省武汉市部分重点高中高一上学期期中联考数学试题

2020-2021学年湖北省武汉市部分重点高中高一上学期期中联考数学试题

湖北省武汉市部分重点高中2020-2021学年高一上学期期中联考数学试题(武汉一中,武汉三中,武汉六中,武汉十一中,武钢三中,省实验)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要 求的.1.函数2()f x =的定义域是( ) A.1,13⎛⎫- ⎪⎝⎭ B.11,33⎛⎫- ⎪⎝⎭ C.1,13⎡⎤-⎢⎥⎣⎦ D.1,3⎛⎫-∞ ⎪⎝⎭『答案』A.『解析』11013103x x x x <⎧->⎧⎪⇒⎨⎨+>>-⎩⎪⎩∴113x -<<∴1,13x ⎛⎫∈- ⎪⎝⎭2.集合{A x y ==,{}2,0x B y y x ==>,则A∩B=( )A.『0,2』B.(1,2』C.『1,2』D.(1,+∞)『答案』B.『解析』0(2)0(2)0021121x x x x x y y y -≥-≤≤≤⎧⎧⎧⇒⇒⎨⎨⎨>>>=⎩⎩⎩ ∴(]1,2AB =3.已知命题p :∀x >0,总有(1)1xx e +>,则命题p 的否定为( ) A.00x ∃≤,使得00(1)1x x e+≤ B.00x ∃>,使得00(1)1x x e +≤C.00x ∃>,总有(1)1x x e +≤D.0x ∃≤,总有(1)1xx e +≤『答案』B.『解析』0:0p x ⌝∃>,使得00(1)1xx e +≤.4.设0.60.6a =, 1.20.6b =,0.61.2c =中,则a ,b ,c 的大小关系是( ) A.a <b <c B.a <c <b C.b <a <c D.b <c <a『答案』C.『解析』0.6 1.20.60.6>,∴a b >0.60.60.61 1.2<<,a c <∴b <a <c5.已知函数()y f x =在(0,2)上是增函致,函数(2)y f x =+是偶函数,则下列结论正确的是( ) A.57(1)22f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ B.57(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C.75(1)22f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ D.75(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭『答案』D.『解析』()f x 在(0,2)单调递增(2)y f x =+是偶函数,∴()f x 向左平移2单位为偶函数∴75(1)22f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭6.己知函数2()28f x x kx =--在『-2,1』上具有单调性,则实数k 的取值范围是( ) A.k ≤-8 B.k ≥4 C.k ≤-8或k ≥4 D.-8≤k ≤4『答案』C.『解析』对称轴为4kx =①24k≤-,∴8k ≤- ②14k≥,∴4k ≥ 综上所述:k ≤-8或k ≥4.7.函数1()1x x f x e x -=++的部分图象大致是( ) A. B. C. D.『答案』D.『解析』12()111x x x f x e e x x -=+=+-++ 两条渐近线为y =1和x =-1,排除A 和B 当x →∞,()xf x e →,呈指数增长,故选D. 8.已知函数()1f x x =+,2()2x g x a +=+,若对任意1x ∈『3,4』,存在2x ∈『-3,1』,使12()()f x g x ≥,则实数a 的取值范围是( )A.4a ≤-B.2a ≤ c.3a ≤ D.4a ≤『答案』C.『解析』依题意只需1min 2min ()()f x g x ≥当1x ∈『3,4』,()f x 单增,则min ()(3)4f x f == 当2x ∈『-3,1』,2()2x g x a +=+,即2x +取最小时,有2min ()g x[]20,3x +∈02min ()21g x a a =+=+∴14a +≤ ∴3a ≤.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列四个命题中不正确的是( ) A.21()2x xf x -⎛⎫=⎪⎝⎭在1,2⎛⎫-∞ ⎪⎝⎭上是单调递增函数 B.若函数2()2f x ax bx =++与x 辅没有交点,则280b a -<且a >0C.幂函数的图象都通过点(1,1)D.1y x =+和y =表示同一个函数『答案』BD.『解析』A.21()2tf x t x x⎧⎛⎫=⎪ ⎪⎨⎝⎭⎪=-⎩,根据同增异减,只需求2t x x =-的递减区间对称轴12x =,即t 在1,2⎛⎫-∞ ⎪⎝⎭单调递减,正确.B.函数2()2f x ax bx =++与x 轴无交点,a =0显然不成立, 则只需280b a ∆=-<,且a ≠0即可,B 错错误. C.正确D.1y x ==+,解析式不同,D 错误.10.若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②()f x 在定义域上单调递减,则称函数()f x 对“理想函数”,下列四个函数中能被称为“理想函数”的有( )A.()f x x =-B.23()f x x =C.1()f x x =D.22,0(),0x x x f x x x x ⎧--≥⎪=⎨-<⎪⎩『答案』AD.『解析』根据()()0f x f x +-=得()f x 为奇函致,且在定义域递减.A 选项()f x x =-,符合.B 选项23()f x x =,是幂函数,为偶函数,错误. C 选项1()f x x=,在(-∞,0)和(0,+∞)递减,非(-∞,0)∪(0,+∞)递减,错误. D 选项作图易知正确.11.已知a ,b 为正实数,则下列判断中正确的是( ) A.11+b+4a a b ⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭B.若a +b =2,则22a b+的最小值为4C.若a >b ,则2211a b < D.若a +b =l ,则14a b+的最小值是8『答案』ABC.『解析』A :∵a >0,b >0,∴10a a +>,10b b+> ∴12a a +≥,当且仅当1a a =,∴1a = ∴10b b +>,当且仅当1b b=,∴b=1正确B.224ab+≥=正确C.当0a b >>时,220a b >>,则22110a b <<,正确 D.当1a b +=,14144()59b a a b a b a b a b⎛⎫+=++=++≥ ⎪⎝⎭ 取等条件:13a =,23b = 所以最小值为9,D 错误.12.德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一,以其名命名的函数1()0x f x x ⎧=⎨⎩,为有理数,为无理数称为狄利克雷函数,则关于()f x 下列说法正确的是( )A.函致()f x 的值域是『0,1』B.,(())1x f f x ∀∈=RC.(2)()f x f x +=对任意x ∈R 恒成立D.存在三个点11(,())A x f x ,22(,())B x f x ,33(,())C x f x ,使得ΔABC 为等腰直角三角形『答案』BC.『解析』A.值域为{0,1},错误.B.当x 为有理数时,()1f x =,(())()1f f x f x == 当x 为无理数时,()0f x =,(())(0)0f f x f == 则R ∀∈,(())1f f x =,正确.C.x 为有理数时:x +2为有理数,(2)()f x f x +==1当x 为无理数时,x +2为无理数,(2)()f x f x +==0 则(2)()f x f x +=恒成立,正确.D.若ΔABC 为等腰直角三角形,则211x x -=,所以12()()f x f x =,前后矛盾,错误. 三、填空题:本题共4小题,每小题5分,共20分.13.已知幂函数()y f x =的图像过点(2,2),则这个函数的解析式为()f x =__________.『答案』12()f x x =.『解析』设()a f x x =,带入点(2)2a =,解得12a =则12()f x x =14.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的增函数,则实数a 的取值范围为_________. 『答案』(]4,8a ∈.『解析』是R 上的增函数,则题中满足1402422a aaa ⎧⎪>⎪⎪->⎨⎪⎪-+≤⎪⎩解得(]4,8a ∈.15.定义在R 上的偶函数()f x 满足:对任意的1x ,2x ∈(-∞,0』(12x x ≠),有2121()()0f x f x x x -<-,且f (2)=0,则不等式()f x ≤0的解集是_________.『答案』『-2,2』.『解析』∵对∀1x ,2x ∈(-∞,0』(12x x ≠)有2121()()f x f x x x -<-∴()f x 在(-∞,0』上单调递增,且f(2)=0,由图像可知x ∈『-2,2』16.函数2()20202021f x ax x =-+(a >0),在区间『t -1,t +1』(t ∈R )上函数()f x 的最大值为M ,最小值为N .当t 取任意实数时,M -N 的最小值为2,则a =________.『答案』a =2.『解析』2()2021f x ax =-(a >0)对称轴1010x a=要使m -n 最小,t -1与t +1必关于对称轴对称所以1010t a=① (1)()2f t f t ++=22(1)2020(1)202120202021a t t at t +-++-+-220202at a =+-= ②联立得2×1010+a -2020=2 ∴a =2四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知集合A ={x |x ≤-3或x ≥2},B ={x |1<x ≤5},C ={x |m -l≤x ≤2m }. (1)求A ∩B ,(C R A )∪B :(2)若B ∩C =C ,求实数m 的取值范围.解:(1)A ∩B ={x |2≤x ≤5} 2分 C R A ={x |-3<x <2},(C R A )∪B ={x |-3<x ≤5} 4分 (2)∵B ∩C =C∴C B ⊆ 5分①当C=∅时,∴m -1>2m 即m <-1 7分②当C ≠∅时,∴121125m m m m -≤⎧⎪->⎨⎪≤⎩∴522m <≤9分 综上所述:m 的取值范围是(-∞,-1)∪(2,52』 10分. 18.(本小题满分12分)已知命题p :实数x 满足245220x x⋅-⋅+≥,命题q :实数x 满足2(21)(1)0x m x m m -+++≥.(1)求命题p 为真命题,求实数x 的取值范围;(2)若命题q 是命题p 的必要不充分条件,求实数m 的收值范围. 解: (1)由命题p 为真命题,知245220x x ⋅-⋅+≥,可化为(22)(221)0x x -⋅-≥ 2分解得122x ≤或22x ≥,所以实数x 的取值范围是{x |x ≤-1或x ≥1} 4分 (2)命题q :由2(21)(1)0x m x m m -+++≥,得[]()(1)0x m x m --+≥,解得x ≤m 或x ≥m +1 8分 设A={x |x ≤-1或x ≥1},B={x |x ≤m 或x ≥m +l}因为q 是p 必要不充分条件,所以A ⊄B 9分111m m ≥-⎧⎨+≤⎩,解得-l≤m ≤0, 所以实致m 的取值范围为『-1,0』 12分 19.(本小题满分12分)已知二次函数2()2(1)4f x x a x =--+. (1)若()f x 为偶函数,求()f x 在『-1,3』上的值域;(2)当x ∈『1,2』时,()f x ax >恒成立,求实数a 的取值范围.解:(1)根据题意,函数2()2(1)4f x x a x =--+,为二次函数,其对称轴为1x a =-. 若()f x 为偶函数,则10a -=,解可得1a = 2分 则2()4f x x =+,又由-1≤x ≤3,则有4()13f x ≤≤即函数()f x 的值域为『4,13』. 6分 (2)由题意知x ∈『1,2』时,()f x ax >恒成立,即2(32)40x a x --+> 7分方法一:所以2432x a x+-<恒成立 8分因为x ∈『1,2』,所以2444x x x x +=+≥=,当且仅当4x x=,即x =2时等号成立. 所以324a -<,解得a <2,所以a 的取值范围是(-∞,2) 12分方法二:令2()(32)4g x x a x =--+, 所以只需min ()0g x >,对称轴为322a x -= 当3212a -≤,即43a ≤时,min ()(1)730g x g a ==->解得73a <,故43a ≤ 8分当32122a -<<,即423a <<时,2min 32(32)()4024a a g x g --⎛⎫==-> ⎪⎝⎭解得223a -<<,故423a << 10分 当3222a -≥,即2a ≥,min ()(2)1260g x g a ==->解得2a <,舍去 12分 绦上所述,a 的取值范围是(-∞,2).20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碱转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+(30≤x ≤50),已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少? 解: (1)当x ∈『30,50』时,设该工厂获利S ,则2220(401600)(30)700S x x x x =--+=--- 2分 所以当x ∈『30,50』时,S m a x =-700<0 4分因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损. 5分 (2)由题易知,二氧化碳的平均处理成本1600()40y P x x x x==+-(x ∈『30,50) 7分 当x ∈『30,50』时,1600()404040P x x x =+-≥= 10分当且仅当1600x x=,即x =40时等号成立, 故P (x )取得最小值为P (40)=40所以当处理量为40吨时,每吨的平均处理成本最少. 12分21.(本小题满分12分)已知函数131()33x x f x +-+=+.(1)判断()f x 的奇偶性;(2)判断函数()f x 的单调性,并用定义证明; (3)若不等式1(31)(33)0xx f f k k +-+⋅+>在区间『0,+∞)上有解,求实数k 的取值范围.解: (1)∵13113()333(13)x xx xf x +-+-==++,定义域为R ,关于原点对称, 1分 又133(13)31()()3(13)33(13)3(31)x x x x x x x x f x f x --------====-+⨯++ 因此,函数131()33x x f x +-+=+为奇函数; 4分(2)312(13)21()3(31)3(31)3(31)3x x x x xf x -+-+===-+++,任取1x 、2x ∈R 且1x <2x ,则12122121()()3(31)33(31)3x x f x f x ⎡⎤⎡⎤-=---⎢⎥⎢⎥++⎣⎦⎣⎦211212222(22)3(12)3(12)3(12)(12)x x x x x x -=-=++++ 6分∵12x x <∴21220x x ->,2120x +>,1120x +> ∴12()()0f x f x ->,即12()()f x f x >因此,函数131()33x x f x +-+=+在R 上为减函数 8分(3)∵函数()y f x =为R 上的奇函数, 由1(31)(33)0xx f f k k +-+⋅+>可得1(33)(31)(13)x x x f k k f f +⋅+>--=-又由于函数()y f x =为R 上的减函数,∴13313x x k k +⋅+<- 10分. ∴113()33xx k f x +-<=+ 由题意知,存在x ∈『0,+∞),使得113()33xx k f x +-<=+成立,则max ()k f x < 因为函数131()33x x f x +-+=+在『0,+∞)上为减函数,则max ()(0)0f x f == ∴0k <因此,实数k 的取值范围是(0,+∞). 12分22.(本小题满分12分)己知函数9()f x x a a x=--+,a ∈R . (1)若a =0,试判断f(x )的奇偶性,并说明理由;(2)若函数()f x 在『1,a 』上单调,且对任意x ∈『1,a 』,()f x <-2恒成立,求a 的取值范围;(3)着x ∈『1,6』,当a ∈(3,6)时,求函数()f x 的最大值的表达式M (a ).解:(1)当a =0时,9()f x x a x =--,为非奇非偶函数. 2分 (2)当[]1,x a ∈时,9()2f x x a x=--+ 因为函数()f x 在[]1,a 上单调,所以13a <≤, 3分此时()f x 在[]1,a 上单调递增,max 9()()f x f a a a ==-+ 由题意:max 9()2f x a a=-+<-恒成立,即2290a a +-<.所以11a <<. 5分 (也可以用参数分离:9()22f x x a x =--+<-,即1912a x x ⎛⎫<+- ⎪⎝⎭,右边最小值为1912a a ⎛⎫+- ⎪⎝⎭,所以1912a a a ⎛⎫<+- ⎪⎝⎭,解得:11a <<又13a <≤, 所以a的取值范围为11a <<) 6分(3)当[]1,6x ∈时,[](]92,1,()9,,6x a x a x f x x a a x ⎧--+∈⎪⎪=⎨⎪-∈⎪⎩7分 又()3,6a ∈,由上式知,()f x 在区间(],6a 单调递增, 7分当()3,6a ∈时,()f x 在『1,3)上单调递增,在『3,a 』上单调递减.所以,()f x 在『1,3)上单调递增,在『3,a 』上单调递减,(a ,6』上单调递增. 10分 则()max 921,3,249()max (3),(6)max 26,22126,,64a f x f f a a a ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎛⎫==-=⎨ ⎪⎝⎭⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩宗上所述,函数()f x 的最大值的表达式为:921,3,24()2126,,64a M a a a ⎧⎛⎫∈ ⎪⎪⎪⎝⎭=⎨⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩12分。

2020-2021学年重庆市高一上学期期中数学试题(解析版)

2020-2021学年重庆市高一上学期期中数学试题(解析版)

2020-2021学年重庆市高一上学期期中数学试题一、单选题1.已知集合{0,1,2}A =,则A 的子集个数为( ) A .6 B .7 C .8 D .16【答案】C【分析】根据子集的个数为2n (n 为集合元素的个数),即可求得答案. 【详解】{0,1,2}A =.根据子集的个数为2,n (n 为集合元素的个数)∴A 的子集个数328=.故选:C .【点睛】本题考查了求集合子集个数问题,解题关键是掌握子集概念,考查了分析能力和计算能力,属于基础题.2.已知()f x 是偶函数,()g x 是奇函数,且2()()(1)f x g x x +=-,则(1)f -=( ) A .2 B .2- C .1 D .1-【答案】A【分析】分别取1x =和1x =-,代入函数根据奇偶性得到答案. 【详解】()f x 是偶函数,()g x 是奇函数,2()()(1)f x g x x +=-,取1x =得到(1)(1)0f g +=,即(1)(1)0f g ---=;取1x =-得到(1)(1)4f g -+-=; 解得(1)2f -= 故选:A【点睛】本题考查了根据函数奇偶性求函数值,意在考查学生对于函数性质的灵活运用. 3.2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,对实数m 满足2()(1)f x m ≤+恒成立,则m 的取值范围是( ) A .(,3][1,)-∞-+∞ B .[3,1]- C .(,1][3,)-∞-⋃+∞ D .[1,3]-【答案】A【分析】根据奇偶性得到0b =,1a =-得到2()4f x x =-+,计算函数的最大值,解不等式得到答案.【详解】2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,则0b =,且()12a a -=--即1a =-,故2()4f x x =-+,()max ()04f x f ==故24(1)m ≤+,解得m 1≥或3m ≤- 故选:A【点睛】本题考查了根据函数奇偶性求参数,函数最值,解不等式,意在考查学生的综合应用能力.4.若,a b ,R c ∈,a b >,则下列不等式成立的是 A .11a b< B .22a b > C .||||a cbc >D .()()2222a c b c +>+【答案】D【分析】结合不等式的性质,利用特殊值法确定. 【详解】当1,1a b ==-排除A ,B 当0c 排除C 故选:D【点睛】本题主要考查了不等式的性质,特殊值法,还考查了特殊与一般的思想,属于基础题.5.已知函数)25fx =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x x x =≥【答案】B【分析】利用换元法求函数解析式.【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+()2x ≥.故选:B【点睛】本题考查利用换元法求函数解析式,考查基本分析求解能力,属基础题.6.已知()f x 是定义域为R 的奇函数,当0x >时,()223f x x x =--,则不等式()20f x +<的解集是A .()() 5,22,1--⋃-B .()(),52,1-∞-⋃-C .()(,1)52,--⋃+∞D .(),1()2,5-∞-⋃【答案】B【分析】根据函数奇偶性的性质,求出函数当0x <时,函数的表达式,利用函数的单调性和奇偶性的关系即可解不等式. 【详解】解:若0x <,则0x ->,∵当0x >时,()223f x x x =--,∴()223f x x x -=+-,∵()f x 是定义域为R 的奇函数,∴()223()f x x x f x -=+-=-,即2()23f x x x =--+,0x <.①若20x +<,即2x <-,由()20f x +<得,()()222230x x -+-++<,解得5x <-或1x >-,此时5x <-;②若20x +>,即2x >-,由()20f x +<得,()()222230x x +-+-<,解得31x -<<,此时21x -<<,综上不等式的解为5x <-或21x -<<. 即不等式的解集为()(),52,1-∞-⋃-. 故选:B.【点睛】本题主要考查不等式的解法,利用函数的奇偶性的性质求出函数的解析式是解决本题的关键. 7.若函数()f x =R ,则实数a 的取值范围是( )A .(0,4)B .[0,2)C .[0,4)D .(2,4]【答案】C【分析】等价于不等式210ax ax ++>的解集为R, 结合二次函数的图象分析即得解. 【详解】由题得210ax ax ++>的解集为R, 当0a =时,1>0恒成立,所以0a =.当0a ≠时,240a a a >⎧⎨∆=-<⎩,所以04a <<. 综合得04a ≤<.故选:C【点睛】本题主要考查函数的定义域和二次函数的图象性质,意在考查学生对这些知识的理解掌握水平.8.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,4【答案】D【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围.【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D .【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系. 二、多选题9.若0a >,0b >,且2a b +=,则下列不等式恒成立的是( )A 1B .11ab≥ C .222a b +≥ D .112a b+≥【答案】BCD【分析】由条件可得12211112a a b a b a abb b ab ++=≥+==⇒≥⇒≥,结合2222()()a b a b ++,即可得出.【详解】因为0a >,0b >,所以12211112a a b a b a abb b ab ++=≥+≤==⇒≥⇒≥, 所以A 错,BD 对;因为22222()()(0)a b a b a b -+=-≥+,则22222()()2a b a b ++=,化为:222a b +,当且仅当1a b ==时取等号,C 对. 故选:BCD .【点睛】本题考查了不等式的基本性质以及重要不等式的应用,考查了推理能力与计算能力,属于基础题.10.给出下列命题,其中是错误命题的是( )A .若函数()f x 的定义域为[0,2],则函数(2)f x 的定义域为[0,4].B .函数1()f x x=的单调递减区间是(,0)(0,)-∞+∞ C .若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,则()f x 在R 上是单调增函数.D .1x 、2x 是()f x 在定义域内的任意两个值,且1x <2x ,若12()()f x f x >,则()f x 减函数.【答案】ABC【分析】对于A ,由于()f x 的定义域为[0,2],则由022x ≤≤可求出(2)f x 的定义域;对于B ,反比例函数的两个单调区间不连续,不能用并集符号连接;对于C ,举反例可判断;对于D ,利用单调性的定义判断即可【详解】解:对于A ,因为()f x 的定义域为[0,2],则函数(2)f x 中的2[0,2]x ∈,[0,1]x ∈,所以(2)f x 的定义域为[0,1],所以A 错误; 对于B ,反比例函数1()f x x=的单调递减区间为(,0)-∞和(0,)+∞,所以B 错误; 对于C ,当定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,而()f x 在R 上不一定是单调增函数,如下图,显然,(1)(0)f f < 所以C 错误;对于D ,根据函数单调性的定义可得该选项是正确的, 故选:ABC11.若a ,b 为正数,则( )A .2+aba bB .当112a b+=时,2a b +≥C .当11a b a b+=+时,2a b +≥D .当1a b +=时,221113a b a b +≥++【答案】BCD【分析】利用基本不等式,逐一检验即可得解.【详解】解:对A ,因为+a b ≥2aba b≤+,当a b =时取等号,A 错误;对B ,()11111+=2+2=2222b a a b a b a b ⎛⎛⎫⎛⎫++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当a b =时取等号,B 正确;对C ,11=+=a ba b a b ab++,则1ab =,+2a b ≥=,当1a b ==时取等号,C 正确;对D ,()()()2222222211+111+111+b a a b a b a b a b a b a b b a ++⎛⎫+++=+++≥++ ⎪++⎝⎭2222()1a b ab a b =++=+=, 当12a b ==时取等号,即221113a b a b +≥++,D 正确.故选:BCD.【点睛】本题考查了基本不等式的应用,重点考查了运算能力,属中档题.12.已知连续函数f (x )对任意实数x 恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,f (1)=-2,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x -<+的解集为213x x ⎧⎫<<⎨⎬⎩⎭∣ 【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =-,可得(0)()()0f f x f x =+-=,所以()()f x f x =--, 所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x -=+-=-, 因为当x >0时,f (x )<0,所以()0f y x -<,即()()0f y f x -<, 所以()f x 在()()0,,,0+∞-∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f -=;令1y =,可得()()12f x f x +=-()24f =-, ()36f =-;()3(3)6f f =--=,()f x ∴在[3-,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x -<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =-,2(3)(23)(2)f x f x x f ∴<++-,则2(3)(52)f x f x <-,2352x x ∴>-,解得:23x <或1x >; D 不对;故选:ABC .【点睛】本题主要考查函数求值和性质问题,根据抽象函数条件的应用,赋值法是解决本题的关键. 三、填空题13.函数y _________. 【答案】[]2,5【分析】先求出函数的定义域,再结合复合函数的单调性可求出答案. 【详解】由题意,2450x x -++≥,解得15x -≤≤,故函数y []1,5-.函数y =二次函数245u x x =-++的对称轴为2x =,在[]1,5-上的增区间为[)1,2-,减区间为[]2,5,故函数y []2,5. 故答案为:[]2,5.【点睛】本题考查复合函数的单调性,考查二次函数单调性的应用,考查学生的推理能力,属于基础题.14.奇函数f (x )在(0,)+∞内单调递增且f (1)=0,则不等式()01f x x >-的解集为________. 【答案】{|1x x >或01x <<或1x <-}.【分析】根据题意,由函数()f x 的奇偶性与单调性分析可得当01x <<时,()0f x <,当1x >时,()0f x >,当10x -<<时,()0f x >,当1x <-时,()0f x <,而不等式()01f x x >-等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;分析可得答案.【详解】解:根据题意,()f x 在(0,)+∞内单调递增,且f (1)0=, 则当01x <<时,()0f x <,当1x >时,()0f x >,又由()f x 为奇函数,则当10x -<<时,()0f x >,当1x <-时,()0f x <, 不等式()01f x x >-,等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;解可得:1x >或01x <<或1x <-; 即不等式()01f x x >-的解集为{|1x x >或01x <<或1x <-}. 故答案为:{|1x x >或01x <<或1x <-}. 15.已知函数()f x 的定义域为()0,∞+,则函数1f x y +=__________. 【答案】(-1,1)【分析】先求()1f x +的定义域为()1,-+∞,再求不等式组21340x x x >-⎧⎨--+>⎩的解集可以得到函数的定义域.【详解】由题意210340x x x +>⎧⎨--+>⎩,解得11x -<<,即定义域为()1,1-.【点睛】已知函数()f x 的定义域D ,()g x 的定义域为E ,那么抽象函数()f g x ⎡⎤⎣⎦的定义域为不等式组()x Eg x D ∈⎧⎨∈⎩的解集.16.定义:如果函数()y f x =在区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在区间[],a b 上的一个均值点.已知函数2()1f x x mx =-++在区间[]1,1-上存在均值点,则实数m 的取值范围是________. 【答案】(0,2).【详解】试题分析:由题意设函数2()1f x x mx =-++在区间[1,1]-上的均值点为,则0(1)(1)()1(1)f f f x m --==--,易知函数2()1f x x mx =-++的对称轴为2m x =,①当12m≥即2m ≥时,有0(1)()(1)f m f x m f m -=-<=<=,显然不成立,不合题意;②当12m≤-即2m ≤-时,有0(1)()(1)f m f x m f m =<=<-=-,显然不成立,不合题意;③当112m -<<即22m -<<时,(1)当20m -<<有0(1)()()2m f f x f <≤,即214m m m <≤+,显然不成立;(2)当0m =时, 0()0f x m ==,此时01x =±,与011x -<<矛盾,即0m ≠;(3)当02m <<时,有0(1)()()2mf f x f -<≤,即214m m m -<≤+,解得02m <<,综上所述得实数m 的取值范围为(0,2).【解析】二次函数的性质. 四、解答题17.已知集合{}22|430,|03x A x x x B x x -⎧⎫=-+≤=>⎨⎬+⎩⎭(1)分别求A B ,R R A B ⋃();(2)若集合{|1},C x x a A C C =<<⋂=,求实数a 的取值范围. 【答案】(1)(2,3]A B ⋂=,(,2](3,)R R A B ⋃=-∞⋃+∞(2)3a ≤【分析】(1)化简集合,,A B 根据交集定义,补集定义和并集定义,即可求得答案; (2)由A C C =,所以C A ⊆,讨论C =∅和C ≠∅两种情况,即可得出实数a 的取值范围.【详解】(1)集合{}2|430[1,3]A x x x =-+≤=∴(,1)(3,)RA =-∞⋃+∞,[3,2]RB =-∴(2,3]A B ⋂=,(,2](3,)RR A B ⋃=-∞⋃+∞,(2)A C C =∴ 当C 为空集时,1a ≤∴ 当C 为非空集合时,可得 13a ≤<综上所述:a 的取值范围是3a ≤.【点睛】本题考查了不等式的解法,交集和补集的运算,解题关键是掌握集合的基本概念和不等式的解法,考查了计算能力,属于基础题.18.已知函数()f x 是定义在R 上的偶函数,已知当0x ≤时,()243f x x x =++.(1)求函数()f x 的解析式;(2)画出函数()f x 的图象,并写出函数()f x 的单调递增区间; (3)求()f x 在区间[]1,2-上的值域.【答案】(1)()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩; (2)见解析; (3)[]1,3-.【分析】(1)设x >0,则﹣x <0,利用当x≤0时,f (x )=x 2+4x+3,结合函数为偶函数,即可求得函数解析式;(2)根据图象,可得函数的单调递增区间;(3)确定函数在区间[﹣1,2]上的单调性,从而可得函数在区间[﹣1,2]上的值域. 【详解】(1)∵函数()f x 是定义在R 上的偶函数∴对任意的x ∈R 都有()()f x f x -=成立∴当0x >时,0x -<即()()()()224343f x f x x x x x =-=-+-+=-+∴ ()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩(2)图象如右图所示函数()f x 的单调递增区间为[]2,0-和[)2,+∞. (写成开区间也可以)(3)由图象,得函数的值域为[]1,3-.【点睛】本题考查函数的解析式,考查函数的单调性与值域,考查数形结合的数学思想,属于中档题.19.若二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,且(0)1,(1)3f f =-=.(1)求()f x 的解析式;(2)若函数()(),()g x f x ax a R =-∈在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增,求a 的值及当[1,1]x ∈-时函数()g x 的值域.【答案】(1)2()1f x x x =-+(2)2a =,值域为[1,5]-. 【分析】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠,由11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭可得()f x 对称轴为12x =,结合条件,即可求得答案;(2)根据增减性可知32x =为函数()g x 的对称轴,即可得到a 的值,而根据()g x 在[1,1]x ∈-上递减可得出()g x 在[1,1]x ∈-上的值域.【详解】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭∴二次函数()f x 的对称轴为:12x =. ∴122b a -=,可得:=-b a ——① 又(0)1f =,∴(0)1f c ==,可得:1c =.(1)3f -=.即:13a b -+=,可得:2a b -=——②由①②解得: 1,1a b ==-∴()f x 的解析式为2()1f x x x =-+.(2) 函数()(),()g x f x ax a R =-∈()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增. ∴()g x 的对称轴为32x =, 即:1322a +=.解得:2a =. ∴2()31g x x x =-+.()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减, ∴()g x 在[1,1]x ∈-上递减,则有:在[1,1]x ∈-上,min ()(1)1g x g ==-.函数()g x 在[1,1]x ∈-上的值域为[1,5]-【点睛】本题考查了待定系数法的运用以及对称轴的形式,根据增减性判断函数的对称轴及在区间上值域问题,解题关键是掌握二次函数的基础知识,考查了分析能力和计算能力,本题属中档题.20.已知函数24()x ax f x x++=为奇函数. (1)若函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,求m 的取值范围; (2)若函数()f x 在区间[]1,k 上的最小值为3k ,求k 的值.【答案】(1)4m ≥或02m <≤;(2【分析】(1)函数()f x 为奇函数,可知对定义域内所有x 都满足()()f x f x -=-,结合解析式,可得0ax =恒成立,从而可求出a 的值,进而可求出()f x 的解析式,然后求出函数()f x 的单调区间,结合()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,可求得m 的取值范围;(2)结合函数()f x 的单调性,分12k <≤和2k >两种情况,分别求出()f x 的最小值,令最小值等于3k ,可求出k 的值.【详解】(1)由题意,函数()f x 的定义域为()(),00,-∞+∞,因为函数()f x 为奇函数,所以对定义域内所有x 都满足()()f x f x -=-,即()()2244x a x x ax x x-+-+++=--, 整理可得,对()(),00,x ∈-∞+∞,0ax =恒成立,则0a =, 故244()x f x x x x +==+. 所以()f x 在()0,2上单调递减,在[)2,+∞上单调递增,又函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,则2m ≤或22m ≥,解得4m ≥或02m <≤.(2)()f x 在()0,2上单调递减,在[)2,+∞上单调递增,若12k <≤,则()()min 43f x f k k k k ==+=,解得k =12k <≤,只有k =合题意;若2k >,则()()min 42232f x f k ==+=,解得43k =,不满足2k >,舍去.故k 【点睛】本题考查函数的奇偶性,考查函数单调性的应用,考查了函数的最值,利用对勾函数的单调性是解决本题的关键,考查学生的计算求解能力,属于基础题. 21.已知二次函数2()(0)f x ax x a =+≠.(1)当0a <时,若函数y a 的值;(2)当0a >时,求函数()()2||g x f x x x a =---的最小值()h a .【答案】(1)-4;(2)()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩ 【分析】(1)当0a <时,函数y 而可求出a 的值; (2)当0a >时,求出()g x 的表达式,分类讨论求出()g x 的最小值()h a 即可.【详解】(1)由题意,()0f x ≥,即()200ax x a +≥<,解得10x a≤≤-,即函数y 定义域为10,a ⎡⎤-⎢⎥⎣⎦, 又当0a <时,函数()2f x ax x =+的对称轴为12x a =-,21111222(4)f a a aa a ⎛⎫= ⎪⎝-=-⎭--,故函数y⎡⎢⎣,函数y1a -=4a =-. (2)由题意,0a >,2()||g x ax x x a =---,即()()22()2,,x a x ax g a a x a x ax -+≥-<⎧⎪=⎨⎪⎩, ①当01a <≤,则10a a≥>, x a ≥时,2min 1111(2)()()()g x g a a a a a a a-+=-==, x a <时,min ()(0)g x g a ==-, 若1a a a -≥-1a ≤≤, 若1a a a -<-,解得0a <<即0a <<min 1()g x a a =-1a ≤≤时,min ()g x a =-. ②当1a >时,1a a <, x a ≥时,33min ())2(g x g a a a a a a ==-+=-,x a <时,min ()(0)g x g a ==-,因为3a a a ->-,所以1a >时,min ()g x a =-.综上,函数()g x 的最小值()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩. 【点睛】本题考查函数的定义域与值域,考查二次函数的性质,考查函数的最小值,考查分类讨论的数学思想,考查学生的逻辑推理能力,属于中档题.22.定义在R 上的函数()f x 满足:①对一切x ∈R 恒有()0f x ≠;②对一切,x y R ∈恒有()()()f x y f x f y +=⋅;③当0x >时,()1f x >,且(1)2f =;④若对一切[,1]∈+x a a (其中0a <),不等式()224(2||2)f x a f x +≥-恒成立.(1)求(2),(3)f f 的值;(2)证明:函数()f x 是R 上的递增函数;(3)求实数a 的取值范围.【答案】(1)4,8(2)证明见解析(3)(,-∞ 【分析】1)用赋值法令1,1x y ==求解.(2)利用单调性的定义证明,任取12x x <,由 ()()()f x y f x f y +=⋅,则有()()()2211f x f x x f x =-,再由条件当0x >时,()1f x > 得到结论.(3)先利用()()()f x y f x f y +=⋅将4(2||2)-f x 转化为(2||)f x ,再将()22(2||)+≥f x a f x 恒成立,利用函数()f x 是R 上的递增函数,转化为222||≥+x a x 恒成立求解.【详解】(1)令1,1x y == 所以(2)(1)(1)4f f f =⋅=所以(3)(2)(1)8f f f =⋅=(2)因为()()()f x y f x f y +=⋅任取12x x <因为当0x >时,()1f x >所以()211f x x ->所以()()12f x f x <,所以函数()f x 是R 上的递增函数,(3)因为()4(2||2)2(2||2)[2(2||2)](2||)-=-=+-=f x f f x f x f x又因为()224(2||2)f x a f x +≥-恒成立且函数()f x 是R 上的递增函数,所以222||≥+x a x ,[,1]∈+x a a (其中0a <)恒成立所以222||+≥-a x x 若对一切[,1]∈+x a a (其中0a <),恒成立.当11a ≤-+ ,即2a ≤-时()()2max 143=+=---g x g a a a所以2243≥---a a a ,解得2a ≤-当21a -<≤-时,()max 1g x =解得21a -<≤-当10a -<≤,()()(){}max max ,1=+g x g a g a所以222≥--a a a 且221≥-+a a解得1a -<≤-综上:实数a 的取值范围(,-∞ 【点睛】本题主要考查了抽象函数的求值,单调性及其应用,还考查了分类讨论的思想和运算求解的能力,属于难题.。

2020-2021武汉市高一数学上期中一模试卷(带答案)

2020-2021武汉市高一数学上期中一模试卷(带答案)

2020-2021武汉市高一数学上期中一模试卷(带答案)一、选择题1.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( ) A .315,22⎛⎫⎪⎝⎭ B .[]28, C .[)2,8 D .[]2,74.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂ðD .()()U M P S ⋂⋃ð5.设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 6.已知函数)245fx x x =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥7.已知函数2()2f x ax bx a b =++-是定义在[3,2]a a -的偶函数,则()()f a f b +=( ) A .5B .5-C .0D .20198.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)9.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<10.函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .11.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >>B .a b c >>C .b a c >>D .c a b >>12.若函数2()sin ln(14)f x x ax x =⋅++的图象关于y 轴对称,则实数a 的值为( ) A .2B .2±C .4D .4±二、填空题13.已知偶函数()f x 满足3()8(0)f x x x =-≥,则(2)0f x ->的解集为___ ___14.设,则________15.已知函数()f x 是定义在 R 上的奇函数,且当0x >时,()21xf x =-,则()()1f f -的值为______.16.用max{,,}a b c 表示,,a b c 三个数中的最大值,设{}2()max ln ,1,4(0)f x x x x x x =--->,则()f x 的最小值为_______.17.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___. 18.已知函数在区间,上恒有则实数的取值范围是_____.19.已知实数0a ≠,函数2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为___________.20.若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题21.某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系,并写出它们的函数关系式; (2)该企业已筹集到10万元资金,全部投入到A ,B 两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).22.小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x (元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.(1)把y 表示为x 的函数;(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数; (3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)23.若()f x 是定义在(0,)+∞上的函数,且满足()()()x f f x f y y=-,当1x >时,()0f x >. (1)判断并证明函数的单调性;(2)若(2)1f =,解不等式1(3)()2f x f x+-<.24.设集合222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,若A ∩B=B ,求a 的取值范围.25.已知二次函数()f x 满足(0)2f =,且(1)()23f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()2h x f x tx =-,当[1,)x ∈+∞时,求()h x 的最小值;(3)设函数12()log g x x m =+,若对任意1[1,4]x ∈,总存在2[1,4]x ∈,使得()()12f x g x >成立,求m 的取值范围.26.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,m ∈R ,x ∈R}. (1)若A ∩B ={x |0≤x ≤3},求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1);当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.4.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.5.A解析:A 【解析】由题意{1,2,3,4}A B =U ,故选A. 点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.6.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化. 【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.7.A解析:A 【解析】 【分析】根据函数f (x )=ax 2+bx +a ﹣2b 是定义在[a ﹣3,2a ]上的偶函数,即可求出a ,b ,从而得出f (x )的解析式,进而求出f (a )+f (b )的值. 【详解】∵f (x )=ax 2+bx +a ﹣2b 是定义在[a ﹣3,2a ]上的偶函数; ∴0320b a a =⎧⎨-+=⎩;∴a =1,b =0; ∴f (x )=x 2+2;∴f (a )+f (b )=f (1)+f (0)=3+2=5. 故选:A . 【点睛】本题考查偶函数的定义,偶函数定义域的对称性,已知函数求值的方法.8.C解析:C 【解析】分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)xe x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,xy e =在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程()f x x a =--有两个解, 也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.9.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.10.B解析:B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.11.B解析:B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.12.B解析:B 【解析】 【分析】根据图象对称关系可知函数为偶函数,得到()()f x f x =-,进而得到ax +=.【详解】()f x Q 图象关于y 轴对称,即()f x 为偶函数 ()()f x f x ∴=-即:()sin ln sin ln sin lnx ax x ax x ⋅+=-⋅=⋅ax ∴+=恒成立,即:222141x a x +-=24a ∴=,解得:2a =± 本题正确选项:B 【点睛】本题考查根据函数的奇偶性求解参数值的问题,关键是能够明确恒成立时,对应项的系数相同,属于常考题型.二、填空题13.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能 解析:{|40}x x x ><或【解析】 【分析】通过判断函数的奇偶性,增减性就可以解不等式. 【详解】根据题意可知(2)0f =,令2x t -=,则转化为()(2)f t f >,由于偶函数()f x 在()0,∞+上为增函数,则()(2)f t f >,即2t>,即22x -<-或22x ->,即0x <或4x >.【点睛】本题主要考查利用函数的性质(奇偶性,增减性)解不等式,意在考查学生的转化能力,分析能力及计算能力.14.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1-解析:-1 【解析】 【分析】由分段函数的解析式先求出的值并判定符号,从而可得的值.【详解】, ,所以,故答案为-1. 【点睛】本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.15.【解析】由题意可得: 解析:1-【解析】由题意可得:()()()()()111,111f f ff f -=-=--=-=-16.0【解析】【分析】将中三个函数的图像均画出来再分析取最大值的函数图像从而求得最小值【详解】分别画出的图象取它们中的最大部分得出的图象如图所示故最小值为0故答案为0【点睛】本题主要考查数形结合的思想与解析:0 【解析】 【分析】将{}2()max ln ,1,4(0)f x x x x x x =--->中三个函数的图像均画出来,再分析取最大值的函数图像,从而求得最小值. 【详解】分别画出ln y x =-,1y x =-,24y x x =-的图象,取它们中的最大部分,得出()f x 的图象如图所示,故最小值为0.故答案为0 【点睛】本题主要考查数形结合的思想与常见函数的图像等,需要注意的是在画图过程中需要求解函数之间的交点坐标从而画出准确的图像,属于中等题型.17.-1【解析】试题解析:因为是奇函数且所以则所以考点:函数的奇偶性解析:-1 【解析】试题解析:因为2()y f x x =+是奇函数且(1)1f =,所以, 则,所以.考点:函数的奇偶性.18.(131)【解析】【分析】根据对数函数的图象和性质可得函数f (x )=loga (2x ﹣a )在区间1223上恒有f (x )>0即0<a<10<2x-a<1或a>12x-a>1分别解不等式组可得答案【详解】 解析:【解析】 【分析】根据对数函数的图象和性质可得,函数f (x )=log a (2x ﹣a )在区间[]上恒有f (x )>0,即,或,分别解不等式组,可得答案.【详解】若函数f (x )=log a (2x ﹣a )在区间[]上恒有f (x )>0,则,或当时,解得<a <1,当时,不等式无解. 综上实数的取值范围是(,1) 故答案为(,1).【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.19.【解析】【分析】分两种情况讨论分别利用分段函数的解析式求解方程从而可得结果【详解】因为所以当时解得:舍去;当时解得符合题意故答案为【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考 解析:34a =- 【解析】【分析】分0a >,0a <两种情况讨论,分别利用分段函数的解析式求解方程()()11f a f a -=+,从而可得结果.【详解】因为2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩所以,当0a >时,()()2(1)(11)21a f a f a a a a -+=-+=⇒--+,解得:3,2a =-舍去;当0a <时,()()2(1)(11)21a f a f a a a a ++=--=⇒--+,解得34a =-,符合题意,故答案为34-. 【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 20.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么解析:02b <<【解析】【分析】【详解】 函数()22xf x b =--有两个零点,和的图象有两个交点, 画出和的图象,如图,要有两个交点,那么三、解答题21.(1)A 为()()104f x x x =≥,B 为())504g x x x =≥;(2)A 产品投入3.75万元,B 产品投入6.25万元,最大利润为4万元【解析】【分析】 (1)根据题意给出的函数模型,设()1f x k x =;()g x k x =代入图中数据求得12,k k 既得,注意自变量0x ≥;(2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.,列出利润函数为()()5101044x y f x g x x =+-=-,用换元法,设10t x =-函数可求得利润的最大值.【详解】解:(1)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元 由题设知()1f x k x =;()g x k x =由图1知()114f =,114k = 由图2知()542g =,254k = 则()()104f x x x =≥,())504g x x x =≥. (2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元. ()()5101044x y f x g x x =+-=-,010x ∴≤≤t =,则0t ≤≤则(2210515650444216t t y t t -⎛⎫=+=--+≤≤ ⎪⎝⎭ 当52t =时,max 65416y =≈, 此时2510 3.754x =-= 所以当A 产品投入3.75万元,B 产品投入6.25万元,企业获得最大利润为4万元.【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.22.(1)()()2140,4060150,60802x x y x x ⎧-+≤≤⎪=⎨-+<≤⎪⎩(2)30名员工(3)销售单价定为55或70元时,该专卖店月利润最大【解析】【分析】(1)利用待定系数法分别求出当4060x ≤≤和6080x <≤时的解析式,进而可得所求结果;(2)设该店有职工m 名,根据题意得到关于m 的方程,求解可得所求;(3)由题意得到利润的函数关系式,根据分段函数最值的求法可得所求.【详解】(1)当4060x ≤≤时,设y ax b =+,由题意得点()()40,60,60,20在函数的图象上,∴40606020a b a b +=⎧⎨+=⎩,解得2140a b =-⎧⎨=⎩, ∴当4060x ≤≤时,2140y x =-+.同理,当6080x <≤时,1502y x =-+. ∴所求关系式为()()2140,4060150,6080.2x x y x x ⎧-+≤≤⎪=⎨-+<≤⎪⎩(2)设该店有职工m 名,当x=50时,该店的总收入为()()()4010010021404040000y x x x -⨯=-+-=元, 又该店的总支出为1000m+10000元,依题意得40000=1000m+10000,解得:m=30.所以此时该店有30名员工.(3)若该店只有20名职工,则月利润()()()()()21404010030000,40601504010030000,60802x x x S x x x ⎧-+-⨯-≤≤⎪=⎨⎛⎫-+-⨯-<≤ ⎪⎪⎝⎭⎩①当4060x ≤≤时,()225515000S x =--+,所以x=55时,S 取最大值15000元; ②当6080x <≤时,()2170150002S x =--+, 所以x=70时,S 取最大值15000元;故当x=55或x=70时,S 取最大值15000元, 即销售单价定为55或70元时,该专卖店月利润最大.【点睛】解决函数应用问题重点解决以下几点:(1)阅读理解、整理数据:通过分析快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记函数的定义域; (3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.23.(1)增函数,证明见解析;(2){|01}x x <<【解析】试题分析:(1)由题意结合所给的抽象函数关系可由120x x >>时有()()120f x f x ->,即()f x 在定义域内为增函数;(2)原问题等价于x 的不等式组(3)43010x x x x⎧⎪+<⎪+>⎨⎪⎪>⎩,求解不等式组可得01x <<.试题解析:(1)增函数证明:令12,x x y x ==,且120x x >>,则121x x > 由题意知:1122()()()x f f x f x x =- 又∵当x >1时,()0f x > ∴12()0x f x > ∴()()120f x f x -> ∴()f x 在定义域内为增函数(2)令x =4,y =2 由题意知:4()(4)(2)2f f f =- ∴()()422122f f ==⨯= ()13()((3))(4)f x f f x x f x+-=+< 又∵()f x 是增函数,可得(3)43010x x x x⎧⎪+<⎪+>⎨⎪⎪>⎩ ∴01x <<. 点睛:抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法.24.a=1或a≤﹣1【解析】试题分析:先由题设条件求出集合A ,再由A∩B=B ,导出集合B 的可能结果,然后结合根的判别式确定实数a 的取值范围.试题解析:根据题意,集合A={x|x 2+4x=0}={0,﹣4},若A∩B=B,则B 是A 的子集,且B={x|x 2+2(a+1)x+a 2﹣1=0},为方程x 2+2(a+1)x+a 2﹣1=0的解集,分4种情况讨论:①B=∅,△=[2(a+1)]2﹣4(a 2﹣1)=8a+8<0,即a <﹣1时,方程无解,满足题意; ②B={0},即x 2+2(a+1)x+a 2﹣1=0有两个相等的实根0,则有a+1=0且a 2﹣1=0,解可得a=﹣1,③B={﹣4},即x 2+2(a+1)x+a 2﹣1=0有两个相等的实根﹣4,则有a+1=4且a 2﹣1=16,此时无解,④B={0、﹣4},即x 2+2(a+1)x+a 2﹣1=0有两个的实根0或﹣4,则有a+1=2且a 2﹣1=0,解可得a=1,综合可得:a=1或a≤﹣1.点睛:A ∩B=B 则B 是A={0,﹣4}的子集,而B={x|x 2+2(a+1)x+a 2﹣1=0}为方程x 2+2(a+1)x+a 2﹣1=0的解集,所以分四种情况进行讨论①B=∅,②B={0},③B={﹣4},④B={0、﹣4},其中①B=∅不要忘记.25.(1)2()22f x x x =++;(2)min252,2,()21, 2.t t h x t t t -⎧=⎨-++>⎩…;(3)7m < 【解析】【分析】(1) 根据二次函数()f x ,则可设2()(0)f x ax bx c a =++≠,再根据题中所给的条件列出对应的等式对比得出所求的系数即可.(2)根据(1)中所求的()f x 求得2()2(1)2h x x t x =+-+,再分析对称轴与区间[1,)+∞的位置关系进行分类讨论求解()h x 的最小值即可.(3)根据题意可知需求()f x 与()g x 在区间上的最小值.再根据对数函数与二次函数的单调性求解最小值即可.【详解】(1)设2()(0)f x ax bx c a =++≠.①∵(0)2f =,∴(0)2f c ==,又∵(1)()1f x f x x +-=+,∴22(1)(1)2223a x b x ax bx x ++++---=+,可得223ax a b x ++=+,∴21,3,a a b =⎧⎨+=⎩解得12a b =⎧⎨=⎩,,即2()22f x x x =++. (2)由题意知,2()2(1)2h x x t x =+-+,[1,)x ∈+∞,对称轴为1x t =-.①当11t -„,即2t „时,函数h (x )在[1,)+∞上单调递增,即min ()(1)52h x h t ==-;②当11t ->,即2t >时,函数h (x )在[1,1)t -上单调递减,在[1,)t -+∞上单调递增,即2min ()(1)21h x h t t t =-=-++.综上,min 252,2,()21, 2.t t h x t t t -⎧=⎨-++>⎩„ (3)由题意可知min min ()()f x g x >,∵函数()f x 在[1,4]上单调递增,故最小值为min ()(1)5f x f ==,函数()g x 在[1,4]上单调递减,故最小值为min ()(4)2g x g m ==-+,∴52m >-+,解得7m <.【点睛】本题主要考查利用待定系数法求解二次函数解析式的方法,二次函数对称轴与区间关系求解最值的问题,以及恒成立和能成立的问题等.属于中等题型.26.(1)2;(2){|35}m m m -或【解析】试题分析:(1)根据一元二次不等式的解法,对A ,B 集合中的不等式进行因式分解,从而解出集合A ,B ,再根据A∩B=[0,3],求出实数m 的值;(2)由(1)解出的集合A ,B ,因为A ⊆C R B ,根据子集的定义和补集的定义,列出等式进行求解.解:由已知得:A={x|﹣1≤x≤3},B={x|m ﹣2≤x≤m+2}.(1)∵A∩B=[0,3]∴∴,∴m=2;(2)C R B={x|x<m﹣2,或x>m+2}∵A⊆C R B,∴m﹣2>3,或m+2<﹣1,∴m>5,或m<﹣3.考点:交、并、补集的混合运算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年湖北省武汉市问津联盟高一(上)期中数学试卷一、选择题(共8小题).1.(5分)已知集合A={x|x2﹣3x+2<0},B={x||x﹣1|<1},则A∩B=()A.{x|1<x<2}B.{x|0<x<2}C.{x|0<x<1}D.{x|x<2}2.(5分)若a<0,则化简得()A.B.C.D.3.(5分)已知4枝郁金香和5枝丁香的价格之和小于22元,而6枝郁金香和3枝丁香的价格之和大于24元.设1枝郁金香的价格为a元,1枝丁香的价格为b元,则a,b的大小关系为()A.a>b B.a=b C.a<b D.不确定4.(5分)已知f(x)是二次函数,不等式f(x)>0的解集是(﹣∞,1)∪(2,+∞),则f(2x)<0的解集是()A.(0,2)B.(1,2)C.(0,1)D.(2,4)5.(5分)在R上定义运算:,若不等式对任意实数x恒成立,则实数a的取值范围是()A.[﹣5,+∞)B.(﹣∞,﹣5]C.[﹣7,+∞)D.(﹣∞,﹣7]6.(5分)已知函数f(x)=,若f[f(0)]=4a,则实数a等于()A.B.C.2D.97.(5分)函数f(x)=(x﹣2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2﹣x)>0的解集为()A.{x|﹣2<x<2}B.{x|x>2,或x<﹣2}C.{x|0<x<4}D.{x|x>4,或x<0}8.(5分)已知函数是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,满足,若a,b∈R,a+b<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断二、多选题(本题共4个小题,每小题5分,共20分,在每个小题给出的四个选项中,有多项符合题目要求,全部选对得5分,选对部分得3分,有选错的得0分)9.(5分)下列叙述不正确的是()A.的解是B.“0<m≤4”是“mx2+mx+1≥0”的充要条件C.已知x∈R,则“x>0”是“|x﹣1|<1”的充分不必要条件D.函数的最小值是10.(5分)若∃x0∈[],使得2x02﹣λx0+1<0成立是假命题,则实数λ可能取值是()A.B.C.3D.11.(5分)定义运算,设函数f(x)=1⊕2﹣x,则下列命题正确的有()A.f(x)的值域为[1,+∞)B.f(x)的值域为(0,1]C.不等式f(x+1)<f(2x)成立的范围是(﹣∞,0)D.不等式f(x+1)<f(2x)成立的范围是(0,+∞)12.(5分)如果一个函数f(x)在其定义区间内对任意x,y都满足,则称这个函数为下凸函数,下列函数为下凸函数的是()A.f(x)=2x B.C.f(x)=﹣x2+3x﹣2D.三、填空题(共4小题).13.(5分)计算得.14.(5分)若函数y=|2x+c|是区间(﹣∞,1]上的单调函数,则实数c的取值范围是.15.(5分)已知定义在[1,3]上的函数f(x)满足f(x+1)=,且当x∈[2,3]时,f(x)=.若对定义域上任意x都有f(x)≤t成立,则t的最小值是.16.(5分)密云某商场举办春节优惠酬宾赠券活动,购买百元以上单件商品可以使用优惠券一张,并且每天购物只能用一张优惠券.一名顾客得到三张优惠券,三张优惠券的具体优惠方式如下:优惠券1:若标价超过50元,则付款时减免标价的10%;优惠券2:若标价超过100元,则付款时减免20元;优惠券3:若标价超过100元,则超过100元的部分减免18%.如果顾客需要先用掉优惠券1,并且使用优惠券1比使用优惠券2、优惠券3减免的都多,那么你建议他购买的商品的标价可以是元.四、解答题(本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤.)17.(10分)设集合A={x|x2﹣8x+15=0},B={x|ax﹣1=0}.(1)若,试判定集合A与B的关系;(2)若B⊆A,求实数a的取值集合.18.(12分)已知定义在[﹣3,3]上的函数y=f(x)是增函数.(1)若f(m+1)>f(2m﹣1),求m的取值范围;(2)若函数f(x)是奇函数,且f(2)=1,解不等式f(x+1)+1>0.19.(12分)已知f(x)=(x≠a).(1)若a=﹣2,试证f(x)在(﹣∞,﹣2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.20.(12分)根据市场调查,位于阳逻开发区的大明金属新产品投放市场的30天内,每件产品的销售价格P(单位:元)与时间t(单位:天)的关系如图,日销量Q(单位:件)与时间t之间的关系如表所示.t/天5152030Q/件35252010(1)根据图示写出该产品每件的销售价格P与时间t的函数解析式.(2)在所给的平面直角坐标系(如图)中,根据表中提供的数据描出实数对(t,Q)的对应点,并确定日销量Q与时间t的一个函数解析式.(3)在这30天内,哪一天的日销售金额最大?(日销售金额=每件产品的销售价格×日销量)21.(12分)设函数f(x)=ax2+(b﹣2)x+3.(1)若f(1)=3,且a>0,b>0,求的最小值;(2)若f(1)=2,且f(x)>2在(﹣1,1)上恒成立,求实数a的取值范围.22.(12分)设函数f(x)=a•2x﹣2﹣x(a∈R).(1)若函数y=f(x)的图象关于原点对称,求函数的零点x0;(2)若函数h(x)=f(x)+4x+2﹣x在x∈[0,1]的最大值为﹣2,求实数a的值.参考答案一、单选题(本题共8小题,每题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x2﹣3x+2<0},B={x||x﹣1|<1},则A∩B=()A.{x|1<x<2}B.{x|0<x<2}C.{x|0<x<1}D.{x|x<2}解:∵A={x|1<x<2},B={x|0<x<2},∴A∩B={x|1<x<2}.故选:A.2.(5分)若a<0,则化简得()A.B.C.D.解:∵a<0,∴==﹣=﹣.故选:A.3.(5分)已知4枝郁金香和5枝丁香的价格之和小于22元,而6枝郁金香和3枝丁香的价格之和大于24元.设1枝郁金香的价格为a元,1枝丁香的价格为b元,则a,b的大小关系为()A.a>b B.a=b C.a<b D.不确定解:由题意可知,即,由4a+5b<22得:16a+20b<88,由2a+b>8得:22a+11b>88,所以22a+11b>16a+20b,化简得:2a>3b,所以a>>b,故选:A.4.(5分)已知f(x)是二次函数,不等式f(x)>0的解集是(﹣∞,1)∪(2,+∞),则f(2x)<0的解集是()A.(0,2)B.(1,2)C.(0,1)D.(2,4)解:由题设可得:不等式f(x)<0的解集为(1,2),∴不等式f(2x)<0可化为1<2x<2,解得:0<x<1,故选:C.5.(5分)在R上定义运算:,若不等式对任意实数x恒成立,则实数a的取值范围是()A.[﹣5,+∞)B.(﹣∞,﹣5]C.[﹣7,+∞)D.(﹣∞,﹣7]解:不等式化为:(x﹣3)(x+1)﹣a≥3,化为:a≤x2﹣2x﹣6,令f(x)=x2﹣2x﹣6,f(x)=(x﹣1)2﹣7.∴当x=1时,f(x)min=﹣7,∵不等式对任意实数x恒成立,∴a≤f(x)min=﹣7.则实数a的取值范围是(﹣∞,﹣7].故选:D.6.(5分)已知函数f(x)=,若f[f(0)]=4a,则实数a等于()A.B.C.2D.9解:由题知f(0)=2,f(2)=4+2a,由4+2a=4a,解得a=2.故选:C.7.(5分)函数f(x)=(x﹣2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2﹣x)>0的解集为()A.{x|﹣2<x<2}B.{x|x>2,或x<﹣2}C.{x|0<x<4}D.{x|x>4,或x<0}解:f(x)=(x﹣2)(ax+b)=ax2+(b﹣2a)x﹣2b,∵函数f(x)=(x﹣2)(ax+b)为偶函数,∴f(﹣x)=f(x),即ax2﹣(b﹣2a)x﹣2b=ax2+(b﹣2a)x﹣2b,得﹣(b﹣2a)=(b﹣2a),即b﹣2a=0,则b=2a,则f(x)=ax2﹣4a,∵f(x)在(0,+∞)单调递增,∴a>0,由f(2﹣x)>0得a(2﹣x)2﹣4a>0,即(2﹣x)2﹣4>0,得x2﹣4x>0,得x>4或x<0,即不等式的解集为{x|x>4,或x<0},故选:D.8.(5分)已知函数是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,满足,若a,b∈R,a+b<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断解:∵已知函数是幂函数,∴m2﹣m﹣1=1,∴m=2,或m=﹣1,f(x)=x7,或f(x)=x﹣2.对任意的x1,x2∈(0,+∞)且x1≠x2,满足,故f(x)是增函数,∴f(x)=x7.若a,b∈R,a+b<0,即a<﹣b,∴a7<(﹣b)7,即a7<﹣b7,即a7+b7<0.则f(a)+f(b)=a7+b7<0,故选:B.二、多选题(本题共4个小题,每小题5分,共20分,在每个小题给出的四个选项中,有多项符合题目要求,全部选对得5分,选对部分得3分,有选错的得0分)9.(5分)下列叙述不正确的是()A.的解是B.“0<m≤4”是“mx2+mx+1≥0”的充要条件C.已知x∈R,则“x>0”是“|x﹣1|<1”的充分不必要条件D.函数的最小值是解:对于A:,整理得,转换为,解得,故不等式的解集为{x|},故A正确;对于B:“mx2+mx+1≥0”的充要条件为①当m=0时,②不等式恒成立,解得0<m≤4,故0≤m≤4,故B错误;对于C:不等式|x﹣1|<1,整理得﹣1<x﹣1<1,解得0<x<2,所以“x>0”是“|x﹣1|<1”的必要不充分条件,故C错误;对于D:函数f(x)==,设x2+2=t(t≥2),所以,根据对勾函数的性质,由于函数在[2,+∞)单调递增,所以函数,故D错误.故选:ABCD.10.(5分)若∃x0∈[],使得2x02﹣λx0+1<0成立是假命题,则实数λ可能取值是()A.B.C.3D.解:x0∈[,2],使得2x02﹣λx0+1<0成立是假命题,故:对∀x∈[,2],2x2﹣λx+1≥0恒成立.即2x+≥λ对任意的x∈[,2]恒成立.即(2x+)min≥λ,故2x+≥2,(当且仅当x=)等号成立.故λ≤2.故选:AB.11.(5分)定义运算,设函数f(x)=1⊕2﹣x,则下列命题正确的有()A.f(x)的值域为[1,+∞)B.f(x)的值域为(0,1]C.不等式f(x+1)<f(2x)成立的范围是(﹣∞,0)D.不等式f(x+1)<f(2x)成立的范围是(0,+∞)解:由题意知,函数f(x)=1⊕2﹣x=,画出函数f(x)的图象,如图所示;所以f(x)的值域是[1,+∞),选项A正确,B错误;由f(x)在(﹣∞,0)上是单调减函数,不等式f(x+1)<f(2x)可化为,解得x<﹣1;又x∈[﹣1,0)时,x+1≥0,f(x+1)=1;2x<0,f(2x)>1,所以f(x+1)<f(2x);综上知,不等式f(x+1)<f(2x)成立的范围是(﹣∞,0),所以C正确,D错误.故选:AC.12.(5分)如果一个函数f(x)在其定义区间内对任意x,y都满足,则称这个函数为下凸函数,下列函数为下凸函数的是()A.f(x)=2x B.C.f(x)=﹣x2+3x﹣2D.解:函数f(x)在其定义区间内对任意实数x,y都满足,可得f″(x)≥0,对于A:f(x)=2x,则f′(x)=2x•ln2,∴f″(x)=2x•ln22>0,∴函数是下凸函数;对于B:f(x)=,则f′(x)=,∴f″(x)=﹣<0,∴函数不是下凸函数;对于C:f(x)=﹣x2+3x﹣2,则f′(x)=﹣2x+3,∴f″(x)=﹣2<0,∴函数不是下凸函数;对于D:x<0时,f′(x)=1,∴f″(x)=0;x≥0时,f′(x)=2,∴f″(x)=0,∴函数是下凸函数;故选:AD.三、填空题(本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)13.(5分)计算得.解:算==.故答案为:.14.(5分)若函数y=|2x+c|是区间(﹣∞,1]上的单调函数,则实数c的取值范围是(﹣∞,﹣2].解:由函数y=|2x+c|=2|x+|的性质可知函数在[)单调递增,在单调递减又∵函数y=|2x+c|是区间(﹣∞,1]上的单调函数∴∴,解可得c≤﹣2故答案为:(﹣∞,﹣2].15.(5分)已知定义在[1,3]上的函数f(x)满足f(x+1)=,且当x∈[2,3]时,f(x)=.若对定义域上任意x都有f(x)≤t成立,则t的最小值是2.解:当x∈[1,2)时,x+1∈[2,3),∴f(x+1)=(x+1)﹣=x﹣,又f(x+1)=,∴f(x)=﹣1,∵当x∈[1,2)时,f(x)单调递减;∴f(x)∈(,2]当x∈[2,3]时,f(x)单调递增;∴f(x)∈[,],∴f(x)≤2,∵对定义域上任意x都有f(x)≤t成立,∴t≥2,故t的最小值是2,故答案为:216.(5分)密云某商场举办春节优惠酬宾赠券活动,购买百元以上单件商品可以使用优惠券一张,并且每天购物只能用一张优惠券.一名顾客得到三张优惠券,三张优惠券的具体优惠方式如下:优惠券1:若标价超过50元,则付款时减免标价的10%;优惠券2:若标价超过100元,则付款时减免20元;优惠券3:若标价超过100元,则超过100元的部分减免18%.如果顾客需要先用掉优惠券1,并且使用优惠券1比使用优惠券2、优惠券3减免的都多,那么你建议他购买的商品的标价可以是201元.解:设他购买的商品的标价可以是x元,则当x>100时,优惠券1的优惠金额为y=,优惠券2的优惠金额为y=20,优惠券3的优惠金额为y=.要使顾客先用掉优惠券1,并且使用优惠券1比使用优惠券2、优惠券3减免的都多,则,解得200<x<225.顾客购买的商品的标价在(200,225)内时,满足题意.故建议他购买的商品的标价可以是201元.故答案为:201.四、解答题(本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤.)17.(10分)设集合A={x|x2﹣8x+15=0},B={x|ax﹣1=0}.(1)若,试判定集合A与B的关系;(2)若B⊆A,求实数a的取值集合.解:(1)由x2﹣8x+15=0得x=3或x=5,故A={3,5},当由ax﹣1=0得x=5.∴B={5},∴B⊊A.(2)当B=∅时,满足B⊆A,此时a=0;当B≠∅,a≠0时,集合B=,由B⊆A得,∴.综上所述,实数a的取值集合为.18.(12分)已知定义在[﹣3,3]上的函数y=f(x)是增函数.(1)若f(m+1)>f(2m﹣1),求m的取值范围;(2)若函数f(x)是奇函数,且f(2)=1,解不等式f(x+1)+1>0.解:由题意可得,,求得﹣1≤m<2,即m的范围是[﹣1,2).(2)∵函数f(x)是奇函数,且f(2)=1,∴f(﹣2)=﹣f(2)=﹣1,∵f(x+1)+1>0,∴f(x+1)>﹣1,∴f(x+1)>f(﹣2),∴,∴﹣3<x≤2.∴不等式的解集为{x|﹣3<x≤2}.19.(12分)已知f(x)=(x≠a).(1)若a=﹣2,试证f(x)在(﹣∞,﹣2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.解:(1)证明任设x1<x2<﹣2,则f(x1)﹣f(x2)=﹣=.∵(x1+2)(x2+2)>0,x1﹣x2<0,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),∴f(x)在(﹣∞,﹣2)内单调递增.(2)解任设1<x1<x2,则f(x1)﹣f(x2)=﹣=∵a>0,x2﹣x1>0,∴要使f(x1)﹣f(x2)>0,只需(x1﹣a)(x2﹣a)>0恒成立,∴a≤1.综上所述,a的范围是(0,1].20.(12分)根据市场调查,位于阳逻开发区的大明金属新产品投放市场的30天内,每件产品的销售价格P(单位:元)与时间t(单位:天)的关系如图,日销量Q(单位:件)与时间t之间的关系如表所示.t/天5152030Q/件35252010(1)根据图示写出该产品每件的销售价格P与时间t的函数解析式.(2)在所给的平面直角坐标系(如图)中,根据表中提供的数据描出实数对(t,Q)的对应点,并确定日销量Q与时间t的一个函数解析式.(3)在这30天内,哪一天的日销售金额最大?(日销售金额=每件产品的销售价格×日销量)解:(1)根据题图知每件产品的销售价格P与时间t的函数解析式为P=.(2)描出实数对(t,Q)的对应点如图所示.从图中可以发现,点(5,35),(15,25),(20,20),(30,10)可能在同一条直线上,设它们所在直线l的解析式为Q=kt+b(k,b为常数).将点(5,35),(30,10)代入方程,得,解得,所以Q=﹣t+40.经检验,点(15,25),(20,20)也满足上式.因此日销量Q与时间t的一个函数解析式为Q=﹣t+40(0<t,30,t∈N*),(3)设日销售金额为y(单位:元),则即y=,当0<t≤20时,y max=1225,此时t=5;当20<t≤30时,y<1000.所以在这30天内,第5天的日销售金额最大.21.(12分)设函数f(x)=ax2+(b﹣2)x+3.(1)若f(1)=3,且a>0,b>0,求的最小值;(2)若f(1)=2,且f(x)>2在(﹣1,1)上恒成立,求实数a的取值范围.解:(1)由函数f(x)=ax2+(b﹣2)x+3,f(1)=3,则f(1)=a+b﹣2+3=3,得a+b=2,∴=()(a+b)=(5++)≥(5+2)=,当且仅当=时上式取等号,又a+b=2,∴当且仅当a=,b=时,的最小值是.(2)由函数f(x)=ax2+(b﹣2)x+3,f(1)=2,则f(1)=a+b﹣2+3=2,得a+b=1,由f(x)>2在(﹣1,1)上恒成立,则a(x2﹣x)>x﹣1在(﹣1,1)上恒成立,∴ax<1在(﹣1,1)上恒成立,①当x=0时,ax<1恒成立,②当0<x<1时,a<在(0,1)上恒成立,∴a≤()min,∴a≤1;③当﹣1<x<0时,a>在(﹣1,0)上恒成立,∴a≥()max,∴a≥﹣1;综上,实数a的取值范围[﹣1,1].22.(12分)设函数f(x)=a•2x﹣2﹣x(a∈R).(1)若函数y=f(x)的图象关于原点对称,求函数的零点x0;(2)若函数h(x)=f(x)+4x+2﹣x在x∈[0,1]的最大值为﹣2,求实数a的值.解:(1)∵f(x)的图象关于原点对称,∴f(x)为奇函数,∴f(﹣x)+f(x)=0,∴a•2﹣x﹣2﹣x+a•2x﹣2x=0,即∴(a﹣1)•(2﹣x+2x)=0,∴a=1.令,则2•(2x)2+3•(2x)﹣2=0,∴(2x+2)•(2•2x﹣1)=0,又2x>0,∴2•2x﹣1即x=﹣1,所以函数g(x)的零点为x0=﹣1.(2)h(x)=a•2x﹣2﹣x+4x+2﹣x,x∈[0,1],令2x=t∈[1,2],h(x)=t2+at,t∈[1,2],对称轴,当,即a≥﹣3时,h max(t)=h(2)=4+2a=﹣2,∴a=﹣3;②当,即a<﹣3时,h max(t)=h(1)=1+a=﹣2,∴a=﹣3(舍);综上:实数a的值为﹣3.。

相关文档
最新文档