美国自然科学基金摘要
国家自然科学基金面上项目英文信息表

国家自然科学基金面上项目英文信息表国家自然科学基金资助项目负责人:为了进一步创造条件,为国家自然科学基金资助项目寻求更广泛的国际学术交流机会,促进基金资助项目的国际合作和加强对人才的培养,国家自然科学基金委员会决定将每年获国家自然科学基金资助的项目信息收录到英文数据库。
各项目负责人在收到本表后,请用英文认真填写本年度获资助项目的信息,并使用国家自然科学基金委员会下发的专用软件“国家自然科学基金资助项目管理信息系统”中的“批准项目英文信息录入”功能,将这些信息录入计算机,生成专用上报数据文件,存入软盘(本表自己留存)。
生成的数据文件可以随同下一年度项目申请软盘上报国家自然科学基金委员会综合计划局信息统计处,也可以通过电子邮件的附加功能(Attach)随时上报。
国家自然科学基金委员会综合计划局信息统计处电子邮箱地址:nsfc@国家自然科学基金委员会综合计划局国家自然科学基金面上项目英文信息表(NSFC General Projects)填写说明1.在填写国家自然科学基金面上项目英文信息表(NSFC General Projects)的各个栏目时,请打印,勿手写。
除中文姓名栏目外,其它栏目必须用英文填写。
2.Grant No.(批准号)、Amount(资助金额)、Ddsciplinary code(学科代码)、Start date和Expires(项目开始和终上时间)等栏目的内容以项目批准通知书上的内容为准。
资助金额的单位为万元。
3.项目名称限250个字符(含空格)。
为了便于计算机录入英文信息,项目名称中不得使用英文字符外的其它字符,希腊字母等特殊字符请转用英语表达。
4.为了便于进行国际交流时项目的查询,在填写Key words(关键词)栏目时,请使用国际上标准的专业关键词或主题词。
最多可以填写3个不同的关键词,每个关键词不得超过40个字符(含空格)。
为了便于计算机录入英文信息,关键词中不得使用英文字符外的其它字符,希腊字母等特殊字符请转用英语表达。
自然科学基金标书模板

自然科学基金标书模板摘要:本项目旨在探索自然科学的前沿问题,并提供创新解决方案。
我们将通过实验和理论研究,深入研究相关领域的基本原理和机制,以期为科学和技术领域的进一步发展做出贡献。
本文为自然科学基金标书模板,旨在为申请者提供一个良好的起点,以便更好地组织和撰写标书。
引言:自然科学基金的申请过程需要经过严格的评审程序。
编写一份详尽、准确、可行的标书至关重要。
本模板将为您提供一个清晰的结构和内容指导,助您成功申请到自然科学基金。
一、问题描述:本项目的主要目标是解决自然科学领域中的某一具体问题,通过提出相关假设和设想,展示解决这一问题的研究思路和方案。
二、研究背景:在这一部分,我们将对相关领域的研究现状和成果进行回顾。
重点描述本项目的研究问题所处的学术环境,并分析现有研究的局限性和不足之处。
三、研究目标和意义:在这一部分,我们将明确本项目的具体研究目标,并强调其在科学领域中的重要性和创新性。
我们将解释本项目的研究成果对于推动学科的发展和社会进步的影响。
四、研究内容和方法:在这一部分,我们将详细介绍本项目的研究内容和方法。
包括实验设计、数据采集和处理、理论模型构建等方面的细节描述。
同时,我们将明确研究计划的可行性和预期结果。
五、项目计划和预算:在这一部分,我们将提供一个详细的项目计划和预算。
包括项目的时间表、里程碑和经费预算等方面的安排和规划。
六、研究团队和合作机构:在这一部分,我们将介绍项目团队的成员和他们的研究背景。
同时,我们还将列举合作机构和合作者的相关信息,并说明他们对项目的贡献和支持。
七、预期成果和经验推广:在这一部分,我们将描述本项目预期的研究成果,并对成果的应用前景和经验推广进行展望。
我们将展示本项目对于相关领域的学术和技术进步的贡献。
结论:通过本模板,您能够按照合适的格式和结构撰写自然科学基金标书。
请按照具体的要求和指导,填写各个部分的内容,并确保语句通顺、论述合理、科学准确。
祝您在申请自然科学基金的过程中取得成功!。
自然科学基金项目申报指南

自然科学基金项目申报指南一、项目申报前的准备工作1.确定研究方向和目标:在申报项目之前,需要明确研究方向和目标,了解该领域的研究热点和难点,确定自己的研究内容和创新点。
2.查阅相关文献:在确定研究方向和目标之后,需要广泛查阅相关领域的文献,了解前人的研究成果和现有的研究进展,从而找到自己的研究切入点。
3.制定研究计划和时间表:在了解现有研究基础之后,需要制定自己的研究计划和时间表,明确研究的具体内容、方法和实施步骤,并合理安排研究时间以保证项目能够按期完成。
二、项目申报内容1.项目摘要:项目摘要是项目申报的重要组成部分,需要包括项目的研究背景、研究目标、创新性和意义等内容,能够准确、简明地概括整个项目的内容和特点。
2.研究内容和创新点:在研究内容中,需要明确具体的研究方向和目标,描述研究的重要问题和难点,以及自己的研究方案和方法。
同时,还需要突出自己的创新点和研究的独特之处,以显示项目的独特性和新颖性。
3.研究方法和实施步骤:在研究方法中,需要详细描述用于实现研究目标的具体方法、技术和实施步骤,以说明项目的可行性和可实施性。
4.预期成果和影响:在预期成果中,需要明确项目完成后预期能够取得的具体科学和实际应用成果,以及对学术界和社会的影响和贡献。
同时,还需要说明预期成果的创新性和重要性,以提高项目的竞争力。
5.项目预算和时间安排:在项目预算中,需要列出项目所需的预算和经费分配,包括设备购置、材料费、人员费用等。
同时,还需要合理安排项目的时间表,明确各项任务的开始和结束时间,以保证项目能够按期完成。
三、项目申报的注意事项1.组织结构和语言表达:在项目申报中,要注意组织结构和语言表达的规范和清晰。
要按照项目内容的逻辑顺序来组织申报材料,同时要注意语言的准确性和简洁性,避免使用过多的术语和复杂的句子结构,以确保评审人员能够清楚地理解项目的内容和意义。
2.创新性和可行性:在项目申报中,要注重体现项目的创新性和可行性。
自然科学基金 f02

自然科学基金 f02
人类对自然科学的探索从未停止,每一项研究都有其独特的价值和意义。
在这个信息爆炸的时代,自然科学基金 f02在推动科学发展方面起到了重要的作用。
自然科学基金 f02是一个以人类为中心的研究项目。
它的目标是通过对自然界的观察和实验,揭示出人类与自然之间的关系,并为人类的进步和发展提供有力的支持。
在过去的几年里,自然科学基金 f02资助了许多重要的研究项目。
例如,一项关于气候变化的研究,通过观察和记录不同地区的气候变化情况,揭示了人类活动对气候变化的影响。
这项研究为制定环境保护政策提供了重要的依据,也为人类的可持续发展提供了指导。
另一个受到自然科学基金 f02资助的研究项目是关于药物研发的。
通过对不同药物的成分和作用进行研究,科学家们可以开发出更安全、更有效的药物,为人类的健康事业做出贡献。
这项研究的结果不仅可以用于治疗疾病,还可以用于预防疾病的发生,提高人类的生活质量。
除了以上两个例子,自然科学基金 f02还资助了许多其他领域的研究项目。
例如,在材料科学领域,研究人员通过对材料的结构和性质进行研究,开发出了许多新的材料,为人类的生产和生活带来了巨大的改变。
在生物学领域,研究人员通过对生物体的研究,揭示
了生命的奥秘,并为人类的生命科学研究提供了重要的支持。
自然科学基金 f02对于推动科学的发展和人类的进步起到了重要的作用。
通过资助各种研究项目,它为科学家们提供了展示才华和发现真理的平台。
相信在未来的日子里,自然科学基金 f02将继续发挥重要作用,为人类的未来带来更多的希望和可能。
自然科学基金 国内外研究现状 研究基础

自然科学基金国内外研究现状研究基础全文共四篇示例,供读者参考第一篇示例:自然科学基金是一种资助科学研究项目的重要渠道,国内外不同机构和组织都设立了各种类型的自然科学基金。
这些基金主要用于支持科学家和研究人员开展基础科学研究,推动科学技术的发展和创新。
而研究基础则是科学研究的根基,是科学研究的起点和基础,其建设和发展将直接影响科学研究的进展和成果。
在国内,自然科学基金主要由国家自然科学基金委员会管理,该基金委成立于1986年,是我国支持基础科学研究的主要机构之一。
国家自然科学基金的设立与国家科技政策的变化和发展息息相关,其目的是为了促进我国基础科学研究的发展,提高科学技术水平,推动科技创新和转化。
国家自然科学基金主要针对自然科学领域的基础研究项目进行资助,包括数学、物理、化学、生物学、地球科学等多个学科领域。
这些基金为我国科研工作者提供了一个广阔的平台,让他们有更多的机会进行研究和实践,从而推动科学研究的发展。
在国外,自然科学基金也有着类似的机构和组织,如美国国家科学基金会(NSF)、欧洲研究理事会(ERC)、日本学术振兴会(JSPS)等。
这些基金会与国内的自然科学基金有着不同的模式和运作机制,但都致力于支持科学研究的发展和创新。
这些基金会凭借其在科学研究领域的资金和资源优势,吸引了全球范围内的科学家和研究者进行合作和交流,推动了国际科学研究的发展和合作。
而研究基础作为科学研究的根基,是科学发展和进步的重要保障。
研究基础包括科学研究的机构和设施、科研人员和团队、科研项目和课题等多个方面。
科研人员和团队是科学研究的核心和基础,他们的研究水平和能力直接决定了科研项目的成果和效益。
而科研机构和设施则提供了科研人员进行研究实践和实验的场所和条件,是科学研究的重要支撑。
科研项目和课题则是科学研究的具体内容和方向,是研究基础的具体体现。
在国内,我国的研究基础建设取得了长足的进步,各级科研机构和高校不断加大科研投入,不断提升科研水平和能力。
国家自然科学基金项目怎么阅读

国家自然科学基金项目怎么阅读
阅读国家自然科学基金项目,可以按照以下步骤进行:
1. 了解项目的基本信息:包括项目的名称、编号、负责人、研究机构等基本信息。
2. 阅读项目的摘要:摘要通常会概括项目的研究内容、目标和意义,可以帮助你快速了解项目的核心内容。
3. 阅读项目的目标和研究内容:通常会列出项目的主要研究方向、重点和具体的研究内容。
可以通过阅读这些内容来了解项目的研究方向和重要性。
4. 阅读项目的研究方法和技术路线:项目中会介绍所采用的研究方法和技术路线,包括实验设计、数据收集与分析等方面的内容。
可以通过阅读这些内容来了解项目的研究方法和实施过程。
5. 阅读项目的预期成果和创新点:项目通常会说明预期的科学成果和技术创新点。
可以通过阅读这些内容来了解项目的研究成果和对学术领域的贡献。
6. 阅读项目的预期影响和应用价值:项目会说明研究成果的预期影响和应用价值,包括对学术研究、社会发展等方面的贡献。
可以通过阅读这些内容来了解项目的实际应用前景和社会意义。
需要注意的是,由于国家自然科学基金项目的篇幅通常较长,
并且涉及专业领域的研究内容,阅读时可能会遇到一些困难。
建议结合个人的研究背景和兴趣选择适合的国家自然科学基金项目进行阅读,可以更好地理解和把握项目的内容。
此外,如果在阅读过程中遇到难以理解的专业术语和概念,可以借助学术资源或请教专业人士进行解答。
国家自然科学基金摘要写作六步法

国家自然科学基金摘要写作六步法对于一份标书来说,摘要部分是重中之重,特别是当专家只有很少时间(比如10分钟)看一份标书的时候,标书的摘要就是重点看的地方了,有的专家可能只通过摘要和技术路线就基本确定了对标书的印象了,所以虽然摘要只有400字,但可谓字字珠玑,值得我们好好斟酌。
一份好的标书的摘要一般包括六部分:①研究背景和进展;②亟待解决的问题;③申请者前期的工作基础;④项目的科学假说;⑤为证明该假说需要展开的后续研究;⑥该研究的意义。
大家可以看一下,第1,2,4和6部分一般在项目的立项依据里面阐述,第3部分我们在工作基础部分展开,第5部分通过研究内容、研究方案部分展开。
所以,摘要基本涵盖了标书里面最重要的信息,给足了项目是否资助的判断标准。
因此,有很多人说,当看到一份标书的摘要的时候就基本知道这份标书能否获得资助了。
当然,以上六部分不一定完全出现,遗漏一两项也可能出现。
下面我们就选取不同研究领域的几份标书来看一下:1. 肿瘤:《MicroRNA-608调控MIF基因影响脑胶质瘤干细胞生物学行为机制的研究》(1. 研究背景)巨噬细胞移动抑制因子(MIF)的表达和胶质瘤患者的复发率、生存期负相关。
(2. 前期工作基础)我们前期研究发现MIF基因在胶质瘤干细胞(GSCs)中的表达显著增加。
MIF可能与CD74/CD44受体复合物结合,上调Cdc42的基因表达,促进胶质瘤侵袭。
最近我们预测到MIFmRNA-3'UTR端存在miR-608结合位点;初步验证了二者结合;GSCs中miR-608表达显著下调。
(3. 科学假说)由此建立了在GSC中miR-608调控MIF基因功能变化进一步调控GSCs的生物学行为的工作假说。
(4. 后续研究)本项目拟首先验证miR-608通过"种子区"与MIF基因的直接作用和关键结合位点;进一步明确miR-608对MIF基因表达和功能的调节作用以及对GSCs的生物学行为的影响;最后研究miR-608作用下,MIF与受体复合物结合,上调Cdc42调控GSCs生物学行为的分子机制。
国家自然科学基金成果

国家自然科学基金成果
国家自然科学基金是中国最大的科研基金之一,旨在支持自然科学领域的研究。
自2004年以来,国家自然科学基金成果取得了巨大的进展和成就,以下是其中的一些重要成果:
获得诺贝尔奖:国家自然科学基金资助的一些研究成果获得了诺贝尔奖,如2018年诺贝尔化学奖授予了美国科学家约翰·古德诺夫、斯坦利·惠廷汉姆和日本科学家吉野彰,以表彰他们在锂离子电池方面的创新贡献。
提高科学研究水平:国家自然科学基金的资助使得许多科研机构和科学家的研究水平得到了大幅提高,推动了学科的发展和进步。
培养优秀人才:国家自然科学基金还为培养优秀的科学家和学者提供了有力支持,使他们在科学研究领域取得更加卓越的成就。
推动科技创新:国家自然科学基金的资助促进了科技创新和转化,为经济社会发展做出了重要贡献。
提高国家科学实力:国家自然科学基金的支持为国家科学实力的提高和发展奠定了坚实基础,使中国
在自然科学领域成为了全球重要的科学研究机构之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
美国自然科学基金摘要Dynamics of Double-Stranded DNA in Confined GeometriesNSF Org: DMRDivision of Materials ResearchInitial Amendment Date: September 9, 2011Latest Amendment Date: September 9, 2011A ward Number: 1106044A ward Instrument: Continuing grantProgram Manager: David A. BrantDMR Division of Materials ResearchMPS Directorate for Mathematical & Physical SciencesStart Date: September 15, 2011Expires: August 31, 2014 (Estimated)A warded Amount to Date: $223087Investigator(s): Helmut Strey Helmut.Strey@ (Principal Investigator)Sponsor: SUNY at Stony BrookWEST 5510 FRK MEL LIBSTONY BROOK, NY 11794 631/632-9949NSF Program(s): BIOMA TERIALS PROGRAM,POLYMERSField Application(s):Program Reference Code(s): AMPP, 9161, 7573, 7237Program Element Code(s): 7623, 1773ABSTRACTID: MPS/DMR/BMA T(7623) 1106044 PI: Strey, Helmut ORG: SUNY Stony BrookTitle: Dynamics of double-stranded DNA in confined geometriesINTELLECTUAL MERIT: This proposal is motivated by previous work from the PI's lab on the diffusion of double-stranded DNA (ds-DNA) molecules in 2-dimensional cavity arrays. This work investigated by fluorescence imaging the diffusion of linear DNA through a medium of precisely controlled (and known) pore structure. This structure was a periodic, two-dimensional hexagonal array of spherical cavities interconnected by short circular holes. Tracking many single molecule trajectories, it was found that, for DNA radius of gyration approaching the cavity diameter, diffusion is dominated by the sporadic hopping of DNA between cavities, a mechanism predicted by the entropic barriers transport theory. Hopping corresponds to configurational fluctuations that allow passage of a flexible polymer through a pore constriction smaller than the average coil size. The diffusion of relaxed ds-DNA circles has recently been compared with that of linear DNA of the same length. It is observed that circular molecules diffuse from 2.5 to 5.6 times slower than corresponding linear molecules of the same molecular weight, and 3.7 to 10.6 times slower than corresponding linear molecules of the same average dimension. Such results qualitatively reveal that linear molecules may form loops during translocation through holes between cavities, but the probability of such events is low. The predominant mode of diffusion for linear molecules is end first. This proposal addresses this passage in more detail. Does a polymer thread by one of its ends or loop by one of its mid-segments or do both processes occur with equal facility? This question is addressed in several stages that independently address important fundamental questions in polymer dynamics: (1) Create 2-color end-labeled molecules of varying molecular weights that will enable the study of internal and solution polymer dynamics using fluorescence correlation spectroscopy. (2) Study internal polymer dynamics in slit-like nanochannels to deepen our understanding of laterally confined polymers using FCS and optical microscopy. (3) Measure partitioning and hopping frequencies of linear ds-DNA and nicked circular DNA between cavities and connecting channels as a function DNA length and the array dimensions (height, cavity diameter, constriction width, and length). (4) Characterize the threading dynamics of double-labeled DNA in cavity arrays.BROADER IMPACTS: Many technologies for macromolecular manipulation, purification, and separation rely on an environment of molecular level constraints to create selective macromolecular motion. It is proposed to develop a deeper understanding of the thermodynamics and dynamics of nanoscale polymer confinement by preparing fluidic devices and cavity arrays in which macromolecules can be examined by single molecule fluorescence visualization. The project will also address a very important technological area of separating different polymer topologies (e.g. linear vs. circular). The main educational goal is to train and mentor graduate and undergraduate students to enable them to pursue their career in research and engineering. This research effort will produce students that have a rigorous science background, are independent thinkers, and have an understanding of intellectual property and real world applications. Inaddition, the PI will continue to reach out to high-school students through the Stony Brook Simons program as mentor and science judge. Some of those students, after their lab experience, have been very successful in science competitions such as LISF and the Intel competition. In addition, the PI will host and design a website that allows sharing of techniques and tricks in nanofabrication and nano/microfluidics with the research community. Such a website will enable researchers and students to learn and share the intricacies of nano- and microfluidics.Please report errors in award information by writing to: awardsearch@.Collaborative Research : Emerging Issues in the Sciences Involving Non-Standard Diffusion NSF Org: DMSDivision of Mathematical SciencesInitial Amendment Date: August 5, 2011Latest Amendment Date: August 5, 2011A ward Number: 1065979A ward Instrument: Continuing grantProgram Manager: Kevin F. ClanceyDMS Division of Mathematical SciencesMPS Directorate for Mathematical & Physical SciencesStart Date: August 15, 2011Expires: July 31, 2016 (Estimated)A warded Amount to Date: $157766Investigator(s): Luis Silvestre luis@ (Principal Investigator)Henri Berestycki (Co-Principal Investigator)Sponsor: University of Chicago5801 South Ellis A venueChicago, IL 60637 773/702-8602NSF Program(s): ANALYSIS PROGRAMField Application(s):Program Reference Code(s): 1616Program Element Code(s): 1281ABSTRACTThe mathematical description and understanding of "diffusive processes" is central to many areas of science, from geometry and probability to continuum mechanics, fluid dynamics, population dynamics and game theory to name a few. Ricci flows, the Navier Stokes equation, non linear elasticity, futures options, all carry an element of diffusion, viscosity, uncertainty that correspond to a similar mathematical description. An extensive theory already permeates, under different circumstances and goals, wide areas of analysis, geometry and applied mathematics. The investigators perceive, however, that there are new, emerging areas of added complexity. It is expected that through the collaborative effort, new general methods will emerge providing some sort of unification and cohesion like the one existing today for classical infinitesimal diffusion processes and their role in the sciences (modeling, simulation, prediction).Problems which are to be studied include reaction diffusion phenomena in random environments, phase transition problems, non local diffusion processes and other applications motivated by questions of population dynamics, congestion issues in transportation, diffusion and segregation phenomena in social sciences, formation and dynamics of hotspots of criminal activity, phase transition problems involving nonlocal (long range) interactions and surface diffusion related to electric fluid droplets and complex fluids in nano technology and biology. The project involves a system of personnel exchanges between the home institutions, designed to provide a rich training experience for students and postdocs. In addition, there will be an emphasis month every year of the project in one of the home universities and a summer school designed to bring members of the group - including graduate students and postdocs - together to stimulate scientific progress. In this way the fruits of the research will be exposed to a broader audience, thereby, helping educate and attract a new generation of researchers to these exciting emerging mathematical challenges and ideasEmerging issues in the sciences involving non standard diffusionNSF Org: DMSDivision of Mathematical SciencesInitial Amendment Date: August 5, 2011Latest Amendment Date: August 5, 2011A ward Number: 1065971A ward Instrument: Standard GrantProgram Manager: Kevin F. ClanceyDMS Division of Mathematical SciencesMPS Directorate for Mathematical & Physical SciencesStart Date: August 15, 2011Expires: July 31, 2014 (Estimated)A warded Amount to Date: $150001Investigator(s): Y anyan Li yyli@ (Principal Investigator)Sponsor: Rutgers University New Brunswick3 RUTGERS PLAZANEW BRUNSWICK, NJ 08901 848/932-0150NSF Program(s): ANALYSIS PROGRAMField Application(s):Program Reference Code(s): 1616Program Element Code(s): 1281ABSTRACTThe mathematical description and understanding of "diffusive processes" is central to many areas of science, from geometry and probability to continuum mechanics, fluid dynamics, population dynamics and game theory to name a few. Ricci flows, the Navier Stokes equation, non linear elasticity, futures options, all carry an element of diffusion, viscosity, uncertainty that correspond to a similar mathematical description. An extensive theory already permeates, under different circumstances and goals, wide areas of analysis, geometry and applied mathematics. The investigators perceive, however, that there are new, emerging areas of added complexity. It is expected that through the collaborative effort, new general methods will emerge providing some sort of unification and cohesion like the one existing today for classical infinitesimal diffusion processes and their role in the sciences (modeling, simulation, prediction).Problems which are to be studied include reaction diffusion phenomena in random environments, phase transition problems, non local diffusion processes and other applications motivated byquestions of population dynamics, congestion issues in transportation, diffusion and segregation phenomena in social sciences, formation and dynamics of hotspots of criminal activity, phase transition problems involving nonlocal (long range) interactions and surface diffusion related to electric fluid droplets and complex fluids in nano technology and biology. The project involves a system of personnel exchanges between the home institutions, designed to provide a rich training experience for students and postdocs. In addition, there will be an emphasis month every year of the project in one of the home universities and a summer school designed to bring members of the group - including graduate students and postdocs - together to stimulate scientific progress. In this way the fruits of the research will be exposed to a broader audience, thereby, helping educate and attract a new generation of researchers to these exciting emerging mathematical challenges and ideas.Emerging issues in the sciences involving non standard diffusionNSF Org: DMSDivision of Mathematical SciencesInitial Amendment Date: August 5, 2011Latest Amendment Date: August 5, 2011A ward Number: 1065964A ward Instrument: Standard GrantProgram Manager: Kevin F. ClanceyDMS Division of Mathematical SciencesMPS Directorate for Mathematical & Physical SciencesStart Date: August 15, 2011Expires: July 31, 2014 (Estimated)A warded Amount to Date: $239999Investigator(s): Fang-Hua Lin linf@ (Principal Investigator)Sponsor: New Y ork University70 W ASHINGTON SQUARE SNEW YORK, NY 10012 212/998-2121NSF Program(s): ANALYSIS PROGRAMField Application(s):Program Reference Code(s): 1616Program Element Code(s): 1281ABSTRACTThe mathematical description and understanding of "diffusive processes" is central to many areas of science, from geometry and probability to continuum mechanics, fluid dynamics, population dynamics and game theory to name a few. Ricci flows, the Navier Stokes equation, non linear elasticity, futures options, all carry an element of diffusion, viscosity, uncertainty that correspond to a similar mathematical description. An extensive theory already permeates, under different circumstances and goals, wide areas of analysis, geometry and applied mathematics. The investigators perceive, however, that there are new, emerging areas of added complexity. It is expected that through the collaborative effort, new general methods will emerge providing some sort of unification and cohesion like the one existing today for classical infinitesimal diffusion processes and their role in the sciences (modeling, simulation, prediction).Problems which are to be studied include reaction diffusion phenomena in random environments, phase transition problems, non local diffusion processes and other applications motivated by questions of population dynamics, congestion issues in transportation, diffusion and segregation phenomena in social sciences, formation and dynamics of hotspots of criminal activity, phase transition problems involving nonlocal (long range) interactions and surface diffusion related to electric fluid droplets and complex fluids in nano technology and biology. The project involves a system of personnel exchanges between the home institutions, designed to provide a rich training experience for students and postdocs. In addition, there will be an emphasis month every year of the project in one of the home universities and a summer school designed to bring members of the group - including graduate students and postdocs - together to stimulate scientific progress. In this way the fruits of the research will be exposed to a broader audience, thereby, helping educate and attract a new generation of researchers to these exciting emerging mathematical challenges and ideas.Emerging issues in the sciences involving non standard diffusionNSF Org: DMSDivision of Mathematical SciencesInitial Amendment Date: August 5, 2011Latest Amendment Date: August 5, 2011A ward Number: 1065926A ward Instrument: Standard GrantProgram Manager: Kevin F. ClanceyDMS Division of Mathematical SciencesMPS Directorate for Mathematical & Physical SciencesStart Date: August 15, 2011Expires: July 31, 2014 (Estimated)A warded Amount to Date: $230000Investigator(s): Luis Caffarelli caffarel@ (Principal Investigator)Sponsor: University of Texas at AustinP.O Box 7726Austin, TX 78713 512/471-6424NSF Program(s): ANALYSIS PROGRAMField Application(s):Program Reference Code(s): 1616Program Element Code(s): 1281ABSTRACTThe mathematical description and understanding of "diffusive processes" is central to many areas of science, from geometry and probability to continuum mechanics, fluid dynamics, population dynamics and game theory to name a few. Ricci flows, the Navier Stokes equation, non linearelasticity, futures options, all carry an element of diffusion, viscosity, uncertainty that correspond to a similar mathematical description. An extensive theory already permeates, under different circumstances and goals, wide areas of analysis, geometry and applied mathematics. The investigators perceive, however, that there are new, emerging areas of added complexity. It is expected that through the collaborative effort, new general methods will emerge providing some sort of unification and cohesion like the one existing today for classical infinitesimal diffusion processes and their role in the sciences (modeling, simulation, prediction).Problems which are to be studied include reaction diffusion phenomena in random environments, phase transition problems, non local diffusion processes and other applications motivated by questions of population dynamics, congestion issues in transportation, diffusion and segregation phenomena in social sciences, formation and dynamics of hotspots of criminal activity, phase transition problems involving nonlocal (long range) interactions and surface diffusion related to electric fluid droplets and complex fluids in nano technology and biology. The project involves a system of personnel exchanges between the home institutions, designed to provide a rich training experience for students and postdocs. In addition, there will be an emphasis month every year of the project in one of the home universities and a summer school designed to bring members of the group - including graduate students and postdocs - together to stimulate scientific progress. In this way the fruits of the research will be exposed to a broader audience, thereby, helping educate and attract a new generation of researchers to these exciting emerging mathematical challenges and ideas.Initial Amendment Date: November 5, 2009Latest Amendment Date: November 5, 2009A ward Number: 1004908A ward Instrument: Standard GrantProgram Manager: Bruce P. PalkaDMS Division of Mathematical SciencesMPS Directorate for Mathematical & Physical SciencesStart Date: August 20, 2009Expires: June 30, 2011 (Estimated)A warded Amount to Date: $72558Investigator(s): Danijela Damjanovic ddamjano@ (Principal Investigator)Sponsor: William Marsh Rice University6100 MAIN STHOUSTON, TX 77005 713/348-4820NSF Program(s): ANALYSIS PROGRAMField Application(s):Program Reference Code(s): OTHR, 1281, 0000Program Element Code(s): 1281ABSTRACTThe proposed research is in the area of smooth dynamics and ergodic theory. The main focus of the proposed research is the study of dynamical systems with multidimensional time. Intensive research during the past two decades proved that wide variety of such systems which display certain degree of chaotic behavior, are remarkably rigid. These results induced fast progress towards some long standing conjectures in number theory and quantum mechanics. Rigidity of such systems stands in sharp contrast with flexibility of chaotic systems with one-dimensional time. There are two main themes within the proposed research. The first is to explore further stability and rigidity of algebraic multidimensional-time systems with less chaotic behavior: existence and local rigidity (i.e. differentiable stability) of partially hyperbolic abelian actions on nilmanifolds, and local rigidity of parabolic abelian actions on certain classes of locally symmetric spaces. In this direction the proposed research involves the KAM theory approach and thus requires a detailed study of the corresponding infinitesimal problem: the description of the first cohomology over these actions. The second theme is to explore the existence and stability properties of non-algebraic systems which are strongly partially hyperbolic. Such systems have specific structure of invariant foliations which on one hand imposes restrictions for the manifold of the action, and on the other hand it tends to be robust under small perturbations thus leading to certain degree of stability for the action. The research in this direction leads towards global classification of strongly partially hyperbolic multidimensional-time systems.Dynamical systems and chaos are the areas of mathematics which have flourished during past years while maintaining a strong connection with their roots which lie in the study of various phenomena in domains like cell biology, nano technology, meteorology and engineering. The studies of evolution of nature systems in time represent one of the core scientific interests today. The problem of stability of systems is one of the main issues which arises in the study of nature systems as mathematical models are merely approximations of the natural phenomena. In celestial mechanics, stability of the solar system is one important topic, and the KAM theory turned out to be a powerful tool towards better understanding of the system's long term behavior. Systems withmulti-dimensional time appear in quantum mechanics, where rigidity of such systems is present in the form of uniform distribution of quantum states. Multidimensional-(lattice) time systems also appear in the mathematical formalism for quasicrystals, whose physical properties and generation have been intensively studied. In hardware architecture one of the recently explored venues is extending the classical methodology to multidimensional time (multidimensional scheduling). The principal investigator will continue to encourage undergraduate students, female in particular, to take active part in the research process and will make an effort to expose them to various aspects and applications of this research. These activities will benefit from the grant.Light-Induced NO Release from Zeolite-Nitrosyl Composites: A New Biomaterial for the Prevention of Wound InfectionsNSF Org: DMRDivision of Materials ResearchInitial Amendment Date: September 1, 2011Latest Amendment Date: September 1, 2011A ward Number: 1105296A ward Instrument: Continuing grantProgram Manager: Joseph A. AkkaraDMR Division of Materials ResearchMPS Directorate for Mathematical & Physical SciencesStart Date: September 1, 2011Expires: August 31, 2014 (Estimated)A warded Amount to Date: $130000Investigator(s): Pradip Mascharak pradip@ (Principal Investigator)Scott Oliver (Co-Principal Investigator)Sponsor: University of California-Santa Cruz1156 High StreetSANTA CRUZ, CA 95064 831/459-5278NSF Program(s): BIOMA TERIALS PROGRAMField Application(s):Program Reference Code(s): AMPP, 9161, 7573, 7237Program Element Code(s): 7623ABSTRACTThis award by the Biomaterials Program of the Division of Materials Research to the University of California Santa Cruz supports the collaborative research efforts in developing a novel zeolite-based nitric oxide (NO) delivery platform to combat and prevent infections arising from various drug-resistant pathogens. Several photoactive NO complexes of metals (such as Mn, Fe and Ru) developed in the PIs' laboratory will be first loaded into nano/mesoporous aluminosilicates selected on the basis of their pore size and shape. The research approach will be guided by computer-aided design to better fit the NO-complexes into the pores, and their effective caging will be determined by powder X-ray diffraction, infrared spectroscopy, scanning electron microscopy and energy dispersive elemental mapping. The NO release from these composites will then be determined by various techniques employing NO-sensitive electrodes. The effects of the photoreleased NO from the composites on various bacterial colonies will be carefully monitored to determine the dose effects by colony-counting techniques and microscopy. Finally, different bandage material prototypes will be developed by impregnating mats of biocompatible materials such as carboxymethyl cellulose with the zeolite-nitrosyl powders. The advantages of these designed NO-delivery biomaterials will include: a) site-selective NO delivery to biological targets upon demand via light-triggering; b) entrapment of the photoproducts within the cavities of the biocompatible zeolite host thus avoiding their side-effects; and c) effective eradication of bacterial loads of various drug-resistant strains (since pathogens seldom exhibit resistance to NO as the antibiotic). Close interaction of the two PIs and the involvement of their graduate and undergraduate students in the project are expected to lead in interdisciplinary training at the interface of biology and materials chemistry. Both PI groups regularly bring in underrepresented minority students as well as Univ. California-bound community college minority students in science to work in their laboratories, and these activities are expected to continue with this project.The emergence of Staph-related infections in the surgical units of hospitals and complications due to bacterial fouling of implants and prosthetics in patients have reached an alarming level, demanding new antimicrobial platforms with greater efficiency. Although the strong antimicrobial effects of nitric oxide (NO) have been established, delivery of high fluxes of NO to a biological target (such as an infected wound) has not been possible due to lack of delivery platforms that work upon demand. Recently, several photoactive NO complexes of metals (metal nitrosyls) have been synthesized in the PI?s laboratory. Nitrosyl complexes loaded into the nanopores of the silica-base mineral zeolites would be novel NO-delivery systems to be triggered with low-powervisible light. Such materials could be applied either directly as powders or within bandage materials on infected sites and the bacterial loads could be reduced with photoreleased NO (from the nitrosyls) under the control of light. The proposed zeolite-nitrosyl composites will therefore be a new treatment platform, especially designed for antibiotic-resistant bacteria for which no other treatments are currently available. Broader impacts with respect to teaching, training and outreach programs of this project are in interdisciplinary training of a large number of graduate and undergraduate students at the interface of biology and materials research. The PIs have a strong track record in recruiting summer students through different funded programs such as NSF REU/SURF, NIH ACCESS and others that promote participation of students from underrepresented groups. The dissemination plan provides details for publication in peer reviewed journals, meeting presentations and other channels.DNA Origami Nanostructures with Complex Curvatures in 3D SpaceNSF Org: DMRDivision of Materials ResearchInitial Amendment Date: September 9, 2011Latest Amendment Date: September 9, 2011A ward Number: 1104373A ward Instrument: Standard GrantProgram Manager: David A. BrantDMR Division of Materials ResearchMPS Directorate for Mathematical & Physical SciencesStart Date: September 15, 2011Expires: August 31, 2014 (Estimated)A warded Amount to Date: $400000Investigator(s): Hao Y an hao.yan@ (Principal Investigator)Y an Liu (Co-Principal Investigator)Sponsor: Arizona State UniversityORSPATEMPE, AZ 85281 480/965-5479NSF Program(s): BIOMA TERIALS PROGRAM,CROSS-EF ACTIVITIESField Application(s):Program Reference Code(s): AMPP, 9162, 8007, 7573, 7237Program Element Code(s): 7623, 7275ABSTRACTID: MPS/DMR/BMA T(7623) 1104373 PI: Y an, Hao ORG: Arizona State UniversityTitle: DNA Origami Nanostructures with Complex Curvatures in 3D SpaceINTELLECTUAL MERIT: A grand challenge in the fields of nanotechnology and biomaterials is to assemble arbitrary, three-dimensional (3D) nanostructures with complete control of the material shape. To address this challenge, the PI will develop various novel strategies to construct self-assembling DNA nanostructures that possess complex curvatures in 3D space. More specifically, he proposes to develop a self-assembling system to: (1) Produce 3D DNA nanostructures that contain intricate, complex curvatures using the DNA origami folding technique.(2) Create a set of geometric, wedge-like DNA nanostructures to direct the curvature of preformed, planar DNA nanostructures using targeted insertion and deletion. (3) Utilize curved, 3D DNA origami nanostructures as scaffolds to mimic the role of histone proteins in gene packaging and create artificial nucleosomes for subsequent study. This new technology will exploit the exceptional addressability and spatial control associated with structural DNA nanotechnology to produce an artificial structural platform that resembles the conformational complexity that exists in biological structures, thus creating unprecedented opportunities for engineering novel bioinspired, biomimetic, and biokleptic materials. The design strategies included in this proposal present fundamental steps toward meeting this challenge. The proposal aims to achieve self-assembly of 3D nanostructures with high programmability and complexity, and subsequently use them as scaffolds to mimic the functionality of nucleosomes. Furthermore, the proposed research will provide various new and significant approaches to DNA-based nanofabrication. This project ultimately seeks to go beyond the evident limits of current top-down techniques for the fabrication of arbitrary shaped 3D nanostructures. This will lead to smaller, faster, and more diverse nanoscale structures for a wide range of applications from energy to bio-diagnostic devices.BROADER IMPACTS: There are broad societal implications for this research. As the PIs advance nanoscale techniques for the development of novel technologies, their research leads to。