初中数学初中中考计算题总结复习包括答案.docx
(完整版)初中数学中考计算题复习含答案

1 .23621601214314175395243 40431511454233862328125647--8123220113212399101232210601651274311121241318123214 1531246612131321620212529363181712312712661833218243352741581920112|4120131124212223231|1|3333325=14-9=5387431511441312318118741-44011536414233832527------813229200121012-992(101-99)21220091-3;210121-23+-37--12+45410-30=-45-606512743606560127604335+50=-3011121212121312131431323157.21113262969276161212233633231212122312231712233411851451424334155275424335274155424335274158019-2.+2-=-2.1. 2.201212352122232------------------------------------------------------------------63253--------71 220130 3|1|012013567 8 10 111213+|3|+1 151612120130+||222+412 17112013|7|+0121819122012302452211|3|+162320130222122312+124122512+12612272829201322012420113011一.解答题(共3011211+12121211101220130+1+13|1|01201312+1111212451141144362744421811139210+31111111212原式第一项利用立方根的定义化简,第二项利用负数的绝对值等于它的相反数计算法则计算,第四项利用负指数幂法则计算,第五项利用1181311321132132214 3.140+|3|+120131415221612120130+||222+412121122424242+4 17112013|7|+01211211115218原式第一项利用立方根的定义化简,第二项利用二次根式的化简公式化简,第三项利用零指数幂法则计算,1451912121114+1+|12|142121112012302452121222311416314211|3|+16232013021)原式第一项利用负数的绝对值等于它的相反数计算,第二项先计算乘方运算,再计算除法运算,第2131234622212121121313122312+11)原式第一项利用负数的绝对值等于它的相反数计算,第二项利用特殊角的三212172+1+324121)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负指数幂法则21+13+3213212512+112112+126121)原式第一项利用特殊角的三角函数值化简,第二项利用零指数幂法则计算,212211118272282129201322012420112011201122420112242011+522420110301819126-6 3020151351251513 223113415322 2215113656 709422023432852213222330 920121451012456011 ---3622337956347181213343144201232221113.解方程(本小题共61 2532436431.60.20.5140||6015 233218342101216241940 17582818 192221121276521223201120+|4|×0.5+21 21 49322922121212423424 25 0116033230148 31|4|201634232212117538131383171. 2. 3. 4. 5.62-36:-363-17.=-1+1-9-8=-174172312x-2=3x+5 2x-3x=2+5x=-7262(2x+1)-(5x-1)=6x=-354113【解析】先把第二个方程去分母得3x-4y=-2,4113622114211222212221117363236322182323931410123211212111-192-111=-9÷9-18=-1-18=-192753796418=-28+30-27+14=-111221311326313 1532436112171217129128122121543326452431.60.20.529362762732661361263616220561235414试题分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算,最后一项利用立方根定义化简计算即可得到2. 3.153222123x-3+6≥2x332181-3x+3-8+x 0-23223421012122221161747 189190 2021-40--19-24=-40+19-24=-45 2-5-8--28 3-1256712=6+10-74-22--22-23-12011=-4-4+85-32+|-4|×0.52+2-12942912=-4+1+521 312124234 712166 102244124322421 1212423412166224001160341313200116034131322425 =2-1+230-76=-48+8-36=-76316412 95。
初中数学中考计算题复习(最全)-含答案

一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(1)计算:.22.(2)求不等式组的整数解.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.16.(2009•随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002•曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.23.先化简,再求值:(﹣1)÷,其中x—.25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011•南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011•武汉)先化简,再求值:÷(x ﹣),其中x=3.30.化简并求值:•,其中x=21.. 2。
初中数学中考计算题复习(最全)_含答案

一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(2)解方程:=﹣.(1)计算:.22.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°(2)解方程:.25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值. 9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值. (2)化简,其中m=5. 10.化简求值题: (1)先化简,再求值:,其中x=3. (2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值. (3)先化简,再求值:,其中x=2. (4)先化简,再求值:,其中x=﹣1. 11.(2006•)化简求值:,其中a=. 12.(2010•)先化简,再求值:()÷,其中a=2. 13.先化简:,再选一个恰当的x 值代入求值. 14.化简求值:(﹣1)÷,其中x=2. 15.(2010•綦江县)先化简,再求值,,其中x=+1. 16.(2009•随州)先化简,再求值:,其中x=+1. 17.先化简,再求值:÷,其中x=tan 45°. 18.(2002•)化简,求值:(x+2)÷(x ﹣),其中x=﹣1. 19.先化简,再求值:(1+)÷,其中x=﹣3. 20.先化简,再求值:,其中a=2. 21.先化简,再求值÷(x ﹣),其中x=2. 22.先化简,再求值:,其中. 23.先化简,再求值:(﹣1)÷,其中x . 24.先化简代数式再求值,其中a=﹣2. 25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2. 26.先化简,再求值:,其中x=2. 27.(2011•)先化简,再求值:(﹣2),其中x=2. 28.先化简,再求值:,其中a=﹣2. 29.(2011•)先化简,再求值:÷(x ﹣),其中x=3. 30.化简并求值:•,其中x=21. . 2。
初中数学中考计算题复习(最全)-含答案

--初中数学计算题大全(一)计算下列各题 1 .36)21(60tan 1)2(100+-----π 2. 431417)539(524----3.)4(31)5.01(14-÷⨯+-- 4.0(3)1---+5.4+23 +38- 6.()232812564.0-⨯⨯7112238. (1)03220113)21(++-- (2)23991012322⨯-⨯10. ⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-+601651274311.(1)-(2)--12.418123+- 13.1212363⎛⎫-⨯ ⎪ ⎪⎝⎭ 14..x x x x 3)1246(÷- 15.61)2131()3(2÷-+-; 16.20)21()25(2936318-+-+-+-17.(1))3127(12+- (2)()()6618332÷-+-18.()24335274158.0--+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--- 19.1112()|32|43---+- 20.()()120133112384π-⎛⎫---+-⨯⨯ ⎪⎝⎭。
21.. 22.118122323.232)53)(53)+参考答案1.解=1-|1-3|-2+23 =1+1-3-2+23 =3 【解析】略 2.5【解析】原式=14-9=53.87-【解析】解:)4(31)5.01(14-÷⨯+--⎪⎭⎫⎝⎛-⨯⨯--=4131231811+-=87-=先算乘方,再算乘除,最后算加减,有括号的先算括号里面的。
注意:41-底数是4,有小数又有分数时,一般都化成分数再进行计算。
4.0(3)1-+=11--【解析】略 5.3 6.4【解析】主要考查实数的运算,考查基本知识和基本的计算能力,题目简单,但易出错,计算需细心。
1、4+23 +38-=232=3+-252=42⨯⨯2 【解析】试题分析:先化简,再合并同类二次根式即可计算出结果.1122343222323考点: 二次根式的运算.8.(1)32(2)9200 【解析】(1)原式=4+27+1 =32(2)原式=23(1012-992) (1分)=23(101+99)(101-99)(2分)=232200⨯⨯=9200 (1分) 利用幂的性质求值。
汇总)初中数学中考计算题(最全)-含答案

汇总)初中数学中考计算题(最全)-含答案.doc1.解答题(共30小题)1.1 计算题:① 2+3=5;②解方程:x+5=10,解得x=5.1.2 计算:π+(π﹣2013)=2π-2013.1.3 计算:|1﹣|﹣2cos30°+(﹣)×(﹣1)2013|=|1-|-2cos30°+(-1)×(-1)2013||=|1-|-2×√3/2+1||=|1-√3+1|=|2-√3|。
1.4 计算:﹣(-2)+(-3)=1.1.5 计算:√(5+2√6)+√(5-2√6)=√2+√3.1.6 计算:(2+√3)(2-√3)=1.1.7 计算:(1+√2)²=3+2√2.1.8 计算:(1-√3)²=4-2√3.1.9 计算:(√2+1)²=3+2√2.1.10 计算:(√2-1)²=3-2√2.1.11 计算:(3+√5)(3-√5)=4.1.12 计算:(√3+1)(√3-1)=2.1.13 计算:(√2+√3)²=5+2√6.1.14 计算:﹣(π﹣3.14)+|﹣3|+(﹣1)2013+tan45°=0.1.15 计算:√3+√2-√6=√3-√2+√6.1.16 计算或化简:1)计算2﹣1﹣tan60°+(π﹣2013)+|﹣|=-tan60°-2011;2)(a﹣2)²+4(a﹣1)﹣(a+2)(a﹣2)=-3a²+10a-6.1.17 计算:1)(﹣1)2013﹣|﹣7|+(√2)﹣1=-√2-8;2)(2+√3)÷(√3-1)=1+√3.1.18 计算:(1+√2)(1-√2)=﹣1.1.19 解方程:x²+2x+1=0,解得x=-1.1.20 计算:1)tan45°+sin230°﹣cos30°•tan60°+cos245°=√2-1;2)(√2+1)²-(√2-1)²=4√2.1.211)|﹣3|+16÷(﹣2)³+(2013﹣)﹣tan60°=2010;2)解方程:(1-2x)²=3,解得x=√2﹣1.1.222)求不等式组:{x²-2x0},解得0<x<1.1.232)先化简,再求值:(√3+1)÷(√3-1)=2.1.241)计算:tan30°=√3/3;2)解方程:x²-2x+1=0,解得x=1.1.25 计算:1)√2-√3+√6=(√2-1)(√3-1);2)先化简,再求值:(√2+1)²+(√2-1)²=8.1.261)计算:(1-√2)÷(1+√2)=-1+√2;2)解方程:x²-2x+2=0,解得x=1-√3.1.27 计算:1)(√2+√3)²-(√2-√3)²=4√6;2)先化简,再求值:(x²+2x+1)÷(x²-1)=1+x。
初中数学中考计算题复习(最全)-含答案

一.解答题(共30小题)1 •计算题:①'-1:- ^1- . 'I -L'liV : - , I②解方程:|1—體2cos30° (― *) 0x(- 1) 20135•计算:ton30° 敦 |1 - | - (5^ +2013 ) °乂〔 -'3.计算:4.计算:I-3.14I+ (—2012><誌反)6. 〔- g J -〔2013-兀)7•计算: |-4|,|201 30 - 4)_2-1V28计算:上59 •计算: 申_ 1- 201 3°^2Gin60 ° " I " V12 I10计算:(-詰亍*£_2|£tan30°- V2COS®*11•计算:—:■7----- I _ -'12. -'-7 - | - 4 + :- 1■'-丄]一+ i - I 1」丄'+.—-|-4|+ (-1) 5013 X (冗-3) °-畅十_114•计算:J^j-(冗-3.14)°+|-3|+ (— 1) 2013+tan45°15•计算:卜亦|-玄。
丈呼-(2012-7T ) 0+〔壶)716.计算或化简:(1) 计算 2^- J ;tan60°+2(2) ( a - 2) +4 ( a - 1) -( a+2) (a - 2)17.计算:(1)(- 1) 2013 - |- 7|+ JX -" I I 0+ (二)-113.计算:2013)—— e sCXI ) +Q(2—— ) + 9L +-e ——(L )「9寸2s o o +b 9u gogsoo ——o ”u一s o+g寸 U 2 (L)-M 44 ・0<>|o g 韦亍 i 一+0 (U— £A)十丁(T —jI E C —)(二YUT D Q S T U ) J(写;幻—訂金衣00(2)5疋- 4=:■. - 12K-43x-6 2解方程:(1)计算: 22.._ 厂?_ 1-12(2)求不等式组K - 1^1 - XK+8>4X-1.的整数解.23.(1)计算: --0§一(2013—兀)[I(2)先化简,再求值: ,其中x= :'; +1.24.(1)计算:I I. I - - ':ta n30°kJ(2)解方程:25•计算:(1) C-112013一丁| + 岳共(衙-兀)°+5(2) 先化简,再求值:覚二亠厂:匚一K2 _1 X2+2I+1+.,其中x=2 .二+1.26.(1)计算:上」•丄匚一1- ;(2) 解方程:28•计算:|: ? I . ■- :- | - b :_ i'29 •计算:(1+. 口)2013- 2 (1+ 口)2012 - 4 (1+「)201130•计算:i —二 '■+ i - :. :JJ :J< : i i -■*-1 •化简求值:(范-宀)三([十J),选择一个你喜欢且有意义的数代入求值. K2-11 R笈耳4:2.先化简,再求值「---- ::-——,然后选取一个使原式有意义的x 值代入求值.X _ 1K 一 123 •先化简再求值:选一个使原代数式有意义的数代入一- —匚中求值.a+3 2a+6 a+2,1. . /-4自+44.先化简,再求值:,请选择一个你喜欢的数代入求值.1a 2 -a5・(2010?红河州)先化简再求值:.:.一 •选一个使原代数式有意义的数代入求值.a+3 2呂十6 計2(2)化简(*1),其中 m=5 •6•先化简,再求值:(1-,选择一个你喜欢的数代入求值.i+27•先化简,再求值:(亠-1) -,选择自己喜欢的一个x 求值.齢 3xS6x+9 &先化简再求值:化简■[ :':: '■,然后在0, 1, 2, 3中选aa个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值mH(1)(2)(3)先化简,再求值:先化简,再求值:先化简,再求值:个你喜欢且使式子有意义的数字代入求值.(4)先化简,再求值: ,其中x= - 1 •11 •a2 - 2a+l aJ「1ar+1(2006?巴中)化简求值: a=. ■:12.(2010?临沂)先化简,再求值:(- ---- —-其中a=2出,其中a13.先化简: ,再选一个恰当的x值代入求值.14.化简求值:(,其中x=2.15.(2010?綦江县)先化简,再求值, ,其中x=:J胃+1.16.(2009?随州)先化简,再求值:,其中x= 1 + 1 .17.K (x - 2).耳先化简,再求值: ,其中x=tan45 °18.(2002 ?曲靖)化简,求值:(x+2 ) -(x- 5器44),其中x= - 1.19.先化简,再求值: (1 +X2- 1,其中x= - 3.20.先化简,再求值:a2 -4 a21.先化简,再求值——.(x--)1X |x 22.先化简,再求值:Y)2x-3|23.先化简,再求值:(—_ 1)亠瓦+1,其中a=2.,其中x=2 .,其中•:_.24.先化简代数式,其中x—.士「:亠再求值,其中a=- 2.25.(2011?新疆)先化简,再求值:(+1)- ,其中x=2 .26.先化简,再求值: —(汙一,其中x=2 .-1 X _127.(2011?南充)先化简,再求值: -2),其中x=2 .28.先化简,再求值: (1-1)三兰a 8,其中a=- 2.29.(x-主),其中x=3 .x1.3.1. 化简并求值:d- %) ?Z - 1(2011?武汉)先化简,再求值:,其中x=230.(a $a解方程3.解方程: 5.解方程:2xx2 4 3.x21x2 - 4x+1=0.3 _ 2 x —x-1 ./+4x- 2=02 3解分式方程----- —x 2 x 24。
初中数学中考计算题复习(最全)-含答案

by by
4, 2
的解为
x
y
2, 1,
,则
2a-3b
的值为多少?
参考答案与试题解析
一.解答题(共 30 小题)
第 11 题 图
米的扇花台,那
a2 b2
.
2x y 5
3、已知 x 2 y 6 那么 x-y 的值是(
)
A. 1
B. ―1
C. 0
D. 2
4、若不等式组
x b
a2 2x 0
的解集是
1
x
1
,求
a
b
2010
的值
(1)23((xy12))5xy18
(5)
y 1 4
x
3
2
2x 3y 1
÷
+ ,其中 x=2 +1.
26.(1)计算:
;
(2)解方程:
.
27.计算:
.
28.计算:
.
29.计算:(1+ )2013﹣2(1+ )2012﹣4(1+ )2011.
30.计算:
.
1.化简求值:
,选择一个你喜欢且有意义的数代入求值.
2.先化简,再求值
,然后选取一个使原式有意义的 x 值代入求值.
一.解答题(共 30 小题)
1.计算题:
①
;
②解方程:
.
2.计算:
+(π﹣2013)0.
3.计算:|1﹣ |﹣2cos30°+(﹣ )0×(﹣1)2013.
4.计算:﹣
.
5.计算:
.
6.
.
7.计算:
.
8.计算: 9.计算:
初中数学中考计算题复习(最全)-含答案

::-…■' ' ■—丄一「||;②解方程:211-(一号)2 - 4\2COS 3^ - (2013-兀)°4-VgV^-|-4|+ C3-7T) 0- (j) -3+ (-D 2013+sin30o13.计算:丨 「| ' j,. - i14.计算:;i-( n- 3.14 ) 0+| - 3|+ (- 1) 2013+tan45 °15. 计算: I -问 -2cos30° - (2012-兀)°+ (^y) _1 41.2(2)( a - 2) +4 (a - 1)-( a+2) (a - 2) 17. 计算:一.解答题(共1.计算题:30小题)2. 计算: ':_ - - L ■+( n- 2013).3. 计算:4. 计算:5. 计算: .2013|1 --;| - 2cos30 ° (-) X (- 1) .2:.:-- .:- -IH - ' —j 1:1 ■.X |i-^| - (5兀+2013) 0X (-吉)~26.7. 计算:8. 计算: 9. 计算: 10.计算: 11.计算:卜 41+2013—(言)f 伍 X 也.—1V4-(-3) 2+2013°- (j)5(专)一— 201 3°+2皿60。
- I - V12 I(一缶y) "+|亦-2|+3tan3『-近匚口胡萨 -12C13 -Ve-tanSO"+V fl-V2)212.16.计算或化简:(1)计算 2-1- 二tan60 ° ( n- 2013) °+| (1)(— 1)2013-| - 7|+ 打 X ” 0+ ()5-11&计算:-■- I ..二.#_可+ (丁5)2-(兀-2013)- I 兀 _4|(1)19. J ; -1 ) 2013 X C -1) 一?+(丽—兀)°+|l-2sin60* |ill(2)解方程: 20.计算:(1) 2 2tan45 °sin 30° - cos30 ° ?n60 °cos 45° 卜3|-近(3 -兀)°+ ( - 1 ) 2013(1) | - 3|+16 -(- 2) 3+ (2013-_1) 0- 7tan60 °32先化简,再求值:(:’-^―)十:’,其中x= ;+1.X _ 11 _ I X _ 125•计算: 9X - 4 X _ 3x - 4 1 廿出 o r~ A 十+ -,其中 x=2;+1.x Z - 1X 2+2X +1 X _ 126.("计算:I' I -:;::;1.化简求值::,选择一个你喜欢且有意义的数代入求值.1 R買一42•先化简,再求值,- —一.:-——,然后选取一个使原式有意义的x 值代入求值.X 1X 1 23•先化简再求值:选一个使原代数式有意义的数代入:: ' 口中求值.a+3 2a+b a+227•计算: ■ _ 1 ' - ■■ 1 ' :. ■ - ' ■ _.28计算: _ 一 1 一 ■ 1 1 1 - .29.计算: (1+ =) 2013- 2 (1+ 匸)2012- 4 (1+ =) 2011.30.计算:(-1) _3+ ( -2 ) °+ ( - 0.1 ) 2013 X (10 ) 2013(2)解方程:(2)(2) 解方程:^—-2i-4 3x-6 222.(1)计算:.|「-'(2) 求不等式组的整数解.x+8>4i- 1.23.(1)计算:I - 3 |+-- (2013-兀)(2)24. (1)计算: 三 m 'tan30 °(2) 解方程:「「;.(1)(「]严|-7|+V9X (听一兀)°+(-F )5(2) 先化简,再求值:4.先化简,再求值:二/-4且+4请选择一个你喜欢的数代入求值.5. (2010?红河州)先化简再求值:c 21- = _____ •亠.选一个使原代数式有意义的数代入求值.2a+6 a+2a+36•先化简,再求值: 选择一个你喜欢的数代入求值.7•先化简,再求值: (一 -1)x+3,选择自己喜欢的一个x求值.8先化简再求值:化简一丁9.化简求值(1)先化简,再求值2-1----- .,然后在0, 1, 2, 3中选一个你认为合适的值,代入求值.a—子,选择你喜欢的一个数代入求值.X(2)化简__nri-110.化简求值题:(mH),其中m=5(1) 先化简,再求值: ,其中x=3.(2) 先化简,再求值: —,请选一个你喜欢且使式子有意义的数字代入求值.(3) 先化简,再求值: ,其中x=2.x+2 K+2(4)先化简,再求值: 十-十,其中x=-111. (2006?巴中)化简求值: a2- 2a+l__2a",其中a= ■:.a+112. (2010?临沂)先化简,再求值: ])二[其中a=2.a+213 .先化简: ),再选一个恰当的x值代入求值. -114.化简求值:(「- 1)其中x=2.15. (2010?綦江县)先化简,再求值, ----- 二———其中x=J勺+ 1其中X 116. (2009?随州)先化简,再求值: ------- .,其中x= ~+1 .17.先化简,再求值: 说比,其中X=tan45°(x-2)18. (2002?曲靖)化简,求值:(x+2) +( x -宓+4),其中 x= - 1.1 -x 19. _________________________ 先化简,再求值:(1+ )-,其中x= - 3.1 X 2- 1 20•先化简,再求值:一— 一,其中a=2.a 2 - 4 a- 221.先化简,再求值 兰二2+(x - 1),其中x=2 . 22•先化简,再求值:I : ■■-■,其中:■-:.23.先化简,再求值:( ——-1) ',其中x —.24•先化简代数式 -「一 _ 再求值,其中a=- 2.a+l a 2 -1(2011?新疆)先化简,再求值: (一—+1) +玄一1 X―:一 (一 -2),其中 x=2. x 2 -1 X26.先化简,再求值:,:-:.jx _ 1「」,其中x =2.28. 先化简,再求值:i ■ 1 .a=,其中 a=- 2.29. (2011?武汉) 先化简,再求值:空rx 」,其中x=3.30. 化简并求值: (11. 3.1. ,,其中x=2a -b 2 a + b (a 」)4 a a 解方程 x 2- 4x+1=0. 3.解方程: 5.解方程:2x 3.x x - 1 ■ x 2 -4 2 x +4x - 2=0...x 2 -1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WORD格式.初中数学计算题大全(一)8.( 1) (1) 233201102计算下列各题1 .(2) 0 1 tan60 0( 1) 162. 4 2( 9 3)7 1 1 32355449、( 1 ) -23+ ( -37)-(-12)+45;3. 1 4(1 0.5)1(4) 4 .(3) 027 121332375110.412 6604+ 3 2 + 386.0.64 3125225.811.( 1 )( 241)(16)287. 12- 1 - 2 123专业资料整理WORD格式.专业资料整理112. 4 3121813. 212 36314..(6x2x1 ) 3 x15.( 3) 2( 11) 1 ;4x32616. 18369 ( 52) 0(1 2)2321) ( 2) 33217.( 1 ) 12 ( 2718663WORD格式218.0.8 5 14.12 (1 )13194321.23. ( 32) 2(57 2 3 354|32|. 22 . 2 83)( 53)专业资料整理WORD格式参考答案1.解 =1 - |1-3 |-2+23=1+1- 3 - 2+2 3=3【解析】略2. 5【解析】原式=14-9=53.7 【解析】解:14(1 0.5)1 ( 4)83311123411878-1 4先算乘方,再算乘除,最后算加减,有括号的先算括号里面的。
注底数是意:4,有小数又有分数时,一般都化成分数再进行计算。
4.( 3)027 121=13321 32=.2332【解析】略5. 36. 4【解析】主要考查实数的运算,考查基本知识和基本的计算能力,题目简单,但易出错,计算需细心。
21、 4+3+38=2 3 2=33 125252、 0.64( -2) =0.82=48237.4 3 -232【解析】试题分析 :先化简,再合并同类二次根式即试题解析:12 -1 - 21=2 3-23考点 : 二次根式的运算.8.( 1 ) 32( 2 ) 9200【解析】( 1 )原式 =4+27+1=32(2 )原式 =23 ( 101 2 -99 2) (1分)=23( 101+99 ) (101-99)(分=23200 2 =9200(利用幂的性质求值。
利用乘法分配律求值。
9.( 1 ) -3;( 2 )10【解析】试题分析:( 1 )把有理数正负数分开相加( 2 )先算乘方,再运用乘法分配律,要注意试题解析:解:(1) -23+ ( -37 )- ( -12 ) +45 =—23—37+12+45 =— 23 — 37+12+45 =-3;( 2) ( 212)(-6)2369= ( 21 2 )36369=24— 6 — 8=10专业资料整理WORD格式考点:有理数的混合运算专业资料整理10. -30【解析】原式( 35=-45-35+50=-7)( 60)= 3 ( 60)7 ( 60) 5 ( 60)304126412611.( 1)632;( 2)3 2 .410【解析】试题分析:( 1 )先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;( 2 )先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算.WORD格式4解: 12 .原式 =3 23322=4433633 13.原式 =答案:【小题1】【小题 2 】1 14.解:原式= (3x 2x )33试题解析:( 1 )原式=(2 622266243 26;4(2)原式 =4 3314522=3103= 210考点 :二次根式的化简与计算2 )(26)24.【解析】略15. 7.【解析】试题分析:注意运算顺序.试题解析:( 3) 2( 1 1 )1=9326考点:有理数的混合运算.36 316.解:原式 3 2 ()33321 2 1 2 1??????????23 21??????????????2【解析】略17.( 1 )433( 2) 2【解析】专业资料整理WORD格式12.试题分析:( 1 ) 12 ( 27 1 )3 13.【解析】此题考查根式的计算专业资料整理WORD格式5 2( 2) 33186633312考点:实数运算点评:本题难度较低,主要考查学生对平方根实数运算知识点的掌握。
要求学生牢固掌握解题技巧。
18.145【解析】试题分析:1230.8573245445172 3 32545447251 3 325544145考点:有理数的运算19. -2.【解析】试题分析:根据负整数指数幂的意义和绝对值的意义得到原式=2 3-4- 3+2- 3,然后合并即可.试题解析:原式=2 3 -4- 3 +2-3=-2.考点: 1.二次根式的混合运算; 2.负整数指数幂.20.解:原式 = 1 2 1 24=38=5。
【解析】针对有理数的乘方,绝对值,零指数幂,立方根化简,负整数指数幂 5 个考点分别进行计算,然后根据实数的运算法则求得计算结果。
【解析】试题分析:先进行二次根式化简,再进行计算即试题解析:考点 : 二次根式的化简..28112 6 122233 -------------------------------------------------------------------4232--3----4 2----23.32) 2 ( 53)( 53 (3 ----------------------------------------------------------------326 2 5--------726--【解析】略专业资料整理WORD格式21.专业资料整理WORD格式6初中数学计算题大全(二)4.计算:﹣.1.计算题:①;5.计算:.② 解方程:.6、+(π﹣ 2013)7.计算:2.计算:0 .8.计算:.3.计算: |1 ﹣| ﹣ 2cos30 ° +(﹣)0×(﹣1)2013.专业资料整理WORD格式714.计算:﹣(π﹣ 3.14 ) +| ﹣ 3|+ 9.计算:.10.计算:.15.计算:.11.计算:.16.计算或化简:﹣ 1tan60 °+(π﹣ 2013(1)计算 2 ﹣12..(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)13.计算:.专业资料整理WORD格式817.计算:(2)解方程:.( 1 )(﹣ 1 )2013﹣ | ﹣ 7|+ ×0+()﹣1;20.计算:21) tan45°+sin 30 °﹣cos30°?tan60°+cos(( 2 ).( 2).18.计算:.321.(1)|﹣3|+16÷(﹣2)+( 2013 ﹣)﹣ tan60°(1)19.( 2)解方程:=﹣.专业资料整理WORD格式924.( 1 )计算:tan30 °( 1 )计算: .22.(2)解方程:.( 2 )求不等式组的整数解.25.计算:(1)( 1 )计算:23.( 2 )先化简,再求值:÷+,其中x=2+1.( 2 )先化简,再求值:(﹣)÷,其中x=+1.专业资料整理WORD格式1026.( 1 )计算:;28.计算:.( 2 )解方程:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.27.计算:.30.计算:.专业资料整理点评:参考答案与试题解析一.解答题(共30 小题)1.计算题:①;② 解方程:.考点:解分式方程;实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:① 根据零指数幂、特殊角的三角函数值、绝对值求出每一部分的值,再代入求出即可;②方程两边都乘以 2x ﹣ 1 得出 2 ﹣ 5=2x ﹣ 1 ,求出方程的解,再进行检验即可.解答:①解:原式 = ﹣ 1 ﹣ +1 ﹣,=﹣2;②解:方程两边都乘以2x﹣ 1得:2﹣ 5=2x﹣1,解这个方程得:2x= ﹣ 2 ,x= ﹣ 1 ,检验:把x=﹣1代入2x﹣1≠0,即 x=﹣1是原方程的解.点评:本题考查了解分式方程,零指数幂,绝对值,特殊角的三角函数值等知识点的应用,易出错的题目,解② 小题的关键是把分式方程转化成整式方程,同时要注意:2.计算:+(π﹣ 2013)0.WORD格式11=1﹣.本题考查了实数的运算:先进行乘方或开方幂.3.计算: |1 ﹣ | ﹣ 2cos30 ° +)(﹣考点:实数的运算;零指数幂;特殊角的三角分析:根据绝对值的概念、特殊三角函数值、解答:解:原式 =﹣1﹣2×+1 ×(=﹣ 1﹣﹣1 =﹣2 .点评:本题考查了实数运算,解题的关键是注4.计算:﹣考点:有理数的混合运算.专题:计算题.分析:先进行乘方运算和去绝对值得到原式解答:解:原式 = ﹣ 8+3.14﹣1+9=3.14.点评:本题考查了有理数的混合运算:先算① 小题是一道比较容解分式方程一定要进行检验.5.计算:考点:实数的运算;零指数幂;负整数指数幂值.专题:计算题.考点:实数的运算;零指数幂.分析:专题:计算题.根据负整数指数幂、零指数幂以及特三角函数值得到原专业资料整理WORD格式式分析:根据零指数幂的意义得到原=1 ﹣ 2+1 ﹣ +1,然后合并即式可.算后合并即可.解答:解:原式 =1 ﹣ 2+1 ﹣ +1专业资料整理WORD格式12解答:解:原式 =×﹣ 1 )﹣ 1 × 4(8.计算:=1﹣﹣ 4考点:实数的运算;零指数幂;负整数指数=﹣ 3幂.﹣.分析:分别进行二次根式的化简、零指数幂整数指数幂的运算,然后合并即可得出答=2﹣ 9+1本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号解.答也:考查解了:负原式点评:﹣ 11 .点评:本题考查了实数的运算,涉及了二次的化简、零指数幂及负整数指数幂,整数指数幂、零指数幂以及特殊角的三角函数值.属于运算法则是关键.6..9.计算:考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分别进行二次根式的化简、负整数指数幂、零指数幂、然后代入特殊角的三角函数值,最后考合点并:即可实得数出的运算;零指数幂;负整数幂;特殊角的三角函分析:数值.分析:分别进行负整数指数幂、零指数幂、角的三角函数值、绝对值的化简等运答案.算,解答:则计算即可.解:原式 =4 ﹣ 2× ﹣ 1+3解答:解:原式 =2 ﹣ 1+2 ×﹣ 2 =1﹣=3.点评:本题考查了实数的运算,涉及了二次根式的化简、负整数指数幂、零指数幂的运算,解答本点题评的:关键本是题熟考查了实数的运算,涉及了负整数指数幂、零指数幂、特殊角的三角函数值、练掌握各部分的运算法则.属于基础题.7.计算:.10.计算:.考点:实数的运算;零指数幂;负整数指数幂.考点:实数的运算;零指数幂;特殊角的三数值.分析:分别进行零指数幂、绝对值的运算,代入特殊角的三角函数值,继而合并专题:计算题.可得分析:根据负整数指数幂、零指数幂的意义和二次根式的乘法得到原=4+1﹣ 4 ﹣解答:式,然后化简后合并即可.解:原式 =1+2 ﹣ +3×﹣×专业资料整理WORD格式解答:解:原式=3﹣ +﹣1 =4+1﹣ 4﹣=2.=4+1﹣ 4﹣ 2点评:本题考查了实数的运算,涉及了零指幂、绝对值的运算,注意熟练掌握一特殊=﹣ 1 .点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了负11.计算:整数指数幂和零指数幂.专业资料整理WORD格式1314.计﹣(π﹣ 3.14 ) +| ﹣3|+算:1)考点:二次根式的混合运算;特殊角的三角函数值.分析:首先计算乘方开方运算,代入特殊角的三角函数值,然后合并同类二次根式即可求考点:实数的运算;零指数幂;特殊角的三数解.值.解答:专题:计算题.解:原式 = ﹣ 1 ﹣× + (﹣ 1 )=﹣1﹣分析:本题涉及零指数幂、乘方、特殊角的函数值、二次根式化简四个考点.针﹣然后根据实数的运算法则求得计算结+1果.=﹣ 2 .解答:解:原式 =3 ﹣ 1+3 ﹣ 1+1点评:本题考查了二次根式的化简、特殊角的三角函数值,正确理解根式的意义,对二次根式进行化简是关键.=5 .点评:本题考查实数的综合运算能力,是各考题中常见的计算题型.解决此类题乘方、特殊角的三角函数值、二次根简考点的运算.12..15.计考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数算:值.专题:计算题.原式第一项利用立方根的定义化简,第二项利用负数的绝对值等于它的相反数计算,第三项考利点用:零指实数数幂的运算;零指数幂;负整数幂;特殊角的三分析:角函数值.1 的奇次幂为1 计算,最专后题一:项利计用算特题殊.角的三法则计算,第四项利用负指数幂法则计算,第五项利用﹣﹣角函数值化简,即可得到结果.分析:根据负整数指数幂、零指数幂和cos3解答:解:原式﹣ 4+1 ﹣ 8 ﹣ 1+=3=﹣.类二次根式即可.点评:此题考查了实数的运算,涉及的知识有:零指数幂、负指数幂,绝对值,以及特殊角的三角解函答数:值,熟练﹣ 2× ﹣1+2013掌握运算法则是解本题的关键.解:原式 ==﹣﹣ 1+2013=2012 .13.计算:.点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减指数幂、零指数幂以及特殊角的三角值.考点:实数的运算;零指数幂;负整数指数幂.16.计算或化专题:计算题.简:专业资料整理WORD格式=4﹣ 1 ×1﹣ 3 ﹣ 2 ,再计算乘法运算,然后进行加减运﹣0分析:零指数幂以及负整数指数幂得到原式算.1tan60 ° +(π﹣ 201( 1)计算 2﹣解答:解:原式 =4 ﹣ 1 × 1﹣ 3 ﹣ 22( a ﹣ 1 )﹣( a+2( a=4﹣ 1 ﹣ 3﹣ 2( 2 )( a ﹣ 2) +42 =﹣ 2 .点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号考.点也:考查整了式零的混合运算;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.指数幂以及负整数指数幂.分析:(1)首先带入特殊角的三角函数值算乘方,去掉绝对值符号,然后进行加减(2)首先利用乘法公式计算多项式的乘法,然后合并同类项即可求解.专业资料整理WORD格式解答:点评:考点:实数的运算;零指数幂.=﹣ 1 ;专题:计算题.( 2 )原式 = ( a 2﹣ 4a+4 ) +4a ﹣4﹣( a 2﹣ 4)分析:原式第一项利用立方根的定义化简,根式的化简公式化简,第三项22=a ﹣ 4a+4+4a ﹣ 4 ﹣ a +4最后一项利用绝对值的代数意义化简结果.=8.解答:解:原式 = ﹣ 3+3 ﹣1﹣( 4 ﹣π点评:此题考查了实数的运算,涉及的知识义,零指数幂,二次根式的化本题考查了整式的混合运算,以及乘法公式,理解运算顺序是关键.简17.计算:20130﹣ 1﹣ | ﹣( 1 )(﹣ 1 ) 7|+×+();19.( 1 )( 2 ).(2)解方程:.考点:实数的运算;零指数幂;负整数指数幂.考点:解分式方程;实数的运算;零指数幂整数指数幂;特殊角的三角函数值.专题:计算分析:( 1 )由有理数的乘方运算、负指数零指数幂以及绝对值的性质,即可将题.式分析:( 1 )根据零指数幂的意义和进行开方运算得到原式=﹣ 1﹣ 7+3 ×1+5,再进行乘法运算,然后答进案行;加减运算;( 2 )首先观察方程可得最简公分母( 2 )先进行乘方和开方运算得到原=2 ﹣﹣ 2+2 ﹣,然后进行加减运简公分式算.解:( 1 )原式 = ﹣ 1﹣ 7+3方程来解答,注意分式方程需检验.解答:× 1+5解答:解:( 1 )原式 = ﹣ 1 ×4+1+|1 ﹣=﹣ 1 ﹣ 7+3+5=﹣ 8+8=﹣ 4+1+﹣1=0;=﹣4;( 2 )方程两边同乘以(x ﹣ 1( x( 2 )原式 =2 ﹣﹣ 2+2 ﹣2( x+1 ) =3 ( x ﹣ 1 ),专业资料整理WORD格式解得:x=5,=﹣.检验:把x=5代入(x﹣1)(x+1)=24≠ 0,即x=﹣1是原方程的解.点评:本题考查实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了故零原指方程的解为:x=5.点评:此题考查了实数的混合运算与分式方程额解法.此题比较简单,注意掌握有理数数幂与负整数指数幂.的零指数幂以及绝对值的性质,注意分式方程需检验.专业资料整理WORD格式1520.计算:去括号得:17x=34 ,22( 1 )tan45 °+sin30°﹣cos30°?tan60°+cos45°;解得:x=2,经检验x=2是增根,原分式方程无解.( 2 ).点评:此题考查了解分式方以及实数算,程,想”,程求解.解分式方程一定注意要验根.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.22.(1)计算:.分析:( 1 )先根据特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;( 2 )根据实数混合运算的法则先算乘方,再算乘法,最后算加减即可.(2)求不等式组的整数解.解答:解:( 1 )原式 =1+()2﹣×+()2=1+﹣+= ;考点 :一元一次不等式组的整数解;实数的零指数幂;负整数指数幂;特殊角的( 2 )原式 =8 ﹣ 3 ×1﹣ 1 ﹣ 专题 : 计算题.﹣ 4分析:( 1 )分别进行负整数指数幂、零指及绝对值的运算,然后代入特殊角的=8﹣ 3 ﹣ 1 ﹣ 4( 2 )解出两不等式的解,继而确定式组的解集,也可得出不等式组的整﹣=﹣.解答:解:( 1 )原式 =点评: 本题考查的是实数的运算,在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进 行.( 2 ),21.( 1 ) | ﹣ 3|+16 ÷(﹣32)+( 2013 ﹣ ) ﹣tan60 °解不等式 ① ,得x ≥ 1,=解不等式 ② ,得 x < 3,( 2 )解方程:﹣ .故原不等式组的解集 1≤ x <为:它的所有整数解为:1 、2 . 考点 : 解分式方程;实数的运算;零指数幂;特殊角的三角函数值.点评:本题考查了不等式组的整数解及实数算,注意掌握不等式组解集的求解办专题 : 计算题.幂的运算法则是关键.专业资料整理WORD格式分析:( 1 )原式第一项利用负数的绝对值等于它的相反数计算,第二项先计算乘方运算,再计算除法运算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值化简,即可得到结果;( 2 )分式方程去分母转化为整式方程,求出整式方程的解得23.( 1 )计算:到x 的值,经检验即可得到分式方程的解.解答:解:( 1 )原式 =3﹣2+1﹣3=﹣ 1 ;(2)先化简,再求值:(﹣)÷,其中x=+1.( 2 )去分母得: 3 ( 5x ﹣4) =2 ( 2x+5)﹣6(x﹣2),。