考数学二轮复习12新定义型

合集下载

专题12 正余弦定理妙解三角形问题和最值问题(11大核心考点)-2024年高考数学二轮复习讲练测

专题12 正余弦定理妙解三角形问题和最值问题(11大核心考点)-2024年高考数学二轮复习讲练测
则 = .
5.(2021•浙江)在中,∠ = °, = ,是的中点, = ,则 = ;

∠ = .

6.(2022•甲卷)已知中,点在边上,∠ = °, = , = .当 取得最小值时,
,得 = 2或 =
∈ 0, ,得sin = 1
7
− 2(舍),
− cos 2
2
2
15
4
=
=

2sin⋅cos
3 15

4


3
3
= sin,所以 = 6cos.
在 △ 中,再由余弦定理得 cos =

所以 6 =
15

4
所以△ 的面积 = 1 sin = 1 × 3 × 2 ×
2
=
3

= 0, ∴ ∠ = , =
2
2
3
7
1+4−2
7
,解得AD为
9
1
+
16
3

2
− )=
=
3
,cos∠
3
129
12
4
3 3
,sin∠ =

43
43
3
1
, sin∠ = ,
2
2
7 3
+ ∠) = 2 43,

cos∠ = −cos∠ = −
cos∠ = cos(

(2)在△ 中,由正弦定理得sin = sin ⇒ sin2 = sin ⇒
16+2 −9
2×4×
,解得 = 21.
2 + 2 − 2
2⋅

2020年中考数学二轮复习(通用)专题:几何压轴题型含答案

2020年中考数学二轮复习(通用)专题:几何压轴题型含答案

几何压轴题型类型一动点探究型在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图②,图③中的一种情况予以证明或说理);(3)如图④,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明△ABP≌△ACE,从而证得BP=CE,且∠ACE=30°,延长CE交AD于点F,可得∠AFC=90°,所以CE⊥AD;(2)无论选择图②还是图③,结论不变,思路和方法与(1)一致;(3)要求四边形ADPE的面积,观察发现不是特殊四边形,想到割补法,分成钝角△ADP和正△APE,分别求三角形的面积,相加即可.【自主解答】解:(1)BP=CE;CE⊥AD;(2)选图②,仍然成立,证明如下:如解图①,连接AC交BD于点O,设CE交AD于点H.在菱形ABCD中,∠ABC=60°,BA=BC,例1题解图①∴△ABC为等边三角形,∴BA=CA.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°,∴∠BAP=∠CAE.在△BAP和△CAE中,例1题解图②∴△BAP≌△CAE(SAS),∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CA D=60°,∴∠AHC=90°,即CE⊥AD.选图③,仍然成立,证明如下:如解图②,连接AC交BD于点O,设CE交AD于点H,同理得△BAP≌△CAE(SAS),BP=CE,CE⊥AD.(3)如解图③,连接AC交BD于点O,连接CE交AD于点H,由(2)可知,CE⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=(219)2-(23)2=8,例1题解图③∴BP=CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD=12∠ABC=30°,AC⊥BD,∴BD=2BO =2AB·cos 30°=6, AO =12AB =3,∴DP=BP -BD =8-6=2, ∴OP=OD +DP =5.在Rt△AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △APE =12DP·AO+34·AP 2 =12×2×3+34×(27)2 =8 3.【难点突破】 本题的难点:一是如何找到全等的三角形,根据含60°内角菱形的特点,连接AC 是解决问题的关键;二是点P 是动点,当它运动到菱形的外部时,在其运动过程中由“手拉手”模型找全等三角形;三是求不规则四边形的面积,要想到运用割补法,将四边形分解成两个三角形求解.点拔几何压轴题中的“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.1.已知,△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时:①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其他条件不变时,∠BDE的度数是____________________;(用含α的代数式表示)(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.2.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长;第2题图②若DG=GF,求BC的长;(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.类型二新定义型我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =________BC ; ②如图③,当∠BAC=90°,BC =8时,则AD 长为________. 猜想论证(2)在图①中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图④,在四边形ABCD 中,∠C=90°,∠D=150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.【分析】 (1)①证明△ADB′是含有30°角的直角三角形,则可得AD =12AB′=12BC ;②先证明△BAC≌△B′AC′,根据直角三角形斜边上的中线等于斜边的一半即可;(2)结论:AD =12BC.如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M ,C′M,先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M ,即可解决问题; (3)存在.如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.先证明PA =PD ,PB =PC ,再证明∠APD+∠BPC =180°即可. 【自主解答】 解:(1)①12;【解法提示】 ∵△ABC 是等边三角形, ∴AB =BC =AB =AB′=AC′. ∵DB′=DC′, ∴AD⊥B′C′.∵α+β=180°,∴∠BAC+∠B′AC′=180°, ∵∠BAC=60°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=12AB′=12BC.②4;【解法提示】 ∵α+β=180°, ∴∠BAC+∠B′AC′=180°. ∵∠BAC=90°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC =AC′, ∴△BAC≌△B′AC′(SAS), ∴BC=B′C′. ∵B′D=DC′, ∴AD=12B′C′=12BC =4.(2)结论:AD =12BC.证明:如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M,C′M.例2题解图①∵B′D=DC′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC′=B′M=AC. ∵α+β=180°,∴∠BAC+∠B′AC′=180°. ∵∠B′AC′+∠AB′M=180°, ∴∠BAC=∠MB′A. ∵AB=AB′,∴△BAC≌△AB′M(SAS), ∴BC=AM ,∴AD=12BC.(3)存在.证明:如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.例2题解图②∵∠ADC=150°, ∴∠MDC=30°, 在Rt△DCM 中,∵CD=23,∠DCM=90°,∠MDC=30°, ∴CM=2,DM =4,∠M=60°. 在Rt△BEM 中,∵∠BEM=90°,BM =14,∠MBE=30°, ∴EM=12BM =7,∴DE=EM -DM =3. ∵AD=6,∴AE=DE. ∵BE⊥AD, ∴PA=PD. ∵PF 垂直平分BC ,∴PB=PC.在Rt△CDF中,∵CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF.易证△FCP≌△CFD,∴CD=PF.∵CD∥PF,∴四边形CDPF是平行四边形.∵∠DCF=90°.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.【难点突破】第(3)问根据新定义判断点P的存在性是本题难点,但运用“直角三角形中30°的角所对的直角边是斜边的一半”的性质以及三角形全等添加合适辅助线即可求解.点拔解决这类问题,首先要理解新定义的含义及实质;其次要注意,在证明线段、角度相等或某个特殊图形时,主要应用全等,在计算线段的长或图形的周长、面积时,常注意运用相似、勾股定理及图形面积公式等.1.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图①,若PA =PB ,则点P 为△ABC 的准外心.求解:(1)如图②,CD 为等边△ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数;(2)已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,求PA 的长.2.如图①,在△ABC中,过顶点A作直线与对边BC相交于点D,两交点之间的线段把这个三角形分成两个图形.若其中有一个图形与原三角形相似,则把这条线段叫做这个三角形的“顶似线”.(1)等腰直角三角形的“顶似线”的条数为______;(2)如图②,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线,求证:BD是△ABC的“顶似线”;(3)如图③,在△ABC中,AB=4,AC=3,BC=6,求△ABC的“顶似线”的长.3.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这条边上的“奇特三角形”,这条边称为“奇特边”.(1)如图①,已知△ABC是“奇特三角形”,AC>BC,且∠C=90°.①△ABC的“奇特边”是________;②设BC=a,AC=b,AB=c,求a∶b∶c;(2)如图②,AM是△ABC的中线,若△ABC是BC边上的“奇特三角形”,找出BC2与AB2+AC2之间的关系;(3)如图③,在四边形ABCD中,∠B=90°(AB<BC),BC=27,对角线AC把它分成了两个“奇特三角形”,且△ACD是以AC为腰的等腰三角形,求等腰△ACD 的底边长.4.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=__________;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.类型三操作探究型【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=__________.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC =120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD =5,AD=kAB(k为常数),求BD的长(用含k的式子表示).【分析】【操作发现】(1)先找到点B,C的对应点B′,C′,再连接构成三角形即可;(2)求∠AB′B的度数可先判断△AB′B是等腰直角三角形,再求角度;【问题解决】根据两种不同的想法,选择其中一个进行证明;【灵活运用】需将△ABD绕点A旋转得到△ACG,再证明∠CDG=90°即可.【自主解答】解:【操作发现】(1)如解图①所示,△AB′C′即为所求;(2)45°.【解法提示】连接BB′.∵△AB′C′是由△ABC绕点A按顺时针方向旋转90°得到的,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°.【问题解决】如解图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C,∴△APP′是等边三角形,∠AP′C=∠APB=360°-90°-120°=150°,∴PP′=AP ,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°, ∴PP′=32PC ,即AP =32PC.∵∠APC=90°,∴AP 2+PC 2=AC 2,即(32PC)2+PC 2=72,∴PC=27,∴AP=21,∴S △APC =12AP·PC=73;【灵活运用】如解图③,连接AC.∵AE⊥BC,BE =EC ,∴AB=AC ,将△ABD 绕点A 逆时针旋转使得AB 与AC 重合,点D 的对应点为G ,连接DG.则BD =CG.例3题解图③∵∠BAD=∠CAG,∴∠BAC=∠DAG.∵AB=AC ,AD =AG ,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG.∴DG=kBC=4k.∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG=DG2+CD2=16k2+25.∴BD=CG=16k2+25.【难点突破】在【灵活运用】一问中,要确定BD与k的数量关系,关键在于旋转△ABD,使得AB与AC重合,从而证明∠CDG=90°,构造直角三角形是解决本题的难点,也是解决问题的突破口.点拔对于操作探究问题,首先掌握图形变换的性质,如图形的折叠:折痕为对称轴,有折痕就有角平分线,有折痕就有垂直平分等;图形的平移:有平移就有平行;图形的旋转:旋转前后图形全等,对应边相等,对应角相等;对应点与旋转中心的连线所成的角为旋转角,有旋转就有等腰三角形;其次注意运用全等证明线段相等,利用勾股定理或相似求线段的长.1.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF 的数量关系,并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图③,猜想AE与DF的数量关系,并说明理由;②将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图④中画出草图,并直接写出AE′和DF′的数量关系.2.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC 的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是______________;位置关系是______________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.3.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合),DE∥AB交AC于点F,CE∥AM,连接AE.(1)如图①,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图②,当点D不与点M重合时,(1)中的结论还成立吗?请说明理由.(3)如图③,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.参考答案类型一1.解:(1)①∵CA=CB,BN=AM,∴CB-BN=CA-AM,∴CN=CM,∵∠ACB=∠ACB,BC=CA,∴△BCM≌△ACN.②解:∵△BCM≌△ACN,∴∠MBC=∠NAC.∵EA=ED,∴∠EAD=∠EDA.∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°-90°=90°;∴∠BDE=90°.(2)α或180°-α;(3)43或3 2.2.解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG=AE2+EG2=6 5.∵EG∥AC,∴△ACF∽△GEF,∴FGAF=EGAC=12,∴FG=13AG=2 5.第2题解图①②如解图①,在正方形ACDE中,AE=ED,∠AEF=∠DEF=45°.∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x.∵AE∥BC,∴∠B=∠1=x.∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC=ACtan 30°=12 3.(2)在Rt△ABC中,AB=AC2+BC2=122+92=15,如解图②,当点D在线段BC上时,此时只有GF=GD.第2题解图②∵DG∥AC,∴△BDG∽△BCA,∴BDDG=BCAC=34,∴设BD=3x,则DG=4x,BG=5x,AE=CD=9-3x,∴GF=GD=4x,则AF=15-9x.∵AE∥CB,∴△AEF∽△BCF,∴AEBC=AFBF,∴9-3x9=15-9x9x,整理得x2-6x+5=0,解得x=1或5(舍去),∴腰长GD为4.如解图③,当点D在线段BC的延长线上,且直线AB,CE的交点在AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,第2题解图③∴FG=DG =12+4x.∵AE∥BC,∴△AEF∽△BCF, ∴AE BC =AF BF , ∴3x 9=9x +129x +27, 解得x =2或-2(舍去), ∴腰长DG 为20.如解图④,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方时,此时只有DF =DG ,过点D 作DH⊥FG 于点H.第2题解图④设AE =3x ,则EG =4x ,AG =5x ,DG =4x +12, ∴FH=GH =DG·cos∠DGB=(4x +12)×45=16x +485,∴GF=2GH =32x +965,∴AF=GF -AG =7x +965.∵AC∥DG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =7x +96532x +965, 解得x =12147或-12147(舍去),∴腰长GD 为84+48147,如解图⑤,当点D 在线段CB 的延长线上时,此时只有DF =DG ,过点D 作DH⊥AG 于点H.设AE =3x ,则EG =4x ,AG =5x ,DG =4x -12, ∴FH=GH =DG·cos∠DGB=16x -485,第2题解图⑤∴FG=2FH =32x -965,∴AF=AG -FG =96-7x5.∵AC∥EG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =96-7x 532x -965, 解得x =12147或-12147(舍去),∴腰长DG 为-84+48147.综上所述,等腰三角形△DFG 的腰长为4或20或84+48147或-84+48147.类型二1.解:(1)①如解图①,若PB =PC ,连接PB ,则∠PCB=∠PBC. ∵CD 为等边三角形的高,∴AD=BD ,∠PCB=30°, ∴∠PBD=∠PBC=30°,∴PD=33DB =36AB , 与已知PD =12AB 矛盾,∴PB≠PC;②若PA =PC ,连接PA ,同理可得PA≠PC; ③若PA =PB ,由PD =12AB ,得PD =AD ,∴∠APD=45°,故∠APB=90°. (2)∵BC=5,AB =3,∠BAC=90°, ∴AC=BC 2-AB 2=52-32=4.①若PB =PC ,设PA =x ,则PC =PB =4-x , ∴x 2+32=(4-x)2,∴x=78,即PA =78;②若PA =PC ,则PA =2;③若PA =PB ,由解图②知,在Rt△PAB 中,不可能存在. 综上所述,PA 的长为2或78.2.(1)解:1.(2)证明: ∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD 是∠ABC 的角平分线,∴∠ABD=∠DBC=36°,∴∠A=∠CBD. 又∵∠C=∠C,∴△ABC∽△BDC, ∴BD 是△ABC 的“顶似线”.(3)解:①如解图①,当△ADC∽△BAC 时,AD 为△ABC 的“顶似线”, 则AD AB =AC BC ,即AD 4=36,∴AD=2; ②如解图②,当△ADC∽△ACB 时,CD 为△ABC 的“顶似线”,则CD CB =AC AB ,即CD 6=34,∴CD=92; ③过顶点B 的“顶似线”不存在.综上所述,△ABC 的“顶似线”的长为2或92.3.解:(1)①AC;②如解图①,过点B 作AC 边上的中线BE ,则BE =AC =b ,CE =AE =12b.在Rt△ABC 中,a 2+b 2=c 2, 在Rt△BCE 中,a 2+(12b)2=b 2.解得a =32b ,c =72b.∴a∶b∶c=3∶2∶7.(2)如解图②,过点A 作AF⊥BC 于点F ,则∠AFB=∠AFC=90°. 设AM =BC =a ,AF =h ,MF =x ,则BM =CM =12a.在Rt△ABF 中,AB 2=BF 2+AF 2=(a2+x)2+h 2,在Rt△ACF 中,AC 2=CF 2+AF 2=(a2-x)2+h 2,∴AB 2+AC 2=a22+2x 2+2h 2.在Rt△AMF 中,AM 2=MF 2+AF 2,即a 2=x 2+h 2.∴AB 2+AC 2=5a 22=52BC 2.(3)∵∠B=90°,BC >AB ,∴BC 为△ABC 的“奇特边”. ∵BC=27,∴由(1)②知AB =32BC =21,AC =72BC =7.设等腰△ACD 的底边长为y ,由(2)中结论知:①当腰为“奇特边”时,有72+y 2=52×72,解得y =726(负值已舍去).②当底边为“奇特边”时,有72+72=52×y 2,解得y =1455(负值已舍去).∴等腰△ACD 的底边长为726或145 5.4.解:(1)∵∠C>90°,∠A=60°, ∴β=60°,α=15°,∴∠B=15°.(2)若存在一点E ,使得△ABE 也是“准互余三角形”, 则2∠EBA+∠EAB=90°.如解图①,作射线BF ,使得∠FBE=∠ABE ,延长AE 交BF 于点F ,则∠BFE=90°.即BE 为∠FBA 的角平分线,过点E 作EG⊥AB 于点G , 则EG =EF ,可得△BEF≌△BEG. 又∵△BEG∽△BAC,∴△BEF∽△BAC, ∴BF BC =EF AC ,∴BF 5=EF4①. 又∵△BEF∽△AEC,∴EF CE =BF AC ,∴EF 5-BE =BF 4②,由①②可得,BE =1.8.(3)如解图②,将△BCD 沿BC 翻折得△BCE,则CE =CD =12,∠ABD=2∠BC D =。

高考数学二轮复习考点十二《数列综合练习》课件

高考数学二轮复习考点十二《数列综合练习》课件

数列,当 n 为偶数时,bn+2=bn+1,数列为以 1 为公差的等差数列,∴S23
1-212
11×(11-1)
=(b1+b3+…+b23)+(b2+b4+…+b22)= 1-2 +11×4+
2
×1=212-1+44+55=4194.
2.等差数列{an}中,a1+a2=152,a2+a5=4,设 bn=[an],[x]表示不超 过 x 的最大整数,[0.8]=0,[2.1]=2,则数列{bn}的前 8 项和 S8=( )
A.12<a2<1
B.{an}是递增数列
C.12<a3<34
D.34<a2022<1
答案 ABD
解析 由 an+1=an+ln (2-an),0<a1<12,设 f(x)=x+ln (2-x),则 f′(x) =1-2-1 x=12- -xx,所以当 0<x<1 时,f′(x)>0,即 f(x)在(0,1)上单调递增, 所以 f(0)<f(x)<f(1),即12=ln e<ln 2<f(x)<1+ln 1=1,所以12<f(x)<1,即12 <an<1(n≥2),故 A 正确;因为 f(x)在(0,1)上单调递增,0<an<1(n∈N*),所 以 an+1-an=ln (2-an)>ln (2-1)=0,所以{an}是递增数列,故 B项中,只有一项符合题目要求) 1.已知数列{bn}满足 b1=1,b2=4,bn+2=1+sin2n2πbn+cos2n2π,则该 数列的前 23 项和为( ) A.4194 B.4195 C.2046 D.2047
答案 A
解析 由题意,得当 n 为奇数时,bn+2=2bn,数列为以 2 为公比的等比

2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习(附答案)

2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习(附答案)

2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习【总结】1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.【典型例题】例1.(2023秋ꞏ内蒙古包头ꞏ高三统考期末)已知函数()()ln 11f x x a x =--+. (1)若()f x 存在极值,求a 的取值范围;(2)当2a =时,讨论函数()()sin g x f x x =+的零点情况.例2.(2023春ꞏ全国ꞏ高三竞赛)已知函数()()1e cos ,0,2xf x x x π-=+∈.设()f x '为()f x 的导函数.(1)证明:()f x '有且仅有一个极值点;(2)判断()f x 的所有零点之和与2π的大小关系,并说明理由.例3.(2023秋ꞏ重庆ꞏ高三统考学业考试)已知函数2()ln ,R f x x x a x a =--∈.(1)当1a =时,求曲线()f x 在点(1,0)处的切线方程; (2)当02e a <<时,讨论函数()f x 的零点个数.例4.(2023秋ꞏ山东日照ꞏ高三校联考期末)已知函数()sin e ()x f x x a f x π-='-,是()f x 的导函数.(1)若()0f x ≥在(π,π)-上恒成立,求实数a 的取值范围;(2)若(π)0f '=,判断关于x 的方程()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数,并说明理由.例5.(2023秋ꞏ江西赣州ꞏ高三统考期末)已知函数()e x f x =,()22g x x x a =-++.(1)讨论函数()()()h x f x g x =⋅的单调性;(2)若函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,求证:曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.例6.(2023春ꞏ广东江门ꞏ高三校联考开学考试)已知函数21()e 2xf x x ax =+,()f x '为其导函数.(1)若2a =-,求()f x '的单调区间;(2)若关于x 的方程()x f x e =有两个不相等的实根,求实数a 的取值范围.例7.(2023ꞏ全国ꞏ高三专题练习)已知2x =是函数2()e x f x ax =-的极值点.(1)求a ;(2)证明:()f x 有两个零点,且其中一个零点02,0e x ⎛⎫∈- ⎪⎝⎭;(3)证明:()f x 的所有零点都大于1ln 22-.例8.(2023秋ꞏ安徽阜阳ꞏ高三安徽省临泉第一中学校考期末)已知函数1()e xf x x=+. (1)求()f x 的导函数()f x '的单调区间;(2)若方程()f x ax =(R a ∈)有三个实数根123 ,,x x x ,且12301x x x <<<<,求实数 a 的取值范围.例9.(2023春ꞏ江苏南京ꞏ高三南京市宁海中学校考阶段练习)已知函数()e xf x =和()ln g x ax x =-,a ∈R(1)求()y f x =在0x =处的切线方程;(2)若当()1,x ∈+∞时,()ln g x x x a <+恒成立,求a 的取值范围; (3)若()()h x f x ax =-与()y g x =有相同的最小值. ①求出a ;②证明:存在实数b ,使得()h x b =和()g x b =共有三个不同的根1x 、2x 、()3123x x x x <<,且1x 、2x 、3x 依次成等差数列.【过关测试】1.(2023秋ꞏ江苏苏州ꞏ高三统考期末)已知函数()ln(1)2axf x x x =+-+. (1)若0x ≥时,()0f x ≥,求实数a 的取值范围; (2)讨论()f x 的零点个数.2.(2023秋ꞏ河南驻马店ꞏ高三统考期末)已知函数()21ln 12f x x x x x =---. (1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围.3.(2023ꞏ全国ꞏ高三专题练习)已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.4.(2023秋ꞏ河南信阳ꞏ高三信阳高中校考期末)已知函数()()212ln ,e (0)x b f x x x a x g x xx -=--=->,其中0,,e a b ⎤>∈⎥⎦是自然对数的底数. (1)若()f x 在区间()1,+∞上单调递增,求a 的取值范围;(2)设函数()()()()()2f xg x f x g xh x +--=,证明:存在唯一的正实数a ,使得()h x 恰好有两个零点.5.(2023秋ꞏ内蒙古呼和浩特ꞏ高三统考期末)已知函数()e 2xx x a f x a =-+.(1)当12a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围.6.(2023秋ꞏ河北衡水ꞏ高三河北衡水中学校考阶段练习)已知函数()e sin xf x x ax =+,π0,2x ⎡⎤∈⎢⎥⎣⎦. (1)若1a =-,求()f x 的最小值;(2)若()f x 有且只有两个零点,求实数a 的取值范围.7.(2023ꞏ辽宁ꞏ辽宁实验中学校考模拟预测)已知函数()e cos xf x x =.(1)求()f x 在区间π0,2⎛⎫⎪⎝⎭内的极大值;(2)令函数()1()e xaf x F x x =-,当πa >时,证明:()F x 在区间π0,2⎛⎫ ⎪⎝⎭内有且仅有两个零点.8.(2023秋ꞏ江苏南通ꞏ高三统考期末)已知函数()ln f x a x =,()()1e xg x x =-,其中a 为实数.(1)若函数()f x ,()g x 的图象在1x =处的切线重合,求a 的值;(2)若e a >,设函数()()()h x f x g x =-的极值点为0x .求证:①函数()h x 有两个零点1x ,2x (12x x <);②01231x x x -->.9.(2023ꞏ全国ꞏ模拟预测)已知函数()()2sin ln 1f x x x x =-+-. (1)当10-<≤x 时,求()f x 的最小值;(2)设()()g x f x x =+,(]1,2πx ∈-,证明:()g x 有且仅有3个零点.(1.414≈,πln 1 1.544⎛⎫-≈- ⎪⎝⎭.)10.(2023春ꞏ云南ꞏ高三校联考开学考试)已知函数()(01)x f x a ax a a =->≠且. (1)当e a =时,求函数()f x 的极值;(2)讨论()f x 在区间(0,1)上的水平切线的条数.11.(2023秋ꞏ广西南宁ꞏ高三南宁二中校考期末)已知函数()()()22ln 11af x x x =+-+有两个不同的零点x 1,x 2.(1)当112x -<<-时,求证:()12ln 11x x +>-+;(2)求实数a 的取值范围;12.(2023秋ꞏ湖北武汉ꞏ高三统考期末)已知函数()xf x a =与()log a g x x =(0a >,且1a ≠)(1)求()g x 在()()1,1g 处的切线方程;(2)若1a >,()()()h x f x g x =-恰有两个零点,求a 的取值范围13.(2023秋ꞏ浙江ꞏ高三浙江省永康市第一中学校联考期末)已知函数()e x f x ax =-,()2g x x a =-+(1)当1a =时,求函数()()y f x g x =-的最小值;(2)设01a <<,证明:曲线()y f x =与曲线()y g x =有两条公切线.14.(2023ꞏ全国ꞏ模拟预测)已知函数()ln f x a x x =-1e a ⎛⎫> ⎪⎝⎭(e 是自然对数的底数).(1)若12,x x (120x x <<)是函数()y f x =的两个零点,证明:12112ln x x x x <-; (2)当2a =时,若对于0k ∀>,曲线C :2y m kx =-与曲线()y f x =都有唯一的公共点,求实数m 的取值范围.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()e 1xf x a x a =--∈R .(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()ln e 0f x x +-=在()1,+∞无实数解,求实数a 的取值范围.16.(2023ꞏ全国ꞏ高三专题练习)已知函数2()eln (R),()eln x f x ax x a g x x x=+∈=-. (1)讨论函数()()2F x f x =在()0,∞+上的单调性;(2)若函数()f x 的图象与()g x 的图象有三个不同的交点,求实数a 的取值范围.17.(2023ꞏ全国ꞏ高三专题练习)已知函数()ln f x a x x =-(e 是自然对数的底数). (1)讨论函数()f x 的单调性;(2)当2a =时,若对于0k ∀>,曲线C :2y m kx =-与曲线()y f x =都有唯一的公共点,求实数m 的取值范围.参考答案【总结】1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.【典型例题】例1.(2023秋ꞏ内蒙古包头ꞏ高三统考期末)已知函数()()ln 11f x x a x =--+. (1)若()f x 存在极值,求a 的取值范围;(2)当2a =时,讨论函数()()sin g x f x x =+的零点情况. 【答案解析】(1)因为()()ln 11f x x a x =--+,所以()()11(0)f x a x x'=-->, 当10a -≤,即1a ≤时,()0f x ¢>,则()f x 为单调递增函数,不可能有极值,舍去; 当10a ->,即1a >时,令()0f x '=,解得11x a =-, 当101x a <<-时,()0f x ¢>;当11x a >-时,()0f x '<;所以()f x 在10,1a ⎛⎫ ⎪-⎝⎭上单调递增,在1,1a ⎛⎫+∞⎪-⎝⎭上单调递减, 所以()f x 在11x a =-取得极大值,符合题意; 综上:1a >,故实数a 的取值范围为()1,+∞.(2)当2a =时,()ln 1sin (0)g x x x x x =-++>,则()11cos g x x x'=-+, 令()()11cos 0h x x x x =-+>,则()21sin h x x x'=--, (i )当(]0,πx ∈时,()0h x '<,则()h x 单调递减,即()g x '单调递减, 注意到()cos101g '=>,()120ππg '=-<, 所以存在唯一的()01,πx ∈使()00g x '=,且当00x x <<时,()0g x '>,()g x 单调递增, 当0πx x <≤时,()0g x '<,()g x 单调递减,注意到22211121sin 0e e e g ⎛⎫=--++< ⎪⎝⎭,()1sin10g =>,2ln πln e 2π1<=<-,则()πln ππ10g =-+<,所以()g x 在21,1e ⎛⎫⎪⎝⎭和()1,π上各有一个零点;(ii )当(]π,2πx ∈时,sin 0x ≤,故()ln 1g x x x ≤-+, 令()()ln 1π2πx x x x ϕ=-+<≤,则()110x xϕ'=-<, 所以()x ϕ在(]π,2π上单调递减,故()()πln ππ10x ϕϕ<=-+<, 所以()()0g x x ϕ≤<,故()g x 在(]π,2π上无零点; (iii )当()2π,x ∈+∞时,sin 1x ≤,则()ln 2g x x x ≤-+, 令()()ln 22πm x x x x =-+>,则()110m x x=-<',所以()m x 在()2π,+∞上单调递减, 又3ln 2πln e 32π2<=<-,故()()2πln 2π2π20m x m <=-+<, 所以()()0g x m x ≤<,故()g x 在()2π,+∞上无零点;综上:()g x 在21,1e ⎛⎫⎪⎝⎭和()1,π上各有一个零点,共有两个零点.例2.(2023春ꞏ全国ꞏ高三竞赛)已知函数()()1e cos ,0,2xf x x x π-=+∈.设()f x '为()f x 的导函数.(1)证明:()f x '有且仅有一个极值点;(2)判断()f x 的所有零点之和与2π的大小关系,并说明理由.【答案解析】(1)证明:因为()()1e cos ,0,2πx f x x x -=+∈,所以()1e sin x f x x --'=- 设()()1e sin xg x f x x -==--',()0,2πx ∈,所以()()111e cos e 1e cos xx x g x x x ---=--'=,其中1e 0x ->恒成立,令()11e cos x h x x -=-,()0,2πx ∈,则()111πecos e sin sin 4x x x h x x x x ---⎛⎫=-+='- ⎪⎝⎭,因为()0,2πx ∈,所以ππ7π,444x ⎛⎫-∈- ⎪⎝⎭, 所以当π0,4x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,函数()h x 单调递减,当π5π,44x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,函数()h x 单调递增,当5π,2π4x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,函数()h x 单调递增;又()π1104π01e 0,1e 1e 0422h h --⎛⎫=->=->-> ⎪⎝⎭,5ππ044h h ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,7π1147π1e 1e 0422h -⎛⎫=-<-< ⎪⎝⎭,()7π2π04h h ⎛⎫<< ⎪⎝⎭所以05π7π,44x ⎛⎫∃∈ ⎪⎝⎭,使得()01001e cos 0x h x x -=-= ,即010e cos xx -=,故对于()()1e x g x h x -'=有()00g x '=,当()00,x x ∈时,()00g x '>,函数()f x '单调递增,当()0,2πx x ∈时,()00g x '<,函数()f x '单调递减,所以0x 是函数()f x '的极大值点,()f x '无极小值点,故()f x '有且仅有一个极值点. (2)()f x 的所有零点之和大于2π,理由如下:函数()()1e cos ,0,2xf x x x π-=+∈,其导函数()1e sin x f x x --'=-,05π7π,44x ⎛⎫∃∈ ⎪⎝⎭,使得当()00,x x ∈时,()f x '单调递增,当()0,2πx x ∈时,函数()f x '单调递减,又010ecos x x -=,所以()()0100000π0e 0,e sin cos sin 4xf f x x x x x -⎛⎫=-<=--=--=+' ⎝'⎪⎭,因为057π,π44x ⎛⎫∈ ⎪⎝⎭,所以0π3π,2π42x ⎛⎫+∈ ⎪⎝⎭,所以()00f x '>,又()12π2πe0f -'=-<, 故()100,x x ∃∈,使得()10f x '=,()20,2πx x ∃∈,使得()20f x '=,于是可得:当()10,x x ∈时,()0f x '<,()f x 单调递减,当()12,x x x ∈时,()0f x ¢>,()f x 单调递增,当()2,2πx x ∈时,()0f x '<,()f x 单调递减, 又()3π11π23ππe0,e 102f f --⎛''⎭<⎫=-=-+> ⎪⎝,故13ππ,2x ⎛⎫∈ ⎪⎝⎭,则()π11π2πe 0,πe 102f f --⎛⎫=>=-< ⎪⎝⎭,所以存在π,π2α⎛⎫∈ ⎪⎝⎭使得()0f α=,所以()()1π0f x f <<,又3π123πe 02f -⎛⎫=> ⎪⎝⎭,所以()23π02f x f ⎛⎫>> ⎪⎝⎭,则存在3ππ,2β⎛⎫∈ ⎪⎝⎭使得()0f β=,又()12π2πe10f -=+>,所以函数()f x 在区间()2,2πx x ∈上无零点;故函数在()0,2πx ∈上有两个零点,αβ,且π3ππ22αβ<<<<, 由()()0f f αβ==可得:11e cos 0,e cos 0αβαβ--+=+=,所以11cos e ,cos e αβαβ--=-=-, 又111111e e e e αβαβαβαβ----<⇒->-⇒>⇒-<-, 所以()cos cos cos 2παββ<=-, 根据π3ππ22αβ<<<<,可得:ππ2α<<,π2ππ2β<-<,并且函数cos y x =在π,π2⎛⎫⎪⎝⎭上单调递减,所以2παβ>-,即2παβ+>,故()f x 的两个零点之和大于2π.例3.(2023秋ꞏ重庆ꞏ高三统考学业考试)已知函数2()ln ,R f x x x a x a =--∈.(1)当1a =时,求曲线()f x 在点(1,0)处的切线方程; (2)当02e a <<时,讨论函数()f x 的零点个数.【答案解析】(1)因为1a =,所以()2()ln 0f x x x x x =-->,令()()ln 0x x x x ϕ=->,则()111x x x xϕ-'=-=, 令()0x ϕ'>,得1x >;令()0x ϕ'<,得01x <<; 所以()x ϕ在()0,1上单调递减,在()1,+∞上单调递增, 所以()()11ln10x ϕϕ≥=->,即ln 0x x ->恒成立, 所以2()ln f x x x x =-+,则1()21f x x x'=-+, 所以切线的斜率为()12k f '==,又切点为(1,0),所以切线方程为()21y x =-,即22y x =-.(2)令()0f x =,则2ln x x a x =-,该式等价于2ln x x a x =-或2ln x x a x =-+,当2ln x x a x =-时,有2ln x a x x =--,令()()20m x x x x =->,()ln n x a x =-,则2ln x x a x =-的解的个数即为()m x 与()n x 的交点个数,易知()m x 开口向上,对称轴为12x =, 所以()m x 在10,2⎛⎫⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,且()()010m m ==,而ln y x =在()0,∞+上单调递增,02e a <<,所以()ln n x a x =-在()0,∞+上单调递减,且()10n =,作出()m x 与()n x 的图像,如图,所以()m x 与()n x 的交点只有一个,且为()1,0,故2ln x x a x =-只有一个解;当2ln x x a x =-+时,因为当1x =时,该式不成立,所以2ln x a xx=+,令()()20ln x x h x x x+=>,则2(12)ln (1)()(ln )x x x h x x +-+'=, 令()()(12)ln (1)0s x x x x x =+-+>,则1()2ln 1s x x x'=++, 令()()12ln 10g x x x x=++>,则()221x g x x -'=,令()0g x '>,得12x >;令()0g x '<,得102x <<;所以()g x 在10,2⎛⎫⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 112ln 2132ln 2022g x g ⎛⎫==++=-> ⎪⎝⎭,故()()0s x g x '=>,所以()s x 在(0,)+∞上单调递增,因为()10,e e 02ss =-<=>,所以存在0x ∈,使得()00s x =,则()s x 在0(0,)x 上()0s x <,在0(,)x +∞上()0s x >, 所以()()2()ln s x h x x '=在()0,1上()0h x '<,在()01,x 上()0h x '<,在()0,x +∞上()0h x '>,所以() h x 在()0,1上单调递减,在()01,x 上单调递减,在()0,x +∞上调递增, 因为()00s x =,所以000(12)ln (1)0x x x +-+=,即000121ln 1x x x +=+, 所以()()()2200000000min0012ln 112x x x h x h x x x x x x x ++===+⋅=++,因为22y x x =+在()0,∞+上单调递增,0x ,所以20022e 2e 2x x +>⨯+>,故()()02e h x h x ≥>, 又因为02e a <<,所以方程()a h x =无解,即方程2ln x a x x=+无解,故2ln x x a x =-+无解;综上:当02e a <<时,2ln x x a x =-与2ln x x a x =-+只有一个解,即()f x 只有一个零点. 例4.(2023秋ꞏ山东日照ꞏ高三校联考期末)已知函数()sin e ()x f x x a f x π-='-,是()f x 的导函数.(1)若()0f x ≥在(π,π)-上恒成立,求实数a 的取值范围;(2)若(π)0f '=,判断关于x 的方程()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数,并说明理由.【答案解析】(1)由题意()0f x ≥在(π,π)-上恒成立,得π()sin e 0x f x x a --≥= ,即πe e sin x a x ≤恒成立,令()e sin x m x x =,则()()e sin cos xm x x x '=+ ,当(π,π)x ∈-时,π3π5π(,)444x +∈-,令()()e sin cos 0xm x x x '=+>π04x +>,则π(0,π)4x +∈,得π3π44x -≤<,令()()e sin cos 0xm x x x '=+<π04x +<,π3π(,0)44x +∈-或π5π(π,)44x +∈得 ππ4x -<<-或3ππ4x <<, 所以()()e sin cos xm x x x '=+在π(π,)4--和(3π,π)4为减函数,在π3π(,)44-上为增函数,()π(π)=0m m =- ,ππ()()44ππ(e sin()44m ---=-=,故π()4min ()m x -=,故π(π4e a -≤,即5π()4a -≤,综上 ,实数a 的取值范围5π()4(,e ]2--∞ .(2)由题意()sin e ()cos e x x f x x a f x x a π-π-'=-=+,, ()π10,1f a a '=-+=∴= ,由()1f x =-,得πsin e 10x x --+= , 令()πsin e1xs x x -=-+ ,()πcos e x s x x -'=+ 令()πcos e x x x g -=+,π()sin e x g x x -'=--,令ππ()sin e ()cos e ,x x h x x h x x --'=--=-+()h x '在[]*(21)π,(22)π,N k k k ++∈上单调递减,注意到2ππ2π((21)π)1e 0,((22)π))1e 0k k h k h k ---''+=+>+=-+<, ∴存在()()021π,22()πx k k ∈++,使0()0h x '=, 且当()021πk x x +≤<时,()0h x '> ,()g x ' 单调递增, 当()02π2x x k <≤+时,()0h x '<,()g x '单调递减,且2ππ2π((21)π)e 0,((22)π)e 0k k g k g k ---''+=-<+=-< ,π2π23((21e 02k g k --'+=-> ,所以()g x '在3(21)π,(22k k ⎛⎫++ ⎪⎝⎭和3(2)π,(22)π2k k ⎛⎫++ ⎪⎝⎭上各有一个零点,设为12,x x ,且当()1[21π,)x k x ∈+时,()s x '单调递减;12(,)x x x ∈时,()s x '单调递增, 当()2(,22π]x x k ∈+时,()s x '单调递减 且()()()()2ππ2π211ππe0,221e 0k k s k s k ---''+=-+<+=+> ,∴当()121πk x x +≤≤时,()()()21π0x s k s +''<< , 当()222πx x k <≤+ 时,()()()22π0x s k s +''>>, 故()s x '在12(,)x x 上有唯一的零点,设为3x ,且当()321πk x x +<< ,时,()0s x '< ,()s x 在()321π)(,k x +上单调递减; 当()322πx x k <<+ 时,()0s x '>,()s x 在()3,22π()x k +上单调递增. 注意到2ππ2π((21)π)e 10,((22)π)e 10k k s k s k ---+=-+>+=-+> ,π2π23((2)π)e 02k s k --+=-< ,所以:()s x 在3((21)π,(2)π)2k k ++和3((22)π)2k k ++上各有一个零点,设为45,x x ,所以()s x 共两个零点,故方程()1f x =-()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数为2. 例5.(2023秋ꞏ江西赣州ꞏ高三统考期末)已知函数()e xf x =,()22g x x x a =-++.(1)讨论函数()()()h x f x g x =⋅的单调性;(2)若函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,求证:曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.【答案解析】(1)()()2e 2x h x x x a =-++定义域为R ,所以()()2e 2x h x a x '=+-,①当20a +≤即2a ≤-时,()0h x '≤恒成立, 函数()h x 在(),x ∈-∞+∞上为单调递减函数.②当20a +>即2a >-时,令()0h x '>得:x <<,令()0h x '<得:x <x >所以,函数()h x 在(x ∈上单调递增,在(,x ∈-∞和)x ∈+∞上单调递减综上所述,当2a ≤-时,函数()h x 在(),x ∈-∞+∞上为单调递减;当2a >-时,()h x 在(x ∈上单调递增,在(,x ∈-∞和)x ∈+∞上单调递减;(2)构造()()()2e 2x F xf xg x x x a =-=+--,所以()22e xF x x '=+-.记()()m x F x '=,()20e xm x '=+>恒成立,即()m x 在(),x ∈-∞+∞上单调递增.而()00210e m =-=-<,1102m ⎛⎫=> ⎪⎝⎭,所以存在唯一的010,2x ⎛⎫∈ ⎪⎝⎭使得()00m x =,即000e 22xx +-=,由()e x f x =,()22g x x x a =-++可得()e xf x '=,()22g x x '=-+,所以()00e xf x '=,()0022g x x '=-+,所以()()00f x g x ''=,即曲线()y f x =与()y g x =在点M 处有相同的切线.又因为当()0,x x ∈-∞时,()0F x '<,当()0,x x ∈+∞时,()0F x '>, 故()F x 在()0,x x ∈-∞上单调递减,在()0,x x ∈+∞上单调递增, 故()F x 在0x x =上取得极小值,也是最小值, 即()()min 0F x F x =,由于函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,所以()00F x =,即0200e 20x x x a +--=,故()02220000e 24222x a x x x x x =+-=-+=--,010,2x ⎛⎫∈ ⎪⎝⎭,所以()2022a x =--在010,2x ⎛⎫∈ ⎪⎝⎭上单调递减,所以1,24a ⎛⎫∈ ⎪⎝⎭,综上,曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.例6.(2023春ꞏ广东江门ꞏ高三校联考开学考试)已知函数21()e 2xf x x ax =+,()f x '为其导函数.(1)若2a =-,求()f x '的单调区间;(2)若关于x 的方程()x f x e =有两个不相等的实根,求实数a 的取值范围.【答案解析】(1)函数2()e x f x x x =-,x ∈R ,则()()1e 2xf x x x =+-', 令()()()1e 2x h x f x x x ==+-',则()()2e 2x h x x +'=-,设()()2e 2xm x x =+-,则()()3e 0x m x x +'==,得3x =-,故(),3x ∈-∞-时,()0m x '<,函数()m x 即()h x '单调递减,()3,x ∈-+∞时,()0m x '>,函数()m x 即()h x '单调递增,所以min 31()(3)20e h x h =-=--<',又x →-∞时,()h x '→-∞,又(0)0h '=, 所以(),0x ∈-∞时,()0h x '<,函数()f x '单调递减,()0,x ∈+∞时,()0h x '>,函数()f x '单调递增,故()f x '的单调减区间为(),0∞-,增区间为()0,∞+;(2)关于x 的方程21e =e 2x x x ax +有两个不相等的实根,即函数()21e e 2x xg x x ax =-+,在x ∈R 上有两个零点,又()()()1e e e x x xg x x ax x a =+-+=+',①当0a ≥时,()0g x '=,得0x =,所以当(),0x ∈-∞时,()0g x '<,函数()g x 单调递减,当()0,x ∈+∞时,()0g x '>,函数()g x 单调递增,所以()()min 01g x g ==-,又x →-∞时,()g x →+∞,()22e 20g a =+>,则函数()g x 在x ∈R上有两个零点;②当0a <时,()0g x '=,得0x =,()ln x a =-,(i )当1a =-时,()ln 0a -=,此时()0g x '≥恒成立,函数()g x 单调递增,在x ∈R 上不可能有两个零点,不符合题意;(ii )当10a -<<时,()ln 0a -<,则当()(),ln x a ∈-∞-时,()0g x '>,函数()g x 单调递增,()()ln ,0x a ∈-时,()0g x '<,函数()g x 单调递减,当()0,x ∈+∞时,()0g x '>,函数()g x 单调递增,所以()()()()()()2211ln ln ln ln 11022g a a a a a a a a ⎡⎤-=--++-=--+<⎣⎦,()01g =-,故函数()g x 在区间(),0x ∈-∞无零点,在()0,x ∈+∞不可能存在两个零点,故不符合题意;(iii )当1a <-时,()ln 0a ->,则当(),0x ∈-∞时,()0g x '>,函数()g x 单调递增,()()0,ln x a ∈-时,()0g x '<,函数()g x 单调递减,当()()ln ,x a ∈-+∞时,()0g x '>,函数()g x 单调递增,又()01g =-,故函数()g x 在区间()(),ln x a ∈-∞-无零点,在()()ln ,x a ∈-+∞不可能存在两个零点,故不符合题意; 综上,实数a 的取值范围[)0,∞+.例7.(2023ꞏ全国ꞏ高三专题练习)已知2x =是函数2()e x f x ax =-的极值点.(1)求a ;(2)证明:()f x 有两个零点,且其中一个零点02,0e x ⎛⎫∈- ⎪⎝⎭;(3)证明:()f x 的所有零点都大于1ln 22-.【答案解析】(1)2()e x f x ax =-,则()e 2x f x ax '=-, 因为2x =是函数()f x 的极值点,所以(2)0f '=,即2e 40a -=,解得2e 4a =.当2e 4a =时,2e ()e 2xf x x '=-,当(1,2)x ∈时,()0f x '<,函数()f x 单调递减, 当(2,)x ∈+∞时,()0f x '>,函数()f x 单调递增, 所以2x =是函数()f x 的极小值点,故2e 4a =; (2)由(1)知,22e ()e 4xf x x =-,令()0f x =,则22e e 4xx =,作e xy =和22e 4y x =函数图象,如图所示,由图可知,两函数图象有2个交点,且一个交点分布在(,0)-∞上,另一个分布在(0,)+∞上, 所以方程()0f x =有2个解,即函数()y f x =有2个零点. 易知2是函数()f x 的一个零点,设另一个零点为0x ,又(0)10=>f ,2222e e 2e 2()e ()e 10e 4ef ---=--=-<,所以2(0)()0e f f -<,又函数()f x 在定义域上连续,由零点的存在性定理,知02(,0)ex ∈-;(3)由(1)知,22e ()e 4xf x x =-,当0x =时,(0)1f =, 当0x ≠时,令()0f x =,则22e 14x x -=, 设22e (0)()x h x x x -=≠,则()0h x >,23e (2)()x x x h x --=',令()00h x x '>⇒<或2x >,令()002h x x '<⇒<<,所以函数()h x 在(,0)-∞和(2,)+∞上单调递增,在(0,2)上单调递减, 又1(2)0,(2)4h h ->=,2ln 221-<-<-,得111ln 222-<<-- 所以213132,0()1ln 222ln 22-<-<-<<--,又332e >16e 4⇒>,所以当1ln 22x =-时,1322ln 2223322221e e (ln 22)11()11ln 224(()e e ln 22ln 22h ----=<=<<---, 作出函数()y h x =和14y =的图象,如图所示,由图可知,两函数图象的交点的的横坐标都大于1ln 22-,故函数()f x 的所有零点都大于1ln 22-.例8.(2023秋ꞏ安徽阜阳ꞏ高三安徽省临泉第一中学校考期末)已知函数1()e xf x x=+. (1)求()f x 的导函数()f x '的单调区间;(2)若方程()f x ax =(R a ∈)有三个实数根123 ,,x x x ,且12301x x x <<<<,求实数 a 的取值范围.【答案解析】(1)函数f (x )的定义域为()()()21,00,,e xf x x '-∞⋃+∞=-记()()g x f x '=,则()3332e 2e x x x g x x x '+=+=. 当()0,x ∈+∞时,()0g x '>,则()g x 在()0,+∞上单调递增,当(),0x ∈-∞时,记()()()32e 2,3e xx x x x x x ϕϕ'=+=+,所以(),3x ∈-∞-时,()0x ϕ'<,()x ϕ递减;()3,0x ∈-时,()0x ϕ'>,()x ϕ递增,()x ϕ的极小值为()333332e e 332e 0ϕ⎛⎫-=-> ⎪-⎝=⎭,即有()0x ϕ>, 因此()0g x '<, g (x )在(,0)-∞上单调递减,所以函数()f x '在()0,+∞上单调递增,在(,0)-∞上单调递减.(2)令()()()()211e ,e xx F x f x ax ax F x f x a a x x'=-=+-=-=--' 方程()f x ax =(R a ∈)有三个实数根等价于F (x )有三个零点123,,x x x ,12301x x x <<<<,当0a ≤时,因为0x >,则()0F x >,此时F (x )在()0,+∞无零点; 当0a >时,由(1)知()F x '在()0,+∞上单调递增,显然1()402F a '=--<,21(ln(e ))e e 10(ln(e ))F a a '+=->->+, 因此存在00x >,使得()00F x '=,()00,x x ∈,()()0,F x F x '<单调递减,()0,x x ∈+∞,()()0,F F x x '>单调递增,①若e 1a =+,则()1e 10F a =+-=,不符合题意;②若0e 1a <<+,()1e 10F a =+->,当01x ≥时,(0,1)x ∈,()0F x >,()F x 在()0,1上无零点,当01x <时,()()1,,0x F x ∈+∞>,()F x 在()1,+∞上无零点,不符合题意, ③若e 1a >+,则()1e 10F a =+-<,()1e 10F a '=--<,于是01x >, 而当01x <<时,1e e x <<,0a ax -<-<,但1x的取值集合是(1,)+∞, 因此存在(0,1)t ∈,使得()0F t >,当1x >时,令2()e x h x x =-,()e 2x h x x '=-,令()()e 2x u x h x x '==-,则()e 2e 20x u x '=->->,即()h x '在(1,)+∞上单调递增,()(1)e 20h x h ''>=->, ()h x 在(1,)+∞上单调递增,()(1)e 10h x h >=->,因此当1x >时,2e x x >,有()2211e xF x ax x ax x ax x x=+->+->-,因为当x a ≥时,二次函数2x ax -的值域是[0,)+∞,于是得当x a ≥时,()0F x >,因此存在2301x x <<<,使得()()230F x F x ==,此时当0x <时,()e 10xF x a a '<-<-<,即函数F (x )在(,0)-∞上单调递减, 由()11111e 10,e 1e e 0a a F a F a a ---⎛⎫-=-+>-=-+<-< ⎪⎝⎭因此存在10x <,使得()10F x =,从而当e 1a >+时,F (x )有三个零点123,,x x x ,且12301x x x <<<<, 所以实数a 的取值范围是()e 1,++∞.例9.(2023春ꞏ江苏南京ꞏ高三南京市宁海中学校考阶段练习)已知函数()e xf x =和()ln g x ax x =-,a ∈R(1)求()y f x =在0x =处的切线方程;(2)若当()1,x ∈+∞时,()ln g x x x a <+恒成立,求a 的取值范围; (3)若()()h x f x ax =-与()y g x =有相同的最小值. ①求出a ;②证明:存在实数b ,使得()h x b =和()g x b =共有三个不同的根1x 、2x 、()3123x x x x <<,且1x 、2x 、3x 依次成等差数列.【答案解析】(1)因为()e x f x =,则()e x f x '=,所以,()()001f f '==,所以,()y f x =在0x =处的切线方程为1y x =+. (2)当()1,x ∈+∞时,不等式()ln g x x x a <+等价于()1ln 01a x x x -->+. 设()()1ln 1a x p x x x -=-+,则()()()()2222111211x a x a p x x x x x +-+'=-=++,且()10p =. 对于函数()2211y x a x =+-+,()()241442a a a ∆=--=-.(ⅰ)当2a ≤且()1,x ∈+∞时,()22211210x a x x x +-+≥-+>,故()0p x '>,则()p x 在()1,+∞上单调递增,因此()()10p x p >=; (ⅱ)当2a >时,令()0p x '=得11x a =-21x a =-由122110x x x x =⎧⎨>>⎩得101x <<,21x >,故当()21,x x ∈时,()0p x '<,()p x 在()21,x 单调递减,因此()()210p x p <=,不合乎题意.综上,a 的取值范围是(],2-∞.(3)①()e xh x ax =-的定义域为R ,而()e x h x a '=-,若0a ≤,则()0h x '>,此时()h x 无最小值,故0a >. 函数()ln g x ax x =-的定义域为()0,∞+,而()11ax g x a x x-'=-=. 当ln x a <时,()0h x '<,故()h x 在(),ln a -∞上为减函数, 当ln x a >时,()0h x '>,故()h x 在()ln ,a +∞上为增函数, 故()()min ln ln h x h a a a a ==-. 当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数, 当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数, 故()min 111ln 1ln g x g a a a ⎛⎫==-=+ ⎪⎝⎭.因为()e xh x ax =-和()ln g x ax x =-有相同的最小值,故1n ln l a a a a =-+,整理得到1ln 1a a a-=+,其中0a >, 设()1ln 1a s a a a -=-+,其中0a >,则()()()222211011a s a a a a a --'=-=<++, 故()s a 为()0,∞+上的减函数,而()10s =,故()0s a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =. 综上,1a =.②由①可得()e xh x x =-和()ln g x x x =-的最小值为1ln11+=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e x S x x b =--,()e 1xS x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>, 故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数, 所以()()min 010S x S b ==-<, 而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即方程e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=, 当01x <<时,()0T x '<,当1x >时,()0T x '>, 故()T x 在()0,1上为减函数,在()1,+∞上为增函数, 所以()()min 110T x T b ==-<, 而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由①讨论可得ln x x b -=、e x x b -=仅有一个解, 当1b <时,由①讨论可得ln x x b -=、e x x b -=均无根,故若存在直线y b =与曲线()y h x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x t x x x =+-,其中0x >,故()1e 2xt x x'=+-, 设()e 1x r x x =--,其中0x >,则()e 10xr x '=->,故()r x 在()0,∞+上为增函数,故()()00r x r >=即e 1x x >+, 所以()11210t x x x'>+-≥->,所以()t x 在()0,∞+上为增函数, 而()1e 20t =->,31e 333122e 3e 30e e e t ⎛⎫=--<--< ⎪⎝⎭,故()t x 在()0,∞+上有且只有一个零点2x ,且2311e x <<, 当20x x <<时,()0t x <,即e ln x x x x -<-,即()()h x g x <, 当2x x >时,()0t x >,即e ln x x x x ->-,即()()h x g x >,因此若存在直线y b =与曲线()y h x =、()y g x =有三个不同的交点, 故()()221b h x g x ==>,此时e x x b -=有两个不同的根1x 、()2120x x x <<, 此时ln x x b -=有两个不同的根2x 、()32301x x x <<<,故11e xx b -=,22e x x b -=,33ln 0x x b --=,22ln 0x x b --=,所以33ln x b x -=,即33e x bx -=,即()33e 0x bx b b ----=,故3x b -为方程e x x b -=的解,同理2x b -也为方程e x x b -=的解,又11e x x b -=可化为11e xx b =+,即()11ln 0x x b -+=,即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理2x b +也为方程ln x x b -=的解,所以{}{}1223,,x x x b x b =--,而1b >,故2312x x bx x b =-⎧⎨=-⎩,即1322x x x +=.【过关测试】1.(2023秋ꞏ江苏苏州ꞏ高三统考期末)已知函数()ln(1)2axf x x x =+-+. (1)若0x ≥时,()0f x ≥,求实数a 的取值范围; (2)讨论()f x 的零点个数.【答案解析】(1)()f x 的定义域是(1,)-+∞,22212(42)(1)()1(2)(1)(2)a x a x f x x x x x +'-+=-=++++. ①当2a ≤时,()0f x '≥,所以()f x 在(1,)-+∞上单调递增, 又因为(0)0f =,所以当0x ≥时,()(0)0f x f ≥=,满足题意; ②当2a >时,令22()(42)(1)(42)(42)g x x a x x a x a =+-+=+-+-, 由()0g x =,得1(2)0x a =-<,2(2)0x a -=>. 当()20,x x ∈时,()0g x <,()0f x '<,所以()f x 在()20,x 上单调递减, 所以()()200f x f <=,不满足题意. 综上所述,2a ≤.(2)①当2a ≤时,由(1)可得()f x 在(1,)-+∞上单调递增,且(0)0f =,所以()f x 在(1,)-+∞上存在1个零点;②当2a >时,由(1)可得()0g x =必有两根1x ,2x ,又因为(1)10g -=>,(0)420g a =-<所以1(1,0)x ∈-,2(0,)x ∈+∞.x ()11,x -1x()12,x x2x()2,x +∞()f x '+-+()f x单调递增 极大值()1f x 单调递减 极小值()2f x 单调递增当()12,x x x ∈时,因为(0)0f =,所以()f x 在()12,x x 上存在1个零点, 且()()100f x f >=,()()200f x f <=; 当()11,x x ∈-时,因为()()e 12ee 1ln e 0e 1e l---------=-=<++a aa a aaa a f ,1e 10--<-<a ,而()f x 在1(0,)x 单调递增,且1()0f x '=,而(e 1)0a g -->,故11e 1ax --<-<,所以()f x 在()11,x -上存在1个零点; 当()2,x x ∈+∞时,因为()()e 12e 1ln e 0e 1e 1a a a a a a af --=-=>++, e 10a ->,而()f x 在2(,)x +∞单调递增,且2()0f x '=,而(e 1)0ag ->, 所以2e 1ax ->,所以()f x 在()2,x +∞上存在1个零点.从而()f x 在()1,-+∞上存在3个零点.综上所述,当2a ≤时,()f x 存在1个零点;当2a >时,()f x 存在3个零点.2.(2023秋ꞏ河南驻马店ꞏ高三统考期末)已知函数()21ln 12f x x x x x =---. (1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围. 【答案解析】(1)由题意可得()ln f x x x '=-, 设()()ln h x f x x x '==-,则()111xh x x x-'=-=由()0h x '>,得01x <<,由()0h x '<,得1x >则()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,即()f x '在(0,1)单调递增,在(1,)+∞上单调递减,从而()(1)10f x f ''≤=-<,故()f x 的单调递减区间是(0,)+∞,无递增区间(2)由题意可得21(2)1(1)(1)()2a x a x a x a x g x x a x x x-+-+-+--'=+-+==, ()g x 的定义域是(0,)+∞,①当10a -<,即1a >时,1x >时()0g x '>,01x <<时()0g x '<, 则()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 因为0x →时,()g x →+∞,x →+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--<,解得52a <,故152a <<;②当10a -=,即1a =时,由21()102g x x x =--=,解得x 1=因为0x >,所以1x =()g x 有且仅有1个零点,故1a =不符合题意; ③当011a <-<,即01a <<时,由()0g x '>,得01x a <<-或1x >, 由()0g x '<,得11a x -<<,则()g x 在(0,1)a -和(1,)+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0,g x x <→+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--=或21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=, 若(1)0g =,解得52a =,不符合题意, 若(1)0g a -=,设1(0,1)t a =-∈,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=, 01t <<时,ln 0t t <,221111(1)0222t t t ---=-+-<,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解,即(1)0g a -=无解,故01a <<不符合题意;④当11a -=,即0a =时,()0g x '≥恒成立,则()g x 在(0,)+∞上单调递增,从而()g x 最多有1个零点,则0a =不符合题意;⑤当11a ->,即a<0时,由()0g x '>,得01x <<或1x a >-,由()0g x '<,得11x a <<-, 则()g x 在(0,1)和(1),a -+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0g x x <→+∞,时,()g x ∞→+ 所以()g x 要有两个零点,则(1)0g =或(1)0g a -=,若1(1)2102g a =+--=,解得52a =,不符合题意,若21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=. 设1(1,)t a =-∈+∞,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=,由(1)知21ln 12y t t t t =---在(1,)+∞上单调递减,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解, 即(1)0g a -=无解,故a<0不符合题意.综上,a 的取值范围是51,2⎛⎫⎪⎝⎭.3.(2023ꞏ全国ꞏ高三专题练习)已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围. 【答案解析】(1)由()1e e e 1log e e ea g a =⇒++=⇒=, 所以()1e x f x x -=+,()11e xf x -'=-,令()01f x x '=⇒=,当1x <时,()0f x '<,当1x >时,()0f x ¢>, 所以()f x 在(,1)-∞上递减,在(1,)+∞上递增, 所以()f x 的极小值为()12f =;(2)()()1log 1x a f x g x a x --=--,令()1log 1x a F x a x -=--(0x >), ()F x 存在唯—的零点,()11111ln ln ln ln x x F x a a xa a x a x a --⎛⎫'=-=- ⎪⎝⎭, 令()11ln ln x x xaa a ϕ-=-,()()11ln ln x x a x a a ϕ-'=+, 令()10ln x x aϕ'=⇒=-, 当10ln x a<<-时,()0x ϕ'<; 当1ln x a>-时,()0x ϕ'>, 所以()x ϕ在10,ln a ⎛⎫- ⎪⎝⎭上递减,在1,ln a ⎛⎫-+∞ ⎪⎝⎭上递增, 所以()11ln min11ln ln ax a a a ϕϕ--⎛⎫=-=-- ⎪⎝⎭,。

备考2022年中考数学二轮复习-数与式_代数式_定义新运算

备考2022年中考数学二轮复习-数与式_代数式_定义新运算

备考2022年中考数学二轮复习-数与式_代数式_定义新运算定义新运算专训单选题:1、(2018滨州.中考模拟) 已知“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…若公式 Cn m= (n>m),则C125+C126=()A .B .C .D .2、(2018滨州.中考真卷) 如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A .B .C .D .3、(2018新乡.中考模拟) 定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A . 当m=﹣3时,函数图象的顶点坐标是(,)B . 当m>0时,函数图象截x轴所得的线段长度大于C . 当m≠0时,函数图象经过同一个点D . 当m<0时,函数在x> 时,y随x的增大而减小4、(2019深圳.中考真卷) 定义新运算nx n-1dx=a n-b n,例如2xdx=k2-h2,若-x-2dx=-2.则m=().A . -2B .C . 2D .5、(2020百色.中考模拟) 对于任意实数m、n,定义一种新运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:2※6=2×6﹣2﹣6+3=7.请根据上述定义解决问题:若a<4※x<8,且解集中有2个整数解,则a的取值范围是()A . ﹣1<a≤2B . ﹣1≤a<2C . ﹣4≤a<﹣1D . ﹣4<a≤﹣16、(2020云梦.中考模拟) 定义:形如的数称为复数(其中和为实数,为虚数单位,规定),称为复数的实部,称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如,因此,的实部是﹣8,虚部是6.已知复数的虚部是12,则实部是()A . ﹣6B . 6C . 5D . ﹣57、(2020上海.中考真卷) 用换元法解方程+ =2时,若设=y,则原方程可化为关于y的方程是( )A . y2﹣2y+1=0B . y2+2y+1=0C . y2+y+2=0D . y2+y﹣2=08、(2020宝安.中考模拟) 定义一种新运算:(x1, y1)(x2, y2)=x1x2+y1y2,如(2,5)(1,3)=2×1+5×3=17,若(1,x)(2,-5)=7,则x=()A . -1 B . 0 C . 1 D . 29、(2020龙华.中考模拟) 定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点,这个矩形叫做和谐矩形,已知点P(m,n)是抛物线y=x²+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A . -12B . 0C . 4D . 1610、(2021怀化.中考模拟) 函数的零点是指使函数值等于零的自变量的值,则下列函数中存在零点的是()A .B .C .D .填空题:11、(2017漳州.中考模拟) 定义:式子1﹣(a≠0)叫做a的影子数.如:3的影子数是1﹣= ,已知a1=﹣,a2是a1的影子数,a3是a2的影子数,…,依此类推,则a2017的值是________.12、(2019封开.中考模拟) 在实数范围内规定a#b=﹣,若x#(x﹣2)=,则x=________.13、(2018龙岗.中考模拟) 在实数范围内定义一种运算“*”,其规则为,根据这个规则求方程的解为________.14、(2017福田.中考模拟) 在实数范围内规定新运算“△”,其规则是:a△b=a+b-1,则x△(x-2)>3的解集为________.15、(2019贵港.中考模拟) 若a是不为2的有理数我们把称为a的“哈利数”.如3的“哈利数”是=﹣2;﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a 3是a2的“哈利数”,a4是a3的“哈利数”,以此类推,a2019=________.16、(2020五峰土家族自治.中考模拟) 定义a*b=ab+a+b,若3*x=27,则x的值是________。

小题专练24-2021届高考数学二轮复习新高考版含解析

小题专练24-2021届高考数学二轮复习新高考版含解析
【解析】因为an+1= an,所以数列 为等比数列,公比为 ,所以数列 也为等比数列,公比为2,故a1+a3+a5+a7+a9= =31.
【答案】A
6.(考点:双曲线,★★)已知直线y=2b与双曲线 - =1(a>0,b>0)的渐近线在第一象限交于点C,双曲线的左、右焦点分别为F1,F2,若tan∠CF2F1= ,则双曲线的离心率为().
D.直四棱柱的外接球的体积为
10.(考点:椭圆,★★)过椭圆C: + =1(a>b>0)的右焦点F2作x轴的垂线,交椭圆C于A,B两点,直线l过椭圆C的左焦点和上顶点,以AB为直径的圆与l相切,则下列结论正确的是().
A.直线l的斜率为2
B.椭圆C的长轴长为短轴长的 倍
C.椭圆C的离心率为
D.|AF2|与点A到直线x= 的距离之比为
D.f(x)在 的值域为[-1,1]
【解析】根据题意,-1=2sinφ,∴φ=- ,∴f(x)=2sin ,平移后的函数解析式为g(x)=2sin =2sin ,∴ωπ=2kπ,∴ω=2k,k∈Z,又 - ≤ = ,∴ω≤ ,故ω=2,∴f(x)=2sin ,故A正确;令2x- =kπ+ ,k∈Z,得x= + ,k∈Z,当 + = 时,k无整数解,故B错误;令2x- =kπ,k∈Z,得x= + ,k∈Z,∵-π≤ + ≤π,k∈Z,∴k=-2,-1,0,1,故C正确;∵x∈ ,2x- ∈ ,∴f(x)∈[-1,2],故D错误.
A.3B.1C.-1D.-3
【解析】根据诱导公式,sin =cos =sin ,所以原式= = = ,
分子、分母同时除以cosαcos ,得出原式= =-3.

重庆市中考数学二轮复习 新定义题真题演练.doc

重庆市中考数学二轮复习 新定义题真题演练.doc

题型六 新定义题针对演练1. (2016郴州)设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a ⊕b =⎩⎪⎨⎪⎧b a (a >0)a -b (a ≤0).例如:1⊕(-3)=-31=-3,(-3)⊕ 2=(-3)-2=-5,(x 2+1)⊕(x -1)=x -1x 2+1.(因为x 2+1>0) 参照上面材料,解答下列问题:(1)2⊕ 4=________,(-2)⊕ 4=________;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x ),求x 的值.2. 对于正整数n ,定义F (n )=⎩⎪⎨⎪⎧n 2,n <10f (n ),n ≥10,其中f (n )表示n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=f (123)=12+02=1,.规定F 1(n )=F (n ),F k +1(n )=F (F k (n )).例如:F 1(123)=F (123)=10,F 2(123)=F (F 1(123))=F (10)=1.(1)求:F 2(4)和F 2015(4);(2)若F 3m (4)=89,求正整数m 的最小值.3. 如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13-(-1)3,26=33-13,所以2、26均为“麻辣数”.【立方差公式:a 3-b 3=(a -b )(a 2+ab +b 2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)求在不超过2016的自然数中,所有的“麻辣数”之和为多少?4. (2015重庆A 卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数1232+22=131,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此1232+22=131是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?__________ ____________________ __________ _________________________ _____ 并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式. 5. (2016重庆一中三模)当一个多位数为偶数位时,在其中间位插入一位数k (0≤k ≤9)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足此条件的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m ,得其关联数(0≤m ≤9,且m 为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.6. (2016重庆外国语学校二诊)定义:如果M 个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M 个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6)整除;又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…. (1)我们发现,3和6,4和12,5和20,6和30,…,都是两个数的祖冲之数组;由此猜测n 和n (n -1)(n ≥2,n 为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想; (2)若(4a ,5a ,6a )是三个数的祖冲之数组,求满足条件的所有三位正整数a .7. (2016重庆南开阶段测试三)进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n ,即可称n 进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一,对于任意一个用n (n ≤10)进制表示的数,通常使用n 个阿拉伯数字0~(n -1)进行记数,特点是逢n 进一.我们可以通过以下方式把它转化为十进制:例如:五进制数(234)5=2×52+3×5+4=69,记作(234)5=69,七进制数(136)7=1×72+3×7+6=76,记作(136)7=76.(1)请将以下两个数转化为十进制:(331)5=________,(46)7=________; (2)若一个正数可以用七进制表示为(abc )7,也可以用五进制表示为(cba )5,请求出这个数并用十进制表示.8. (2016重庆实验外国语学校一诊)有一个n 位自然数abcd …gh 能被x 0整除,依次轮换个位数字得到的新数bc d …gha 能被(x 0+1)整除,再依次轮换个位数字得到的新数cd …ghab_____ _____ _____ __________ __________ 能被(x 0+2)整除,按此规律轮换后,d …ghabc 能被(x 0+3)整除,…,habc …g 能被(x 0+n -1)整除,则称这个n 位数abcd …gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:32+22=134能被2整除,243能被3整除,432+22=13能被4整除,则称三位数32+22=134是2的一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”;(2)若三位自然数abc 是3的一个“轮换数”,其中a =2,求这个三位自然数abc .9. 把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…,如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如: 32+22=13→32+22=13→12+02=1, →12+02=1, 72+02=→72+02=42+92=97→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32+22=13和72+02=都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.10. 定义一种对于三位数abc (a 、b 、c 不完全相同)的“F 运算”:重排abc 的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如abc =213时,则213――→F 198(32+22=131-123=198)――→F 792(981-189=792). (1)579经过三次“F 运算”得________; (2)假设abc 中a >b >c ,则abc 经过一次“F 运算”得______(用代数式表示); (3)猜想:任意一个三位数经过若干次“F 运算”都会得到一个定值,请证明你的猜想.11. (2016大渡口区诊断性检测)若一个整数能表示成a 2+b 2(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为5=22+12.再如,M =x 2+2xy +2y 2=(x +y )2+y 2(x ,y 是整数),所以M 也是“完美数”.(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知S =x 2+4y 2+4x -12y +k (x ,y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由;(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”. 12. (2016重庆西大附中第九次月考)对于实数x ,y 我们定义一种新运算L (x ,y )=ax +by (其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L (x ,y ),其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若L (x ,y )=x +3y ,则L (2,1)=________,L (32,12)=________;(2)已知L (1,-2)=-1,L (13,12)=2.①a =________,b =________;②若正格线性数L (m ,m -2),求满足50<L (m ,m -2)<100的正格数对有多少个;③若正格线性数L (x ,y )=76,求满足这样的正格数对有多少个;在这些正格数对中,有满足问题②的数对吗?若有,请找出;若没有,请说明理由.13. (2016重庆巴蜀二诊)古希腊的毕达哥拉斯学派由古希腊哲学家毕达哥拉斯所创立,毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,如他们研究各种多边形数:记第n 个k 边形数N (n ,k )=k -22n 2+4-k2n (n ≥1,k ≥3,k 、n 都为整数),如第1个三角形数N (1,3)=3-22×12+4-32×1=1;第2个三角形数N (2,3)=3-22×22+4-32×2=3; 第3个四边形数N (3,4)=4-22×32+4-42×3=9; 第4个四边形数N (4,4)=4-22×42+4-42×4=16. (1)N (5,3)=________,N (6,5)=________;(2)若N (m ,6)比N (m +2,4)大10,求m 的值;(3)若记y =N (6,t )-N (t ,5),试求出y 的最大值.题型六 新定义题针对演练1. 解:(1)2,-6.【解法提示】2⊕ 4=42=2,(-2)⊕ 4=-2-4=-6.(2)∵x >12,∴2x -1>0,∴(2x -1)⊕(4x 2-1)=12142--x x =-4-(1-4x ),即2x +1=-5+4x , 解得x =3. ∴x 的值为3.2. 解:(1)F 2(4)=F (F 1(4))=F (F (4))=F (16)=12+62=37; F 1(4)=F (4)=16,F 2(4)=37,F 3(4)=58,F 4(4)=89, F 5(4)=145,F 6(4)=26,F 7(4)=40,F 8(4)=16,通过观察发现,每进行7步运算是一个循环,2015÷7=287……6,因此F 2015(4)=F 6(4)=26.(2)由(1)可知,每进行7步运算是一个循环,F 4(4)=89=F 11(4)=F 18(4)=F 4+7i (4),其中i =0,1,2,3,…,要求m 的最小值,则(4+7i )为3的最小公倍数,因为3m >4,所以3m =18,所以m =6.3. 解:(1)98是麻辣数,169不是麻辣数,理由如下: 设k 为整数,则2k +1,2k -1为两个连续奇数, 设M 为麻辣数,则M =(2k +1)3-(2k -1)3=24k 2+2,∵98=53-33,故98是麻辣数;M =24k 2+2为偶数,故169不是麻辣数.(2)同(1)令M ≤2016,则24k 2+2≤2016,解得k 2≤100712<84,故k 2=0,1,4,9,16,25,36,49,64,81,故M 的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860. 所以,在不超过2016的自然数中,所有的“麻辣数”之和为6860. 4. 解:(1)1331,2442,1001.猜想:任意一个四位“和谐数”能被11整除.理由:设一个四位“和谐数”记为xyyx ,用十进制表示为: 1000x +100y +10y +x =1001x +110y =11(91x +10y ), ∵x 、y 是0~9之间的整数, ∴11(91x +10y )能被11整除.∴任意一个四位“和谐数”能被11整除.(2)设这个三位“和谐数”为xyx ,用十进制表示为: 100x +10y +x =101x +10y , ∵它是11的倍数,_____ __________ ___ ∴1110101yx +为整数.将这个式子变形:1110101y x +=11291121199yx y x y x y x -++=-++, ∵x 、y 是0~9之间的整数, ∴112yx -应为整数. 又∵1≤x ≤4,0≤y ≤9, ∴2≤2x ≤8,-9≤-y ≤0, ∴-7≤2x -y ≤8, ∵要使112yx -是整数,则2x -y 只能是0, ∴2x -y =0,即y =2x ,∴y 与x 的函数关系式是y =2x (1≤x ≤4,x 为自然数). 5. (1)解:如:135,225,315,405. 【解法提示】设原来的两位数为xy ,插入的数字为k .由题意得:9(10x +y )=100x +10k +y , 化简得:4y -5x =5k , 当k =0时,4y -5x =0, 则x =4,y =5;当k =1时,4y -5x =5, 则x =3,y =5;当k =2时,4y -5x =10, 则x =2时,y =5;当k =3时,4y -5x =15, 则x =1,y =5.(2)证明:设一个位数为2n 位的多位数为ab ,中间插入数字m ,得其关联数(0≤m ≤9,且m 为3的倍数)为amb , 由题意得,amb -10ab =a ×10n +1+m ×10n +b -10(a ×10n +b )=m ×10n-9b ,∵m 是3的倍数, ∴m ×10n能被3整除,又∵9b 能被3整除,∴m ×10n-9b 能被3整除,故对于任何一个位数为偶数的多位数,中间插入数字m (0≤m ≤9,且m 为3的倍数),所得的关联数与原数10倍的差一定能被3整除.6. (1)证明:∵n +n (n -1)=n +n 2-n =n 2, ∴n ·n (n -1)÷[n +n (n -1)]=n -1, ∵n ≥2,n 为整数, ∴n -1是整数,∴n 和n (n -1)(n ≥2,n 为整数)组成的数组是两个数的祖冲之数组. (2)解:∵(4a ,5a ,6a )是三个数的祖冲之数组,_____ __________ _____ _____ _____ _____ _____ _____ _____∴可设⎪⎩⎪⎨⎧+=⋅+=⋅+=⋅p a a a a n a a a a m a a a a )65(65)64(64)54(54,即⎪⎩⎪⎨⎧===p a n a m a 1130512920, ∴920m =512n =1130p , 化简得:22p =25n =27m ; ∵m 、n 、p 均为整数,∴m =22×25×i (i 为整数),∴a =920×22×25i =25119i ⨯⨯,∵a 是整数, ∴i 为偶数,当i =2时,a =495, 当i =4时,a =990,当i =6时,a =1485,不是三位数,舍去,综上所述,满足条件的所有三位正整数a 为495和990.7. 解:(1)(331)5=3×52+3×5+1=91; (46)7=4×7+6=34. (2)∵(abc )7=a ×72+b ×7+c , (cba)5=c ×52+b ×5+a , ∴25c +5b +a =49a +7b +c , 即24a +b =12c ,∵a 、b 、c 是0~6的整数, ∴b =0,c =2a ,当a =1时,c =2,这个十进制的数为51; 当a =2时,c =4,这个十进制的数为102; 当a =3时,c =6,这个十进制的数为153. 8. (1)证明:设此两位数为a 2a ,∵a 2a =10a +2a =12a 为6的倍数,轮换后2aa =20a +a =21a 为7的倍数,∴a 2a 为6的一个轮换数. 故这个两位自然数一定是“轮换数”. (2)解:∵此三位数为2bc =200+10b +c =198+9b +(2+b +c ),为3的倍数, ∴(2+b +c )为3的倍数, 第一次轮换后:bc 2=100b +10c +2=100b +8c +(2c +2),为4的倍数,∴(c +1)为2的倍数,即c 为奇数,第二次轮换后:c 2b =100c +20+b ,为5的倍数,则b 为0或者5.当b =0时,2+b +c =2+c ,为3的倍数且c 为奇数,则c =1,或7,即三位数为201 或207;当b =5时,2+b +c =7+c 为3的倍数且c 为奇数,则c =5,即三位数为255._____ _____综上所述,这个三位自然数abc 为201,207或255.9. 解:(1)最小的两位“快乐数”是10; 19是“快乐数”. 证明:由题意可知,用反证法证明数字4经过若干次运算后都不会出现数字1即可. ∵4→16→37→58→89→145→42→20→4→16…→4出现两次, ∴后面将重复出现,永远不会出现1,∴任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设这个三位“快乐数”为abc ,由题意知,经过两次运算后结果为1,所以第一次运算后结果一定是10或100,所以a 2+b 2+c 2=10或100,又因为a 、b 、c 为整数,且a ≠0,所以a 2+b 2+c 2=12+32+02=10或a 2+b 2+c 2=0+62+82=100.(i)当a =1,b =3或0,c =0或3时,这个三位“快乐数”为130,103; (ii)当a =2时,b 、c 无解;(iii)当a =3时,b =1或0,c =0或1时,这个三位“快乐数”为310,301;同理当a 2+b 2+c 2=100时,因为62+82=100, 所以这个三位“快乐数”的所有可能为680,608,806,860.综上所述,一共有130,103,310,301,680,608,806,860八个. 又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,经计算知只有310和860满足条件. 10. 解:(1)495.【解法提示】①975-579=396;②963-369=594;③954-459=495. (2)99(a -c ). 【解法提示】(100a +10b +c )-(100c +10b +a )=100a +10b +c -100c -10b -a =99a -99c =99(a -c ).(3)证明:设这个三位数中三个数字为a ,b ,c ,且a ≥b ≥c ,a ≥c +1,则经过“F 运算”有abc -cba =99(a -c )=100(a -c -1)+10×9+(10+c -a ),因此所得的三位数中必有一个9,而另外两个数字之和为9,共有990,981,972,963,954五种情况;以990为例得,990-099=891,981-189=792,972-279=693,963-369=594,954-459=495,…,由此可知最后得到495时就会循环.∴任意一个三位数经过若干次“F 运算”都会得到一个定值,这个定值为495. 11. 解:(1)0,1,2,4,8,9均可.∵29=52+22,∴29是“完美数”.(2)根据题意S =x 2+4y 2+4x -12y +k =(x 2+4x )+(4y 2-12y )+k =(x +2)2-4+(2y -3)2-9+k =(x +2)2+(2y -3)2+(k -13).要使S 为“完美数”,则k -13=0,即k =13.(3)设m =a 2+b 2,n =c 2+d 2(a ,b ,c ,d 都是整数),则 mn =(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 =a 2c 2+2abcd +b 2d 2+b 2c 2-2abcd +a 2d 2=(ac +bd )2+(bc -ad )2, ∴mn 也是“完美数”. 12. 解:(1)5;3.【解法提示】由新定义得,L(2,1)=2+3×1=2+3=5; L(32,12)=32+3×12=3. (2)①3;2.【解法提示】由定义得, ⎪⎩⎪⎨⎧=+-=-2213112b a b a ,解得⎩⎨⎧==23b a . ②由新定义,得L (m ,m -2)=3m +2(m -2)=5m -4,∵50<L (m ,m -2)<100,∴⎩⎨⎧<->-100455045m m ,解得545<m <1045,∵m 和m -2均为正整数,∴经计算可知满足50<L (m ,m -2)<100的正格数对共有10个. ③由L (x ,y )=3x +2y =76,得y =2376x-, ∵x >0,y >0,即2376x->0,解得x <763,又∵x ,y 均为正整数,∴x 为偶数,∴经计算可知共有12个满足条件的正格数对, 若x ,y 满足问题②,则x -y =2,即x -2376x-=2, 解得x =16, ∴y =x -2=14,∴在这些正格数对中,有满足问题②的数对,为⎩⎨⎧==1416y x .13. 解:(1)15;51.【解法提示】根据题意得,N (5,3)=3-22×52+4-32×5=252+52=15;N (6,5)=5-22×62+4-52×6=54-3=51. (2)由题意得,6-22m 2+4-62m =4-22(m +2)2+4-42(m +2)+10, 化简得m 2-5m -14=0,解方程得,m =7或m =-2(不合题意,舍去), 故m =7.(3)由题意得,y =22-t ×62+24t -×6-5-22t 2-4-52t =-32t 2+312t -24,整理得y =-32(t -316)2+38524,∵a =-32<0,且t 是整数,∴当t =5时,y 有最大值,其最大值为16.。

初中 数学 新定义

初中 数学 新定义

初中数学中的“新定义”问题,通常是指定义了一些初中数学中未涉及的新概念、新运算或新符号,要求学生结合已有知识进行理解,并运用这些新定义进行运算、推理或迁移。

这类问题旨在考查学生的阅读理解能力、数学应用能力和思维灵活性。

具体来说,初中数学中的“新定义”问题可以分为以下几种类型:
定义新运算:例如绝对值运算、取整运算、取余运算和阶乘运算等。

定义初、高中知识衔接的“新知识”:例如将一些能与初中知识相衔接的高中数学知识,通过阅读材料呈现给初中学生,让他们将这些新知识与已学知识联系起来,通过类比、猜想、迁移来运用新知识解决实际问题。

定义新概念:例如将某个特征的图形或运算方式、代数式等数学元素赋予一个新的名字,形成新的概念。

解决这类问题时,学生需要将新定义的知识与已学知识联系起来,利用已有的知识经验来解决问题。

同时,还需要具备良好的阅读理解能力和思维灵活性,能够理解并运用这些新定义进行运算和推理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.新定义型
所谓“新定义”型试题是指给出一个考生从未接触过的新概念,要求考生现学现用,其目的是考查学生的阅读理解能力、迁移能力和创新能力,旨在培养学生自主学习、主动探究的学习方式。

解答这类题目的关键是读懂题意,确定探索方向,寻找合理的解题方法。

【例题与练习】
1.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+1。

例如7☆4=42+1=17,那么5☆3= ;当m为实数时,m☆(m☆2)= 。

2.我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形。

请解答下列问题:(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
3.我们给出如下定义:若一个四边形的两条对角线相等,则我们称这个四边形为等对角线四边形.请回答下列问题:(1)写出你所学过的特殊四边形中等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹的锐角为60°,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
8. 方案设计型
方案设计问题的基本类型:
(1)类型一:提供讨论材料,进行合理猜想.此类问题一般设置一段讨论的材料,让考生进行科学合理的判断、推理、证明.
(2)类型二:画图设计,动手操作。

此类问题一般给出图形和若干条信息,让考生按要求对图形进行分割或设计美观的图案
(3)类型三:设计方案,比较择优。

此类问题一般给出问题情景,提出要求,让考生寻找最佳的解题方案,设计出合理的方案。

一:【要点梳理】
方案设计问题的基本类型:
(1)类型一:提供讨论材料,进行合理猜想.此类问题一般设置一段讨论的材料,让考生进行科学合理的判断、推理、证明.
(2)类型二:画图设计,动手操作。

此类问题一般给出图形和若干条信息,让考生按要求对图形进行分割或设计美观的图案
(3)类型三:设计方案,比较择优。

此类问题一般给出问题情景,提出要求,让考生寻找最佳的解题方案,设计出合理的方案。

二:【例题与练习】
1.如图,小明想用皮尺测量池塘A 、A 间的距离,但现有皮尺无法直接测量,学习有关知识后,他想出了一个方法:先在地上取一个可以直接到达A 、B 两点的点O ,连接OA 、OB ,分别在OA 、OB 上取中点C 、D ,连接CD ,并测得CD=a ,由此他即知道A 、B 间的距离是( ) A.
12a
; B.2a ; C.a ; D.3a
2.如图,转盘被分成六个扇形区域,并在上面依次写上数字1,2,3,4,5,6,转盘指针的位置固定,转动转盘后任其自由停止请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率是2/3,并说明你的设计理由(设计方案可用土所示,也可以用文字表述)。

3.市"康智'牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年
共新增产品20件,这20件的总价值p(万元)满足:110<p<120已知有关数据如下表所示,那么该公司明年应怎样安排 新增产品的产量?
4.我市某乡A ,B 两村盛产柑橘,A 村有柑橘200吨,B 村 有柑橘300吨。

现在将这些柑橘运到C ,B 两个冷藏仓库。

已知C 仓库可储存240吨,D 仓库可储存260吨:从A 村运到C ,D 两处的费用分别为每吨20元至25元,从B 村运到C ,D 两处的费用分别为每吨15至18元。

设从A 村运到C 仓库的柑橘质量为x 吨,A ,B 两村运往两仓库的柑橘费用分别为y A 元和y B 元
(1)请填写下表并求出y A 和y B 与x 之间的函数关系式 (2) 试讨论A ,B 两个村中,那个村的运费少; (3) 考虑到B 村的经济承受能力,B 村的的柑
橘不超过4830元。

在这种情况下,请问怎样调运,才能使两村运费最小?求出最小值。

65
4
3
2
1
5.如图,在人民公园人工湖两侧的A ,B 两点欲建一座观赏桥,由于受条件限制,无法直接度量A ,B 间的距离,请你用学过的知识,在图中设计三种测量方案要求: (1)画出你设计的测量平面草图;
(2)在图形中标出测量的数据(长度用a,b,c ......角度用α,β,γ,…..表示)并写出测量的
依据及AB 的表达式。

6.如图,在Rt △ABC 中,∠ACB=900, ∠CAB=300,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形(保留作图痕迹,不要求写作法和证明)
7.如图,某市经济开发区建有B 、C 、D 三家食品加工厂,这三个工厂和开发区A 处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900m ,AD=BC=1700m 。

自来水公司已经修好一条自来水主管道AN ,B 、C 两厂之间的公路与自来水管道交于E 处,EC=500m 。

若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元。

(1)要使修建自来水管道的造价最低,这三个工厂的自
来水管道路线应怎样设计?并在图形中画出。

(2)求出各厂所建的自来水管道的最低的造价各是多少?
8.某工厂现有甲种原料226kg ,乙种原料250kg ,计划利用这两种原料生产A 、B 两种产品共40件,生产A 、B 两种产品用料情况如下表:设生产A 产品x 件,请解答下列问题: (1)求x 的值,并说明有哪几种符合题意的生产方案。

(2)若甲种原料50元/kg ,乙种原料40元/kg ,说明(1)中哪种方案较优?
A
9.课题研究:现有边长为120cm 的正方形铁皮,准备将它设计制作成一个开口的水槽,使水槽能通过的水的流量最大。

初三(1)班数学兴趣小组讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大。

为此他们对水槽的横截面进行了探索:
(1)方案一:把它折成横截面为直角三角形的水槽(如图①),若∠ACB=900,设AC=xcm ,该水槽的横截面面积为ycm 2,
请你写出y 关于x 的函数关系(不必写出x 的取值范围),并求出当x 取何值时,y 的值最大,最大值是多少?
方案二:把它折成横截面为等腰梯形的水槽(如图②),若∠ABC=1200
,请你求出该水槽的横截面面积的最大值,
并与方案一中的y 最大值比较
(2)假如你是该兴趣小组的成员,请你再提供两种方案,使你所设计的水槽横截面面积更大。

画出你设计的草图,
标上必要的数据(不要求写出解答过程)


C
A
10.正方形通过剪切可以拼成三角形,方法如图1:请你仿上用图示的方法,解答下列问题:操作设计: ⑴如图2,对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形; ⑵如图3,对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形; ⑶如图4,对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形;
① ②
图1


图2。

相关文档
最新文档