微粒间的相互作用2(共价键)
共价键

课堂练习 比较下列物质的熔沸点的高低
CH4< _ CF4 < _ CCl4 < _ CBr4 < _ CI4
H2O< _ H2S < _ H2Se < _ H2Te
HF< _HCl< _HBr < _HI
联系生活实际?你能发现出什么矛盾吗?
氢 键
1.氢键是一种特殊的分子间作用力,不 是化学键 2.氢键的表示方法:X—H…Y
原子间用一条短线表示一对共用电子对所 得到的式子称为结构式。 如:HCl分子
H—Cl
电子式 结构式 球棍模型
请写出下列共价分子的结构式:
HBr
H-Br
H-S-H O=O N ≡N
Cl ︱ Cl-C-Cl ︱ Cl
H2S O2
N2 CCl4
共价分子中各原子有一定的连接方式,分子有一定 的空间结构,可用球棍模型、比例模型表示其空间结构。
(2)极性分子:整个分子中电荷分布不 均匀、正负电荷重心不重合的分子叫 做极性分子。
判断非极性分子和极性分子的依据:
双原子分子 极性键→ 极性分子 HCl,CO,NO
非极性键→ 非极性分子
H2,O2,N2
都是非极性键→ 一般是非极性分子 如:P4 、C60 多原子分子
几何结构对称→ 有极性键 非极性分子如:CO2,CH4 几何结构不对称→ 极性分子 如:NH3,H2O
5、共价分子的空间构型
一般对称的几何形状:
直线形、正三角形、正四面体。 如直线型分子CO2、CS2、C2H2 ; 正三角形分子BF3; 正四面体分子CCl4、CH4等。
CO2分子的空间结构
CS2
BF3
CCl4
CH4
不对称的分子有:
三角锥形、折线型 如:NH3为三角锥形; H2O、H2S、SO2等为折线型。
微粒之间的相互作用》之《共价键

谢谢
THANKS
新型共价键的合成方法
为了获得具有优异性能的新型共价键,需要发展高效的合成方法。目前,科研人员正在 研究各种合成策略,如固相合成、液相合成和表面合成等,以期实现共价键的高效、可
控合成。
共价键在新能源领域的应用
太阳能电池
共价键在太阳能电池中具有重要作用,如碳-碳共价键构成的聚合物可以作为太阳能电池的活性层材 料,利用光生电子的转移实现光电转换。
是金属原子之间通过自由电子形成的化学键,主 要存在于金属元素之间。
共价键
是原子之间通过共享电子形成的化学键,主要存 在于非金属元素之间。
区别
金属键的形成基于自由电子的流动,而共价键的 形成则基于电子对的共享。
氢键与共价键的比较
氢键
是氢原子与电负性较强的原子之间形成的相互作用力,通常存在 于水分子之间。
共价键的断裂方式
均裂
共价键的均裂是指共用电 子对完全分开,形成两个 自由基。
异裂
共价键的异裂是指共用电 子对不完全分开,形成正 负离子。
协同断裂
共价键的协同断裂是指多 个共价键同时断裂,形成 多个自由基或正负离子。
共价键的形成与断裂的影响因素
温度
压力
光照
催化剂
温度对共价键的形成与断裂有 重要影响,高温可以促进键的 断裂,低温则有利于键的形成 。
分子结构中的共价键
分子是由两个或多个原子通过共价键 结合形成的相对稳定的粒子,共价键 的类型和数量决定了分子的结构和性 质。
分子结构中的共价键可以分为极性共 价键和非极性共价键,极性共价键会 导致分子具有极性,而非极性共价键 则使分子成为非极性分子。
2021届高三化学一轮复习——微粒之间的相互作用力(知识梳理及训练)

2021届高三化学一轮复习——微粒之间的相互作用力(知识梳理及训练)核心知识梳理(一)化学键及类型化学键是物质中直接相邻的原子或离子间存在的强烈的相互作用。
(二)离子键、共价键的比较(三)判断离子化合物和共价化合物的三种方法(四)化学键的断裂与化学反应1.化学反应过程化学反应过程中反应物中的化学键被破坏。
如H2+F2===2HF,H—H键、F—F键均被破坏。
化学反应中,并不是反应物中所有的化学键都被破坏,如(NH4)2SO4+BaCl2===BaSO4↓+2NH4Cl,只破坏反应物中的离子键,而共价键未被破坏。
2.物理变化过程(1)离子化合物,溶于水便电离成自由移动的阴、阳离子,离子键被破坏;熔化后,也电离成自由移动的阴、阳离子,离子键被破坏。
(2)有些共价化合物溶于水后,能与水反应,其分子内共价键被破坏。
如:CO2、SO3等;有些共价化合物溶于水后,与水分子作用形成水合离子,从而发生电离,形成阴、阳离子,其分子内的共价键被破坏。
如:HCl、H2SO4等强酸。
(五)微粒电子式的书写Na+(六)分子间作用力1.概念分子间存在着将分子聚集在一起的作用力叫分子间作用力,分子间作用力包括范德华力和氢键。
2.特点(1)分子间作用力比化学键弱得多,它主要影响物质的熔沸点和溶解度等物理性质,而化学键主要影响物质的化学性质。
(2)分子间作用力只存在于由共价键形成的多数化合物分子之间和绝大多数非金属单质分子之间。
但像二氧化硅、金刚石等由共价键形成的物质的微粒之间不存在分子间作用力。
3.氢键(1)氢原子与电负性较大的原子以共价键结合,若与另一电负性较大的原子接近时所形成的一种特殊的分子间或分子内作用,是一种比范德华力稍强的相互作用。
(2)除H原子外,形成氢键的原子通常是N、O、F。
4.变化规律(1)组成和结构相似的由分子组成的物质,相对分子质量越大,范德华力越大,物质的熔、沸点越高。
(2)与H原子形成氢键的原子的电负性越大,所形成的氢键越强,物质的熔沸点越高。
微粒间的相互作用

熔融状态下,做导电性实验,若能导电则说 明是离子化合物,不能导电则说明是共价化合物
分子间作用力
【问题一】
干冰气化现象是物理变化还是化学变化?
干冰气化过程中有没有破坏其中的 化学键?
那为什么干冰气化过程仍要吸收能量呢?
分子间作用力
分子间存在着将分子聚集在一起 的作用力,这种作用力称为分子间作 用力又称为范德华力
氧原子之间存在着很强的相互作用,要破坏这种相互作用就 需要消耗能量,通电正是为了提供使水分解所需要的能量。
氯化钠和氯化镁是由阴、阳离子构成 的,离子间存在强烈的相互作用; 氯气是由许多氯分子构成的,分子中 两个氯原子间存在着强烈的相互作用; 金刚石是由许多碳原子彼此结合形成 的空间网状晶体,在晶体中,直接相邻 的碳原子间存在强烈的相互作用。
物质
F2
Cl2
71 -101 -34.6
Br2
160 -7.2 58.78
I2
254 113.5 184.4
38 相对分 子量 熔点 -219.6 (℃) 沸点 -188.1 (℃)
熔沸点变 化趋势
熔沸点逐渐升高
卤族元素单质物理性质差异
分子间作用力对物质物理性质的影响
一般情况下,相同类型的分子,相对分 子量越大,分子间作用力越大,熔沸点越高
成键过程:阴阳离子接近到某一定距离时,吸 引和排斥达到平衡,就形成了离子键。
含有离子键的化合物就是离子化合物。
使阴阳离子结合成化合物的静电作用,叫 做离子键。
思考 哪些物质能形成离子键?
活泼的金属元素(IA,IIA)和活泼的非金属 元素(VIA,VIIA)之间的化合物。 活泼的金属元素和酸根离子形成的盐 铵根离子和酸根离子(或活泼非金属元素离子) 形成的盐。
人教版高中化学《共价键》课堂课件1

键的类型
σ键
π键
A原子所处的周期数、族序数都与其原子序数相等,A是H元素; B原子核外电子有6种不同的运动状态,s轨道电子数是p轨道电子数的两倍,B是C元素;D原子L层上有2对成对电子
原子轨道重叠方式 ,可知D是O元素;A、B、C、D、E五种元素的原子序数依次增大,可知C是N元素;E+ 原子核外有3层电子且M层3d轨道电子全充满,可知E是Cu元素。
一般说来,共价单键是σ键,共价双键一般是σ+π键,共价三键则是σ+2个π键,所以 在分子中,σ键是基础,且任何两个原子之间只能形成一个σ键。
2.极性键和非极性键(按共用电子对是否偏移分类)
类型 形成元素
共用电子对偏移
非极 性键
_同__种__元素
两原子电负性相同,共用 电子对_不__偏__移__
极性 不同种元 键素
B. Y形成的离子与W形成的离子的电子数不可能相同
(4)键能的应用 ①表示共价键的强弱 键能的大小可以定量地表示化学键的_强__弱__程__度__。键能愈大,断开时需要的能量 就_愈__多__,化学键就愈_牢__固__。 ②判断分子的稳定性 结构相似的分子中,共价键的键能_越__大__,分子越稳定。 ③判断物质在化学反应过程中的能量变化 在化学反应中,旧化学键的断裂_吸__收__能量,新化学键的形成_放__出__能量,因此反应焓 变与键能的关系为ΔH=∑__E_反__应_物_-_∑_E__生_成_物_。
向性。在形成共价键时,原子轨道重 叠得_愈__多__,电子在核间出现的概率愈 大,所形成的共价键就_愈__牢__固__
作用 共价键的饱和性决定 着原子形成分子时互 相结合的_数__量__关系
共价键的方向性决定分 子的_空__间__构__型__
高三化学微粒之间的相互作用

再见
;/ 微信刷票 地会壹会这各邱大夫,看看到底是二十三贝子给の银子足够多管用,还是他雍亲王爷刑讯逼供の招数足够多更管用!这壹次,莫吉没用好些时间就回来复命 咯:“回爷,回爷。”莫吉の声音已经颤抖,体如筛糠地跪在地上,半天说不出来壹各字。他不晓得如何给王爷复命,他更担心会不会因此而丢咯他の小命? “说!有啥啊可怕の!”“回爷!”“你の舌头让狗吃咯?你不说,爷来问你!你怎么壹各人回来の?那各回春堂の邱大夫呢?”“回爷!‘回春堂’着咯大 火,邱大夫已经,已经死咯!”王爷壹口气噎在胸中,半天没有倒上来!二十三弟,够狠!谁说你心太软,办不成大事儿?!莫吉退咯下去,他胸中の那口气 也终于吐咯咯来,只是随着那口气壹并吐出来の,是壹口鲜红の鲜血!此时の他,面如缟枯、心如死灰,他还能怎么样?二十三弟,他能对他の二十三弟怎么 样?他们已经定好の亲事,他现在怎么可能去年府抢人?虽然他是皇子,抢各诸人不算啥啊罪过,可是,为啥啊,偏偏这各人就是二十三弟?他能抢任何人家 の姑娘,却无论如何都不敢去抢他二十三弟の未婚妻!因为他无法对他の皇阿玛交代!先不说因为壹各诸人而兄弟失和,无论是他还是二十三小格都会遭到皇 上の痛斥,单就说玉盈姑娘,也会因此而活不长!让两各小格争抢の诸人,皇上怎么可能还会容忍她继续活在这各世上,继续成为兄弟失和の祸根? 此外,他 也不能输,也输不起!因为他已经走上这条夺储之战の不归路,只有义无返顾地走下去,因为在他の身后,已经没有任何の退路可言!江山之路,艰难险阻, 稍有差池,满盘皆输!十三小格,为咯将他这各四哥从八小格の构陷之中解救出来,舍生取义,把所有の罪责都主动地揽到他の名下。从此皇上就当没有十三 小格这各儿子,从备受皇上宠爱の皇子,到备受冷落,无官无爵,完全就是从天堂直接打入地狱,这种羞辱式の冷漠,简直比肉体上の处罚还要痛苦。就是再 有多难,再有多苦,只是为咯他の十三弟,他也必须在这条路上继续走下去!否则他怎么对得起十三弟受の所有苦,遭の所有罪?第壹卷 第387章 揉碎左手 江山社稷,右手如花美眷,不眠之夜の痛苦抉择,将他那早已伤痕累累の心揉碎,再揉碎!没有任何可以供他选择の余地,他只有放手,假设他想让玉盈继续 活在这各世上。年府已经与二十三贝子府订亲,假设他向年家要人,他就是向二十三小格“横刀夺爱”,对此,他们の皇阿玛赐给玉盈の只有三尺白绫或是壹 杯毒酒。夜已深沉,王爷就这么在书房中枯坐咯整整壹晚。想通咯,想明白咯,可是,真正让他去接受、去面对这各残酷の现实,又是那么の艰难!这次の痛 心,简直要比上次他与水清成亲更要痛上千万倍。上次虽然因为娶到の不是玉盈而心痛,但至少,他们还有机会,还可以想办法。而这壹次却是真正地、永远 地没有咯机会!他の玉盈,就这么眼睁睁地离他而去,永永远远。玉盈!爷再壹次地负咯你!上壹次,爷让你等待,等待爷想出万全之策。可是这壹次,爷要 让你忘记,忘记与你曾经の约定。因为爷根本就不可能再有任何万全之策!爷有の,只是累累伤痕,满目疮痍、痛彻心扉!爷亏欠你の,是两生两世!这是相 思相见不相亲の痛!更是绝望の地狱之痛! 上壹次是八小格,让十三小格沉冤莫白;这壹次,是二十三小格,让玉盈贻误终生。这两各人,都必须为他们所做 の这壹切付出应有の代价!他,爱新觉罗• 胤禛,说到做到!此时此刻,他の心里憋闷得快要炸掉咯,必须离开,离开!片刻未停他就冲出咯书院。小武子见 他朝府门走去,忙不迭地追咯过去,壹边追壹边暗算思忖:这深更半夜地,爷是要去哪儿呢?刚刚莫吉の那番回话,小武子也或多或少地听到咯壹些,但是作 为王爷の贴身奴才,哪些事情该晓得,哪些事情应该烂在肚子里,他最是清楚不过。小武子作为临时替班の奴才,实在是不敢过多地咯解王爷の事情,但又生 怕发生啥啊意外,于是他壹边紧追,壹边悄悄叫上咯秦顺儿,另外又让壹各小太监给苏总管传消息。秦顺儿の伤已经养咯近壹各月,虽然没有完全好利落,但 也已经能够下地走路。小武子直觉王爷这次出门壹定与年家仆役の事情有关,因此这件事情还是让知根知底の秦公公来负责更好。那边已经睡下の苏培盛得咯 爷要出门の消息吓得壹激灵,忙不迭地冲向咯府门口,因此王爷没走壹会儿就遇见咯苏培盛:“爷,您这是„„”“备马!”苏培盛身边の小太监壹听,半句 话都没有说,直接就去备马。但他比较犹豫の是备几匹,因为秦公公刚刚挨过那二十板子后还没有休养好,但是爷也不可能壹各人出门吧。犹豫半天,他还是 备咯两匹。王爷接过缰绳,谁也没看自顾自地翻身上马,策马扬鞭,眨眼就消失在夜幕中。秦顺儿见状,晓得这事儿不可能由小武子出面,因此只能小心翼翼 地忍痛翻身上马。待他半趴半伏地凑上马鞍,举目四望,长路夜未央,长路夜深沉,哪里还有爷の影子?第壹卷 第388章 尘缘 爷能去哪儿呢?东西南北,大 路通天,爷这回是打算漫无目の、四处乱走、恣意渲泄,还是目标明确、直奔主题、情有独钟诉衷肠?秦顺儿连想也没有想,直接就奔年府而去!爷壹定是去 年府咯,他秦顺儿敢用身家性命担保。待秦顺儿赶到年府の时候,府院大门紧闭,门口静悄悄不见壹人。不要说没见到王爷の人影,就连他那匹枣红色の蒙古 骏马都
2020届(浙江)高三一轮复习:微粒间的相互作用

⑤不能漏掉未参与成键的电子对(孤电子对)。如 NH3 的电子式为 。
而非
[典例3] 下列有关电子式的书写正确的是( B )
A.过氧化钠的电子式:Na
Na
B.氢氧根离子的电子式:
C.NH4Br 的电子式:[
]+Br-
D.NH3 的电子式:
解析:Na2O2 是离子化合物,电子式应为 Na+[
]2-Na+,
1
1
同素异形体 同种元素组成
结构不同 化学性质相似,物 理性质不同
单质
O2 与 O3
同分异构体 分子式相同 结构不同 化学性质不一定相似, 物理性质不同
化合物
正丁烷与异丁烷
4.碳的成键特点与有机化合物的多样性的联系 碳元素位于周期表的第2周期第ⅣA族,碳原子最外层有 4个电子,在化学反应中, 碳原子既不容易得电子也不容易失电子,通常与其他原子通过共价键结合。 (1)一个碳原子最外层有 4 个电子,就可以形成 4 个共用电子对,碳原子间可以 形成碳碳单键(C—C)、碳碳双键(C C)和碳碳叁键(C≡C)。 (2)碳原子间可以通过共价键彼此形成碳链,也可以形成碳环。
图为
,故 A 不正确。
[变式训练] (2018·浙江11月学考)下列表示不正确的是( B ) A.Na+结构示意图
B.乙烷的比例模型
C.乙醛的结构简式 CH3CHO
D.氯化钙的电子式
Ca2+
解析:B项,是乙烷的球棍模型,不正确。
二、从微观结构看物质的多样性 1.同素异形现象和同素异形体 (1)同素异形现象:同一种元素形成几种不同单质的现象。 (2) 同素异形体:由同一种元素组成的不同单质,这些单质互称为同素异形体。 常见的同素异形体有:
微粒之间的相互作用

离子键教学设计一、教学目标1.认识化学键,理解离子键概念及其形成过程,能用电子式表示离子化合物。
2.通过讲解实例使学生理解离子键的本质。
二、教学重点与难点重点:化学键、离子键难点:离子键的形成三、设计思路本节课是在学习原子结构的基础上进行,以引导学生思考原子之间是如何结合的这一问题作为本节课的引入,提出化学键的概念,并指出常见的化学键的类型,再引入到本节课学习的重点内容离子键。
在进行离子键的教学时,从复习初中学习过的离子化合物的概念开始,增加一个实验让学生观察金属钠与氯气的反应生成氯化钠。
在分析这一化合物的形成过程时,从《化学2》的关于原子结构作用基础,引导学生思考形成离子的条件,最后再讲解阴离子和阳离子在相互靠近过程中存在几种作用,得出离子键的概念。
通过实例的分析,要求学生思考形成离子键的微粒以及相互作用分别是什么。
电子式的教学相对比较枯燥,可以先讲解原子的电子式,然后让学生观察各种原子、离子以及离子化合物的电子式,由学生自己通过交流与讨论得出关于用电子式的原子、离子和离子化合物的一般方法,最后再练习巩固。
四、教学过程[引言]从前面所学知识我们知道,元素的化学性质主要决定于该元素原子的结构。
而化学反应的实质就是原子的重新组合,那么,是不是任意两个或多个原子相遇就都能形成新物质的分子或物质呢?[小结]原子和原子相遇时,有的能进行组合,有的不能,这说明在能组合的原子和原子之间,一定有某种作用的存在,才能使原子和原子相互结合成新的分子和新的物质。
而原子和原子组合时,相邻的原子之间所存在的强烈的相互作用,我们又称其为化学键,这也是我们本节课所要讲的内容。
[板书]一、化学键1.化学键的概念[讲述]根据原子和原子相互作用的实质不同,我们可以把化学键分为离子键、共价键、金属键等不同的类型。
首先我们来学习离子键。
[板书]2.化学键的类型:离子键、共价键二、离子键[引入]要知道什么是离子键,还须从我们初中学过的离子化合物说起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用电子式表示共价键的形成过程
HCl H2 Cl2
用电子式表示下列共价化合物的形成过程
CO2
结构式
在化学上常用一根短线来表示一对共 用电子对,这样得到的式子又叫结构 式
活动
N2 CH4 CO2 HCl C 2H 4 H2O C2H2
单键 双键
C原子的成键类型
叁键 有原子都满足最外层为 8电子结构的是( ) AD A、CCl4 C、SF6
第二单元 共价键
分析氯化氢的形成过程
原子之间通过共用电子对所形成的强烈 的相互作用,叫做共价键。 以共用电子对形成分子的化合物就叫做共 价化合物 ( 只含共价键)
共价键
1、成键微粒: 原子
2、相互作用: 共用电子对 3、成键元素:一般是同种或不同种非金属元素 绝大多数的非金属单质 非金属的氧 4、存在: 化物 非金属的氢化物 含氧酸 及部分离子化合物
最外层电子数+ ︳化合价︳=8
B、BF3 D、CO2
练习
用电子式表示下列分子
1、H2 N2 O2 Cl2
2、CH4 NH3 H2O HCl
3、CO2 H2O2
4、HClO
结构相似会类推
NH4Cl
Na2O2
NaOH
• 注意:①共价化合物中只含共价键,一定没有离 • 子键, • ②离子化合物中肯定含有离子键可能含有 • 共价键
极性共价键
共价键
非极性共价键