3.1.4-3.1.5空间向量的正交分解及其坐标表示
3.1.4--3.1.5空间向量的正交分解及其坐标表示-PPT文档

5.角度的计算 已知空间两非零向量 a ( x1 , y1 , z1 ) , b ( x2 , y2 , z2 ) 则 cos a , b
ab ab x1 x2 y1 y2 z1 z2 x12 y12 z12 x2 2 y2 2 z2 2
a 与 b 同向; o s a ,b 1 注意:(1)当 c 时,
提问:平面内的任一向量 p 都可以用两个不共线的 向量a 、b 表示(平面向量基本定理)。 对于空间任意向量,有没有类似的结论呢 ?
空间向量基本定理 :如果三个向量 a
p x a y b z c
、b 、c
那么对空间任一向量 p 存在唯一有序实数组 不共面,
{x,y,z},使得
即,空间任意一个向量都可以用三个不共面的向量 表示出来。
( 1 ) a ( 2 ,3 , 3 ) , b ( 1 , 0 , 0 ) ;
( 2 ) a ( 1 , 1 , 1 ) , b ( 1 , 0 , 1 ) ;
此 时 , P 在 空 间 直 角 坐 标 系 O x y z 中 的 坐 标 为 ( x , y , z ) 记 作 : P ( x ,,) y z , 且 P ( x ,,) y z 。
3
教材P94 例4
教材P94 练习
如果知道有向线段的起点和终点的坐标,
那么有向线段表示的向量坐标怎样求? 结论:若A(x1,y1,z1),B(x2,y2,z2), 则 AB = OB-OA=(x2,y2,z2)-(x1,y1,z1)
1、将空间向量的运算与坐标表示结合起来, 不仅可以解决夹角和距离的计算问题, 而且可以使一些问题的解决变得简单 2、几何问题---向量问题---向量坐标问题 3、几何推理---向量坐标计算
3.1.4空间向量的正交分解及其坐标表示

空间任何三个不共面的向量 都可构成空间的一个基底
c 共面
推论:设点O、A、B、C是不共面的四点,则对 空间任一点P,都存在唯一的有序实数组 x、y、 z ,使
OP xOA yOB zOC
O
PC APBFra bibliotekP红对勾 5.若向量M→A,M→B,M→C的起点与终点互不重合且无三 点共线,则下列关系(O 是空间任一点)中,能使向量M→A,M→B,M→C 成为空间的一个基底的是( C )
[分析] 若向量 a 可以用基向量 e1、 e2、e3 表示为 a=xe1+ye2+ze3,则(x,y, z)就是 a 在基底{e1,e2,e3}下的坐标.
[= AA=解=AA=→→→→[=AA=解→→解GFGFGFA(:A(→→=A(=析= 12=1→=析=12DD,D,,AA]+ A+A→A→]+A→→A1→1ABB(→A1B12,112,′′+12,1+1(′+1A)A(1A))A1)→.+A→.→+)ABB.+A→→)→BAE→→′A′G→G′G=EAAAE=== ′==′==′=A→→→→AA→AD→D((DA→→AD(0→0BB0DB′+′,D,′+,1+1+1++,,D++,→+121212DE→AD12A12D→→→DA12D→E=))DDE)→D,→′,′→,=′===A=→FFAFD→(A(=→=(1D1=+1D,,,+AA+12A12A→A→12,DA→1212,12′′,D′→DD0D→ 0+)′+D→0+,)′),′A,A→→A→DDD+++12112AAA→→A→BBBB, AD, AA
∴∴∴ zxxxxz= + - xxz= + -=+ -3yy3yy3.= = yy.= =.= =121212, ,, ,, ,
3.1.4空间向量的正交分解及其坐标表示

练习 1.
如图,正方体 ABCD A1 B1C1 D1 中,E ,F 分别是 BB1 , D1 B1 中点,求证: EF DA1
证明:如图,不妨设正方体的棱长为 1, 分别以 DA 、 DC 、 DD1 为单位正交基底 建立空间直角坐标系 Oxyz , 1 1 1 则 E (1 , 1 , ) , F ( , , 1) 2 2 2 1 1 1 所以 EF ( , , ) , 2 2 2 又 A1 (1 , 0 , 1) , D(0 , 0 , 0) , DA 所以 1 (1 , 0 , 1) 1 1 1 所以 EF DA1 ( , , ) (1 , 0 , 1) 0 , 2 2 2 因此 EF DA1 ,即 EF DA1
我们称 xi, y j , zk
k j i O
x
p
P
y Q
i, j , k 上的分向量。
探究:在空间中,如果用任意三个不共面向量 a, b, c 代替两两垂直的向量 i, j , k ,你能得出类似的
结论吗?
如果三个向量 a, b, c不共面,那么对空间任一
1 1 1 1 D P(0,0,1) M (0, , 0), N ( , , ) 1 21 2 2 2 MN ( , 0, ) PD (1, 0, 1) 2 2 A DC (0,1, 0) M x 1 1 MN PD ( , 0, ) (1, 0, 1) 0 MN PD 2 1 2 1 MN DC ( , 0, ) (0,1, 0) 0 MN DC 2 2
【温故知新】
平面向量的正交分解及坐标表示
3.1.4空间向量的正交分解及其坐标表示

M
一.空间向量基本定理:
如果三个向量 a, b, c 不共面,那么对 空间任一向量 p ,存在一个唯一的有序 实数组x、y、z,使 p xa yb z c
E A D c
b
C
O
p
B
思路:作 AB // b, BD // a, BC // c
a
p OB BA OC OD OE x a yb z c
BAA1 CAA1 60 , AB AC AA1 1 ,求 MN 的长。
A1 M A B B1 N C1
C
1 1 BA1 AB B1C1 解: (Ⅰ) MN MA 1A 1B 1B 1N 3 3 1 1 1 1 1 (c a ) a (b a ) a b c 。 3 3 3 3 3
(Ⅱ) (a b c)2 a 2 b2 c 2 2a b 2b c 2c a
1 1 1 1 1 0 2 1 1 2 1 1 5 , 2 2
1 5 。 | a b c | 5 , | MN | | a b c | 3 3
a, b, c 都不等于 0
③一个基底是指一个向量组,一个 基向量是指基底中的某一个向量,二者 是相关连的不同概念。
例1:已知四面体OABC,M和N分别
是OA、BC的中点,P和Q分别是MN的 三等分点,试用基底 OA, OB, OC 表示向量 OP , OQ O
M
Q
A
P
C N
B
例2 空间四边形OABC中,G、H分别是 Δ ABC,Δ OBC的重心,设 OA a, OB b, OC c ,试用基向量 a, b, c 表示 向量 OG, GH. O
3.1.4空间向量的正交分解及其坐标表示

C
N
B
仲元中学黄锡泉
作业 课本第98页,习题A组第11题
仲元中学黄锡泉
3.1.4空间向量的正交分解及其坐标表示
设 i, j, k 是空间三个两两垂直的向量,
p 是空间中任一向量,则存在一个有序
实数对{x,y,z},使得
z
p xi y j zk
P
k
io
j
y
x 仲元中学黄锡泉
Q
空间向量的基本定理
如果三个向量 a,b,c 不共面,那么对空间
任一向量 p ,存在有序实数组{x,y,z},使得
AB’的中点为M,BC’的中点为N,求下列向量
的坐标:
(1, 1 , 1 )
(1)OM ________2_2
(2)ON _______(12_,_1_, 12) (3)MN ______(__12_,_12 ,0)
(4)C ' M
_____(_1_, _12_,_
1 2
)
z
O'
C' B'
G C
B
发展性训练1
1.在直角坐标系中,A(x1,y1,z1), B(x2,y2,z2),则 AB _(_x_2-_x_1_,y_2_-_y_1_,z_2_-_z1_), BA _(_x_1_-_x_2,_y_1_-y__2,_z_1-_z_2.)
仲元中学黄锡泉
发展性训练2
2.如图,边长为1的正方体OABC-O’A’B’C’中,
p xa yb zc {a, b, c}叫做空间一个基底(base) a,b,c都叫做基向量(base vectors).
仲元中学黄锡泉
单位正任一向量,则存在一个有序
3.1.4-3.1.5空间向量的正交分解及其坐标表示

(2)由于可视 0 为与任意一个非零向量共线,与任 隐含着它们都不是 0 。
意两个非零向量共面,所以三个向量不共面,就
(3)一个基底是指一个向量组, 一个基向量是指基底中的某一个向量,
二者是相关连的不同概念。
新知探究:空间向量的正交分解
二、空间向量的正交分解 特殊的: i, j, k两两垂直时 OP OQ zk. OQ xi y j.
定理,存在唯一的有序实数组(x,y, z)使
给定一个空间坐标系和向量
p ,且设
A(x,y,z) e3 e1 O e2 y
有序数组( x, y, z)叫做 p 在空间直角坐标
系O-xyz中的坐标,记作.P=(x,y,z)
p xe1 ye2 ze3
x 其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.
| AB | ( x2 x1 ) ( y2 y1 ) ( z2 z1 )
2 2
2
新探究:空间向量运算的坐标表示
三、向量的夹角的坐标表示
已知 a ( x1 , y1 , z1 ) , b ( x2 , y2 , z2 ) x1 x2 y1 y2 z1 z2 ab 则 cos a , b ab x12 y12 z12 x2 2 y2 2 z2 2
F1 E1 B1
C1
立空间直角坐标系 O xyz ,则
1 D(0 , 0 , 0) , F1 0 , ,1 . 4 D y 3 C O 1 BE1 1 , , 1 (1 , 1 , 0) 0 , , 1 , 4 4 A B 15 x 1 1 1 1 DF1 0 , ,1 (0 , 0 , 0) 0 , ,1 . BE1 DF1 0 0 1 1 , 16 4 4 4 4 15 17 17 BE DF1 15 16 1 . | BE1 | , | DF1 | . cos BE1 , DF1 | BE1 | | DF1 | 17 17 17 4 4 4 4
学案10:3.1.4 空间向量的正交分解及其坐标表示

3.1.4 空间向量的正交分解及其坐标表示学习目标1.了解空间向量的正交分解的含义.2.掌握空间向量的基本定理,并能用空间向量基本定理解决一些简单问题.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.学习重点:空间向量基本定理的应用.学习难点:应用空间向量基本定理解决问题.要点整合细读课本知识点一空间向量基本定理[填一填]1.定理:条件:三个向量a,b,c.结论:对空间任一向量p,存在有序实数组,使得p=x a+y b+z c.2.基底:空间中任何的三个向量a,b,c都可以构成空间的一个基底,即{a,b,c}.3.基向量:空间的一个基底{a,b,c}中的向量a,b,c都叫做基向量.[答一答]1.(1)空间中怎样的向量能构成基底?(2)基底与基向量的概念有什么不同?2.空间的基底唯一吗?3.为什么空间向量基本定理中x,y,z是唯一的?知识点二空间向量的正交分解及其坐标表示[填一填]1.单位正交基底:有公共起点O的三个的单位向量e1,e2,e3称为.2.空间直角坐标系:以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz.3.空间向量的坐标表示:对于空间任意一个向量p ,一定可以把它 ,使它的起点与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.把 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作p =(x ,y ,z ),即点P 的坐标为 .[答一答]4.与坐标轴或坐标平面垂直的向量坐标有何特点?5.向量可以平移,向量p 在坐标系中的坐标唯一吗?特别关注1.空间向量基本定理注意点空间向量基本定理表明,用空间三个不共面的已知向量组{a ,b ,c }可以线性表示出空间任意一个向量,而且表示的结果是唯一的.我们在用选定的基向量表示指定的向量时.要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量,再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止.2.空间向量与平面向量的坐标运算的联系类比平面向量的坐标运算,空间向量的坐标运算是平面向量坐标运算的推广,两者实质是一样的,只是表达形式不同而已,空间向量多了个竖坐标.典例讲破类型一 空间向量基本定理的理解例1 已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底?通法提炼判断给出的某一向量组能否作为基底,关键是要判断它们是否共面.如果从正面难以入手,可用反证法或利用一些常见的几何图形进行判断. 针对训练1已知a 、b 、c 是不共面的三个向量,则下列选项中能构成一组基底的一组向量是( ) A .2a ,a -b ,a +2b B .2b ,b -a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c类型二 用基底表示向量例2 如图所示,平行六面体ABCD A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.(1)证明A ,E ,C 1,F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z .通法提炼在几何体中,根据图形的特点,选择公共起点最集中的向量中的三个不共面的向量作为基底,或选择有公共起点且关系最明确如夹角或线段长度的三个不共面的向量作为基底,这样更利于解题. 针对训练2已知平行六面体OABC O ′A ′B ′C ′,OA →=a ,OC →=c ,OO ′→=b ,D 是四边形OABC 的对角线交点,则( ) A.O ′D →=-a +b +c B.O ′D →=-b -12a -12cC.O ′D →=12a -b -12cD.O ′D →=12a -b +12c类型三 求向量的坐标例3 如图所示,已知点P 为正方形ABCD 所在平面外一点,且P A ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,且P A =AD ,求向量MN →的坐标.通法提炼用坐标进行向量的运算,关键之一是把相关的向量以坐标形式表示出来.这里有两个方面的问题:一是如何恰当地建系,一定要分析空间几何体的构造特征,选合适的点作原点、合适的直线和方向作坐标轴,一般来说,有共同的原点,且两两垂直的三条数轴,只要符合右手系的规定,就可以作为空间直角坐标系.二是在给定的空间直角坐标系中如何表示向量的坐标,这里又有两种方法,其一是运用基底法,把空间向量进行正交分解;其二是运用投影法,求出起点和终点的坐标. 针对训练3在直三棱柱ABC A 1B 1C 1中,∠ACB =90°,CA =CB =1,CC 1=2,M 为A 1B 1的中点.以C 为坐标原点,分别以CA ,CB ,CC 1所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则AB 1→的坐标为 ,MB →的坐标为(-12,12,-2).课堂达标1.设命题p :a ,b ,c 是三个非零向量;命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.已知{a ,b ,c }是空间的一个基底,则可以和向量p =a +b ,q =a -b 构成基底的向量是( ) A .a B .b C .a +2bD .a +2c3.设{i ,j ,k }是空间向量的一个单位正交基底,则向量a =3i +2j -k ,b =-2i +4j +2k 的坐标分别是 . 【答案】(3,2,-1),(-2,4,2)【解析】∵i ,j ,k 是单位正交基底,故根据空间向量坐标的概念知a =(3,2,-1), b =(-2,4,2).4.已知点G 是△ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值是 . 5.如图,四棱锥P OABC 的底面为一矩形,设OA →=a ,OC →=b ,OP →=c ,E 、F 分别是PC 和PB 的中点,用a ,b ,c 表示BF →、BE →、AE →、EF →.参考答案要点整合 细读课本知识点一 空间向量基本定理[填一填]1.不共面 {x ,y ,z }2.不共面[答一答]1.提示:(1)空间任意三个“不共面”的向量都可以作为空间向量的一个基底.(2)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.2.提示:不唯一,只要是三个向量不共面,这三个向量就可以组成空间的一个基底. 3.提示:平移向量a ,b ,c ,p 使它们共起点,如图所示,以p 为体对角线,在a ,b ,c 方向上作平行六面体,易知这个平行六面体是唯一的,因此p 在a ,b ,c 方向上的分解是唯一的,即x ,y ,z 是唯一的.知识点二 空间向量的正交分解及其坐标表示[填一填]1.两两垂直 单位正交基底 3.平移 x ,y ,z (x ,y ,z )[答一答]4.提示:xOy 平面上的点的坐标为(x ,y,0),xOz 平面上的点的坐标为(x,0,z ),yOz 平面上的点的坐标为(0,y ,z ),x 轴上的点的坐标为(x,0,0),y 轴上的点的坐标为(0,y,0),z 轴上的点的坐标为(0,0,z ).另外还要注意向量OP →的坐标与点P 的坐标相同.5.提示:唯一.在空间直角坐标系中,向量平移后,其正交分解不变,故其坐标也不变.典例讲破类型一 空间向量基本定理的理解例1 解:假设OA →,OB →,OC →共面,由向量共面的充要条件知存在实数x ,y ,使OA →=xOB →+yOC →成立.∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3)=(-3x +y )e 1+(x +y )e 2+(2x -y )e 3.∵{e 1,e 2,e 3}是空间的一个基底, ∴e 1,e 2,e 3不共面,∴⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解,即不存在实数x ,y ,使OA →=xOB →+yOC →成立.∴OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底. 针对训练1 【答案】C【解析】因为a ,b ,c 不共面,易知a,2b ,b -c 不共面.故应选C. 类型二 用基底表示向量例2 (1)证明:∵AC 1→=AE →+EC 1→,又EC 1→=EB 1→+B 1C 1→=23BB 1→+B 1C 1→=23AA 1→+AD →,AF →=AD →+DF →=AD →+23DD 1→=AD →+23AA 1→,∴EC 1→=AF →,∴AC 1→=AE →+AF →,∴A ,E ,C 1,F 四点共面. (2)解:∵EF →=AF →-AE →=AD →+DF →-(AB →+BE →) =AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,∴x =-1,y =1,z =13.∴x +y +z =13.针对训练2 【答案】D【解析】O ′D →=O ′O →+OD →=O ′O →+12OA →+12OC →=-b +12a +12c .类型三 求向量的坐标例3 解:设正方形的边长为a ,∵P A =AD =AB , 且P A ,AD ,AB 两两互相垂直,故可设DA →=a i ,AB →=a j ,AP →=a k .以i ,j ,k 为坐标向量建立如图所示的空间直角坐标系.方法一:∵MN →=MA →+AP →+PN →=-12AB →+AP →+12PC →=-12AB →+AP →+12(AD →+AB →-AP →)=-12a j +a k +12(-a i +a j -a k )=-12a i +12a k ,∴MN →=(-12a,0,12a ).方法二:∵P (0,0,a ),C (-a ,a,0), ∴N 点的坐标为(-12a ,12a ,12a ).∵M 点的坐标为(0,12a,0),∴MN →=(-12a,0,12a ).针对训练3 【答案】(-1,1,2)【解析】A (1,0,0),B (0,1,0),B 1(0,1,2),M (12,12,2),AB 1→=CB 1→-CA →=(-1,1,2),MB →=(-12,12,-2). 课堂达标1.【答案】B【解析】当非零向量a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底,当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量. 2.【答案】D【解析】能与p ,q 构成基底,则与p ,q 不共面.∵a =p +q 2,b =p -q 2,a +2b =3p -q 2,∴A 、B 、C 都不合题意,由于{a ,b ,c }构成基底,∴a +2c 与p ,q 不共面,可构成基底. 3.【答案】(3,2,-1),(-2,4,2)【解析】∵i ,j ,k 是单位正交基底,故根据空间向量坐标的概念知a =(3,2,-1), b =(-2,4,2). 4.【答案】3【解析】如图,G 为△ABC 重心,E 为AB 中点,∴OE →=12(OA →+OB →),CG →=23CE →=23(OE →-OC →),∴OG →=OC →+CG →=OC →+23(OE →-OC →)=13(OA →+OB →+OC →),∴λ=3.5.解:BF →=12BP →=12(BO →+OP →)=12(c -b -a )=-12a -12b +12c . BE →=BC →+CE →=-a +12CP →=-a +12(CO →+OP →)=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b +12c .EF →=12CB →=12OA →=12a .。
3.1.4空间向量的正交分解及其坐标表示

化简整理,得 4 x 6 y 8z 7 0
即到 A 、B 两点距离相等的点的坐标 ( x , y , z ) 满
足的条件是 4 x 6 y 8z 7 0
变式:在直三棱柱ABO-A’B’O’中,∠AOB=90。 |AO|=4,|BO|=2,|AA’|=4,D为A’B’的中点,如图 建立直角坐标系,则 DO的坐标是 ______;
z
O’ A’ O
A D
A' B的坐标是 _____.
B’
B
y
x
例3
B1 E1 如图, 在正方体 ABCD A1 B1C1 D1 中,
d AB
2 2 2 | AB | ( x2 x1 ) ( y2 y1 ) ( z2 z1 )
2.两个向量夹角公式
a1b1 a2 b2 a3b3 a b ; cos a , b | a || b | a12 a2 2 a32 b12 b2 2 b32
A1 B1 ,求 BE1 4
C1 E1 B1
D1 F1
z
与 DF1 所成的角的余弦值.
解:设正方体的棱长为1,如图建 立空间直角坐标系 O xyz ,则
D1 A1
F1
1 D(0 , 0 , 0) , F1 0 , ,1 . 4 D y C O 1 3 BE1 1 , , 1 (1 , 1 , 0) 0 , , 1 , 4 4 A B 1 15 x 1 1 1 DF1 0 , ,1 (0 , 0 , 0) 0 , ,1 . BE1 DF1 0 0 1 1 , 16 4 4 4 4 15 17 17 BE1 DF1 15 16 . | BE1 | , | DF1 | . cos BE1 , DF1 | BE1 | | DF1 | 17 17 17 4 4 4 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、空间向量基本定理:
任意不共面的三个向量都可做为空间的一个基底。
a, b, c 都叫做基向量
特别提示:对于基底{a,b,c},除了应知道a,b,c不共面,
还应明确: (1)任意不共面的三个向量都可做为空间的一个基底。
OP xOA yOB zOC.
当且仅当x+y+z=1时,P、A、B、C四点共面。
例题讲解:
例1 设 x a b, y b c , z c a , 且 a , b, c 是空 间的一个基底,给出下列向量组 ① a , b, x ② x , y , z ③ b , c , z ④ x , y , a b c
练习 1
1、已知O,A,B,C为空间四个点,且向量 OA, OB, OC
不构成空间的一个基底,那么点O,A,B,C是否共面
2、已知向量 {a, b, c}是空间的一个基底,从 a, b, c
中选一个向量,一定可以与向量 p a b, q a b
2 1 2
2 1 2 2 1
a
a a
设 a (a1 , a2 , a3 ), b (b1 , b2 , b3 )则
a a
a a2 a3 ; 比 a b 推 cos a , b a b 广 a1b1 a2 b2 a3b3
,其中可以作为空间的基底的向量组有( A. 1个 B. 2个 C. 3个 D.4个
C)
D1 C1 B1 C B
分析:能否作为空间的基底,即是判 A1 断给出的向量组中的三个下向量是 D 否共面,由于 a , b, c 是不共面的向 量,所以可以构造一个平行六面体 A 直观判断 设 a AB , b AA1 , c AD ,易判断出答案
3.1.4 空间向量的正交 分解及其坐标表示
如果e1, e 2是同一平面内的两个不共线向量, 那么对于这一平面内的任一向量a,有且只有 一对实数1,2,使a=1 e1+2 e 2。 (e1、 e 2叫做表示这一平面内所有向量的一组基底。)
a与 (2)当 cos a , b 1 时,
思考:当 0 cos a , b 1
b 反向; (3)当cos a , b 0 时,a b 。
及
1 cos a , b 0
时,夹角在什么范围内?
【新知探究】
d AB
2 2 2 | AB | ( x2 x1 ) ( y2 y1 ) ( z2 z1 )
中点坐标公式 已知 A( x1 , y1 , z1 ) , B( x2 , y2 , z2 )
问题:
OP OQ zk . OQ xi y j.
z
OP OQ zk xi y j zk . 由此可知,如果 i, j , k 是空间两
为向量 p 在
两垂直的向量,那么,对空间任一 向量 p ,存在一个有序实数组 {x,y,z}使得 p xi y j zk .
e3 e1 O x e2 y
点O叫做原点,向量e1,e2,e3 都叫做坐标向量.通过每两个坐 标轴的平面叫做坐标平面。
三、空间向量的直角坐标系
给定一个空间坐标系和向 量 p,且设e1,e2,e3为坐标向量, 由空间向量基本定理,存在唯 一的有序实数组(x,y, z)使 p = xe1+ye2+ze3 有序数组( x, y, z)叫做p在空间 直角坐标系O--xyz中的坐标, 记作.P=(x,y,z)
2 1 2 2
a a2 b b2 ; a12 a2 2 a32 b12 b2 2 b32; a // b a b ( R) a // b a b ( R) ; a1 b1 , a2 b2 ( R) ; a1 b1 , a2 b2 , a3 b3 ( R) a b a b 0 a b a b 0 a1b1 a2b2 0 a1b1 a2b2 a3b3 0
空间两点间的距离公式
在空间直角坐标系中,已知 A( x1 , y1 , z1 ) 、
B( x2 , y2 , z2 ),则
AB
( x2 x1 , y2 y1 , z2 z1 )
2 2 2 ( x x ) ( y y ) ( z z ) | AB | AB AB 2 1 2 1 2 1
构成空间的另一个基底?
思考
1、已知向量{a,b,c}是空间的一个基底. 求证:向量a+b,a-b,c能构成空间的一个基底.
二、空间直角坐标系 单位正交基底:如果空间的一个基底的 三个基向量互相垂直,且长都为1,则这个 基底叫做单位正交基底,常用 e1 , e2 , e3 表示 空间直角坐标系:在空间选定一点O和一 个单位正交基底 e1,e2,e3 ,以点O为原点,分别 以e1,e2,e3的正方向建立三条数轴:x轴、y轴、 z轴,它们都叫做坐标轴.这样就建立了一个 z 空间直角坐标系O--xyz
M A N C
B
练习2
P94练习的 第3题
3.1.5 空间向量运算的 坐标表示
平面向量运算的坐标表示: 设a ( a , a ), b ( b , b ) 则 1 2 1 2 a b (a 1 b1 , a2 b2 ) ; a b (a 1 b1 , a2 b2 ) ; a (a1 , a2 ) ; a b ; a1b1 a2b2 2 2 a ; a a a a 1 2 a1b1 a2 b2 a b 2 2 2 2 a1 a2 b1 b2 cos a , b a b ; a // b a b ( R) a1 b1 , a2 b2 ( R); a b a b 0 a1b1 a2b2 0
(2) 由于可视 0 为与任意一个非零向量共线,与任 意两个非零向量共面,所以三个向量不共面,就隐含着 它们都不是 0 。
(3)一个基底是指一个向量组,一个基向量是指基 底中的某一个向量,二者是相关联的不同概念。 推论:设O、A、B、C是不共线的四点,则对空间任一 点P,都存在唯一的有序实数组{x,y,z},使
【温故知新】
【新知探究】
平面向量运算的坐标表示: 空间向量运算的坐标表示:
设a (a1 , a2 ), b (b1 , b2 )则
a b a b a a b
(a 1 b1 , a2 b2 ); 类 a b (a 1 b1 , a2 b2 , a3 b3 ) ; 比 (a 1 b1 , a2 b2 ); a b (a 1 b1 , a2 b2 , a3 b3 ) ; 推 (a1 , a2 ) ; 广 a (a1 , a2 , a3 ) ; a1b1 a2b2 ; a b a1b1 a2b2 a3b3 ;
我们称 xi, y j , zk
k j i O
x
p
P
y Q
i, j , k 上的分向量。
探究:在空间中,如果用任意三个不共面向量 a, b, c 代替两两垂直的向量 i, j , k ,你能得出类似的
结论吗?
如果三个向量 a, b, c不共面,那么对空间任一
设a (a1 , a2 , a3 ), b (b1 , b2 , b3 )则
设 a (a1 , a2 ), b (b1 , b2 )则
空间向量运算的坐标表示: 平面向量运算的坐标表示:
【新知探究】
a ; 类
a a2 a b cos a , b a b a1b1 a2 b2
平面向量基本定理:
【温故知新】
平面向量的正交分解及坐标表示
y
i (1, 0), j (0,1), 0 (0, 0).
a xi y j
a
x
i
o j
我们知道,平面内的任意一个向量 p 都可以 用两个不共线的向量 a, b 来表示(平面向量基本定 理)。对于空间任意一个向量,有没有类似的结论呢?
M A Q P N C
1 OQ OM MQ OA 2 1 1 1 OA (ON OA) 2 3 2 1 1 1 OA OB OC 3 6 6
z O’
A 的坐标是 _____
B’
'
A’ O
A
DBy来自x例3、如图,M,N分别是四面体OABC的边OA, BC 的中点, P , Q 是 MN 的三等分点。用向量 O 表示 和 。 OA, OB, OC OP OQ
1 2 解 : OP OM MP OA MN 2 3 2 1 1 OA (ON OA) 2 3 2 1 1 1 OA OB OC 6 3 3
2
两个向量夹角公式
a1b1 a2 b2 a3b3 a b ; cos a , b | a || b | a12 a2 2 a32 b12 b2 2 b32
注意:
(1)当 cos a , b 1 时, a 与 b 同向;