材料力学能量法
合集下载
材料力学第十三章 能 量 法

单元体上外力作功: W s e1 d e 0
应变能密度:
ve
e1 s d e
0
边长为dx、dy、dz的单元体: dVe ve d x d y d z
杆: Ve dVe V ve dV
线性弹性体:
ve
s e1
0
de
1 2
s
1e1
1 2
Ee12
1 2E
s
2 1
ve
1 d
0
1 2
1
AF
Fl 2 16 EI
应变能:
Vε
1 2
M AM
(1 2
FDCF
M AF )
1
F 2l3 (
M
2l
MFl 2
)
EI 96 6 16
④ M、F 分别单独作用
F
A
DCF
B
A M AM
B
DCF
Fl 3 48 EI
AM
Ml 3EI
应变能之和: VεF VεM
1 2
FDCF
1 2
M AM
1 EI
VεS
l
s
FS2 (x) d x 2GA
s — 剪切形状因数
S
S
通常,梁的剪切应变能远小于弯曲应变能。
杆件发生组合变形
在线弹性、小变形的条件下,每一基本变形的内力仅 在其相应的基本变形上作功,在其他基本变形上不作功。
Vε
l FN2 (x) d x 0 2EA
l T 2 (x) dx
0 2GIp
材料是线弹性的,但变形 D 与力F 不是线性的
几何非线性弹性问题
材料是非线性弹性的
物理非线性弹性问题
材料力学:能量法

P
P1
l
P
Δ1
o
d
1
外力作功为
W 0 P dΔ
Ve W Δ1
0
P dΔ
p
l
p
P
从拉杆中取出一个各边为 单位长 的单元体, 作用在单元体上,下两表面的力为 P= 1 1 =
其伸长量
l=1=
p
1
p
d
1
该单元体上外力作功为
0 d
§3-2
一、应变能
应变能 • 余能
1. 线弹性条件下,通过外力功求应变能 常力作功:常力 P 沿其方向线位移 上所作的功
W P
变力作功:在线弹性范围内,外力 P 与位移 间呈线性
关系。 (静荷载为变力)
P
P
l
P
o
轴向拉(压)杆外力作功
Pl F N l EA EA
FN
P P P l 2 sin a 2tga 2d
P
2 FN d l
l
d
a1
l
a1
FN
FN
d
A P1
P
2 FN d P l
FN l EA
d2 l l l 2 l 2 2l l
2
l
(
FNl ) EA
2
2l (
FN l ) EA
0
1 1 2 d E1 2 2E
2
扭转杆
G
ve
1
0
1 1 2 d G 1 2 2G
2
例 题: 在线弹性 范围内工作的杆, 已知: m、G、l、d 。 求:在加载过程中所积蓄的应变能 Ve。
材料力学13能量法

1 1 V F2 22 F111 F2 21 2 2
功的互等定理:
F1 12 F2 21
即:F1 力在由F2力引起的位移上所作的功,等于F2 力在由F1力引起的位移上所作的功。
若F1 = F2 ,则得
位移互等定理:
12 21
即: F2引起的F1 作用点沿 F1方向的位移,等于同 样大小的力F1 引起的F2作用点沿 F2方向的位移。
( F1 F2 ) L F1 L F2 L F1F2 L V 2 EA 2 EA 2 EA EA
2
2
2
L
2) F1 单独作用下:
F1 F2
F1 L V 1 2 EA
3)F2 单独作用下:
F22 L V 2 2 EA
2
L F1 F2
L
V1 V 2 V
证毕。
b Px1 l ( 0 ≤x1 ≤ a) a CB段: M(x2 ) = RB x2 = Px2 l ( 0 ≤x2≤ b) 2
AC段:M(x1 ) = RA x1 =
13-3 应变能的普遍表达式
基础知识
广义
线弹性结构上受一个外力作用,任一点的位移与该力成正比。
线弹性结构上任意一点的广义位移与各广义力成线性 齐次关系。 比例加载时,线弹性结构上任一外力作用点沿外力方 向的位移与该点的广义力成正比。
P12 l1 P1作功为 V 3 2 EA
(5)应变能是可逆的。(跳板跳水)
总功仍为上述表达式。
直接利用功能原理求位移的实例
利用能量法求解时,所列 例 求简支梁外力P作用点C的挠度。 弯矩方程应便于求解。
解:
A x1 RA l a
P
功的互等定理:
F1 12 F2 21
即:F1 力在由F2力引起的位移上所作的功,等于F2 力在由F1力引起的位移上所作的功。
若F1 = F2 ,则得
位移互等定理:
12 21
即: F2引起的F1 作用点沿 F1方向的位移,等于同 样大小的力F1 引起的F2作用点沿 F2方向的位移。
( F1 F2 ) L F1 L F2 L F1F2 L V 2 EA 2 EA 2 EA EA
2
2
2
L
2) F1 单独作用下:
F1 F2
F1 L V 1 2 EA
3)F2 单独作用下:
F22 L V 2 2 EA
2
L F1 F2
L
V1 V 2 V
证毕。
b Px1 l ( 0 ≤x1 ≤ a) a CB段: M(x2 ) = RB x2 = Px2 l ( 0 ≤x2≤ b) 2
AC段:M(x1 ) = RA x1 =
13-3 应变能的普遍表达式
基础知识
广义
线弹性结构上受一个外力作用,任一点的位移与该力成正比。
线弹性结构上任意一点的广义位移与各广义力成线性 齐次关系。 比例加载时,线弹性结构上任一外力作用点沿外力方 向的位移与该点的广义力成正比。
P12 l1 P1作功为 V 3 2 EA
(5)应变能是可逆的。(跳板跳水)
总功仍为上述表达式。
直接利用功能原理求位移的实例
利用能量法求解时,所列 例 求简支梁外力P作用点C的挠度。 弯矩方程应便于求解。
解:
A x1 RA l a
P
材料力学第8章-能量法

能量原理的应用
能量原理可以应用于弯曲、拉伸、压缩等各种不同的力学问题。通过计算系统的势能和应变能,可以分 析材料的应力分布、变形情况和稳定性。
弹性势能和弹性材料的能量原 理
弹性势能是指弹性材料在外力作用下产生的能量。通过应变能和弹性势能之 间的关系,可以推导出弹性材料的力学性质和变形方程。
弹塑性材料的能量原理
材料力学第8章-能量法
材料力学的能量法是研究材料变形和力学行为的重要方法,它具有广泛的应 用。本章将介绍能量法的基本概念和应用,以及弹性和弹塑性材料的能量原 理。
能量法的基本概念
能量法是一种力学分析方法,通过考虑系统的能量变化,推导出材料的力学 性质和变形行为。能量法的基本概念包括势能和应变能的概念,以及能量守 恒定律。
通过能量法,我们可以分析臂梁在外力作用下的弯曲行为。通过计算和优化梁的几何参数和材料性质, 可以设计出更加稳定和高效的悬臂梁结构。
总结和要点
能量法是一种重要的材料力学分析方法,它通过考虑材料的能量变化,分析 材料的力学性质和变形行为。
对于弹塑性材料,除了考虑弹性势能外,还需要考虑应变能和塑性势能的贡献。能量原理可以用来分析 弹塑性材料的强度和变形行为。
能量法在材料力学中的重要性
能量法是材料力学中的一种基本方法,它可以用来分析各种不同类型的力学问题,包括材料的变形、破 坏和失稳行为。掌握能量法对于研究和设计材料结构至关重要。
应用实例:悬臂梁弯曲问题的分析
材料力学第12篇能量方法

(
2 x
2 xy
2 xz
)dV
V 2E 2G 2G
M T(x) M (x)
FN (x)
MT(x) M (x) F N (x)
dx 图12.9
组合变形时的应变能
M T(x) M (x)
FN (x)
MT(x) M (x) FN (x)
dx
图12.9
dV
dW
1 2
FN (x)d(l)
1 2
M T (x)d
dF1l EA
F 2l 2EA
1 2
Fl
V
1 2
F l
FN2l 2EA
F
(a)
如果杆件的轴力 FN 分段为常量时
V
n FN2i li i 1 2Ei Ai
△l
l
F
F1
dF1
F A
B △l
O
△ l1 d(△ l1)
△l
(b)
图12.1
杆件轴线的轴力为变量 FN (x) 时
V
l
FN2 (x) 2 EA( x)
V
V
v
dV
l
A
1 2G
FbSISzz*图122.d6 A
dx
(d)
γdx
dx
(c) 图12.6
FS( x)
梁的应变能
V
V v dV
{
l
A
[
M 2(x)y
2EI
2 z
2
FS
2
(
x)
S
*2 z
2GI z2b 2
]dA}dx
令
k
A
I
2 z
A
材料力学之能量法

A
l/2
F C 1
l/2
B
l/2 1 1 Fl 3 W Fδ1 F F 2 2 48 EI C A 2) 力偶由零增至最后值 Me Mel B 截面的转角为 θ 3 EI 1 1 Mel 力偶 Me 所作的功为 W2 M eθ M e 2 2 3 EI
l/2 Me B
由 V =W 得
( FRsin ) 2 πF 2 R3 Rd 2 EI 8EI
Δ BV
πFR 4 EI
3
A
O
例: 简支梁, 两种载荷按同样比例加载, 计算其变形能。 梁中点的挠度为 梁右端的转角为
Fl 3 M el 2 δ1 48EI 16 EI Fl 2 M el δ2 θ 16 EI 3EI
Fb 2 Fa 2 ( x1 ) ( x2 ) a b l dx1 l dx2 0 0 2 EI 2 EI
2
B
x1 a l C x2
b
F 2b2 a3 F 2a 2 b3 F 2a 2b 2 2 2 2 EIl 3 2 EIl 3 6 EIl
1 W F vC 2
由 V =W 得
(( ))
1
q A
RA
F=qa B
C
x
A x 1/2a
B
C x
x
2a
a
2a
a
(2) 求 C 截面的转角 ( 在 C 处加一单位力偶 ) 2 qa qx x AB: M ( x) x (0 x 2a) M ( x) 2 2 2a BC: M ( x) qa x (0 x a) M ( x) 1 a 1 2 a qa qx 2 x 5qa3 c [ ( x )( )dx (qax)(1)d x] 0 EI 0 2 2 2a 6 EI (
l/2
F C 1
l/2
B
l/2 1 1 Fl 3 W Fδ1 F F 2 2 48 EI C A 2) 力偶由零增至最后值 Me Mel B 截面的转角为 θ 3 EI 1 1 Mel 力偶 Me 所作的功为 W2 M eθ M e 2 2 3 EI
l/2 Me B
由 V =W 得
( FRsin ) 2 πF 2 R3 Rd 2 EI 8EI
Δ BV
πFR 4 EI
3
A
O
例: 简支梁, 两种载荷按同样比例加载, 计算其变形能。 梁中点的挠度为 梁右端的转角为
Fl 3 M el 2 δ1 48EI 16 EI Fl 2 M el δ2 θ 16 EI 3EI
Fb 2 Fa 2 ( x1 ) ( x2 ) a b l dx1 l dx2 0 0 2 EI 2 EI
2
B
x1 a l C x2
b
F 2b2 a3 F 2a 2 b3 F 2a 2b 2 2 2 2 EIl 3 2 EIl 3 6 EIl
1 W F vC 2
由 V =W 得
(( ))
1
q A
RA
F=qa B
C
x
A x 1/2a
B
C x
x
2a
a
2a
a
(2) 求 C 截面的转角 ( 在 C 处加一单位力偶 ) 2 qa qx x AB: M ( x) x (0 x 2a) M ( x) 2 2 2a BC: M ( x) qa x (0 x a) M ( x) 1 a 1 2 a qa qx 2 x 5qa3 c [ ( x )( )dx (qax)(1)d x] 0 EI 0 2 2 2a 6 EI (
材料力学能量法

材料力学能量法材料力学能量法是材料力学中的一种重要分析方法,它通过能量原理来研究材料的力学性能和行为。
能量法在工程应用中具有广泛的意义,可以用于解决各种复杂的材料力学问题。
本文将对材料力学能量法进行详细介绍,包括其基本原理、应用范围和计算方法等内容。
首先,我们来看一下材料力学能量法的基本原理。
能量法是以能量守恒原理为基础的一种力学分析方法,它认为在任何力学系统中,系统的总能量始终保持不变。
在材料力学中,通过能量方法可以方便地求解结构的变形、应力分布和稳定性等问题。
能量法的基本原理为系统的总能量等于外力对系统做功的总和,即系统的内能和外力对系统做功的总和保持恒定。
其次,材料力学能量法的应用范围非常广泛。
它可以用于分析材料的弹性、塑性、断裂等力学性能,也可以用于研究材料的疲劳、蠕变、冷却等行为。
在工程实践中,能量法可以应用于各种材料的设计、优化和性能评估,如金属材料、复合材料、土木工程材料等。
通过能量法分析,可以更好地理解材料的力学行为,为工程设计和材料选型提供科学依据。
最后,我们来介绍一下材料力学能量法的计算方法。
能量法的计算方法主要包括弹性能量法、弹塑性能量法和断裂能量法等。
在应用中,需要根据具体问题选择合适的能量方法,并结合数值计算和实验验证进行分析。
在计算过程中,需要考虑材料的本构关系、加载条件和边界约束等因素,以确保计算结果的准确性和可靠性。
综上所述,材料力学能量法是一种重要的力学分析方法,具有广泛的应用前景和深远的理论意义。
通过能量法分析,可以更好地理解材料的力学性能和行为,为工程实践提供科学依据。
在今后的研究和应用中,我们需要进一步深入理解能量法的基本原理和计算方法,推动其在材料力学领域的发展和应用。
材料力学 能 量 方 法

例4.4 已知: F, R, EI
求: BV
解: 1. 写 M (x) 并对F 求偏导
F B R F1
A : M ( ) = - FRsin M/F = - Rsin 2. 求 BV M ( ) M 1 /2 BV = EI F Rd = EI 0 (-FRsin )(-Rsin ) Rd
上式适用于线性和非线性弹性或非弹性杆件或杆系。 对于线弹性杆或杆系:
FN(x)dx d = EA T(x)dx d = GI t My(x)dx dy = E I y Mz(x)dx dz = E I z
0 FN(x)FN(x) T 0(x)T(x) My0(x)My(x) Mz0(x)Mz(x) dx + G I dx + dx + dx = EA E Iy E Iz l t
l
M 2(x) dx 2 EI
非圆截面杆:
2 FN(x) dx T 2(x) dx M 2(x) dx M 2(x) dx y z V = + + + l 2 EA l 2 GIt l 2 EI y l 2 EI z
功能原理:
W = V
例4.1 知: F , Me , EI , l
求: 外力做的总功 W 解: wB =
P B
B + P
R
1
B
16PR2 + 32PR2 ( 1 – 1 ) = Ed 4 Gd 4 4
例4.9 知:P , l , EI
(省竞赛试题)
y A
P B x l
求: 反向弯曲的挠曲线方程 解: 由图乘法求力作用点挠度: y = – {[a(Pab/l )/2](2ab/3l ) + + [b(Pab/l )/2](2ab/3l ) }/EI Pa2b2 = – 3EIl 令 a = x , b = l – x , 并反号, 得 y = Px2(l – 3EIl x)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即 D1= d11F1+d12F2+ … +d1iFi + … +d1nFn
……
Di= di1F1+di2F2+ … +diiFi + … +dinFn
……
其中dij 是与载荷无关的常数。
注意:各载荷和位移都是指最终值,所以是常数。
材料力学
a
16
设各外载荷有一增量,于是位移亦有一增量。载荷 在位移增量上所作的元功为:
Di 简称为与力Fi (相)对应的位移。
材料力学
a
12
外力功属于静载作功。
静载是指从零开始逐渐地、缓慢地加载到弹性 体上的载荷,静载作功属于变力作功。
对于一般弹性体
F
W DF d D 0
F
F—D 图下方面积
对于线弹性体 W 1FD 2
F
D
F dD D
F
F为广义力,D为广义位移。
D
D
材料力学
a
dW=F1*dD1*+…+Fi*dDi*+…+Fn*dDn*
=lF1d(lD1)+…+lFid(lDi)+…+lFnd(lDn)
=(F1D1+…+FiDi+…+FnDn)ldl
外力作的总功为:
1
W (F1D1+L +FiDi +L + FnDn )
ldl
0
1 2
F1D1 +L
+
1 2
Fi Di
+L
(2)、(3)代入(1)得 Dl3cosDl1 变形几何方程
(1)考虑物理方程得 FE F 3 A lEA F c1o 2lsEA F c2o 2lsF E 3A 2l
几何方程
(2)、(3)代入上式并化简得得 F3cos2F1 和物理方
程的联立
材料力学
a
11
§10.2 互等定理
一、外力功的计算
Fi —— 广义力(集中力,力偶) Di —— 广义位移(线位移,角位移) Fi 为集中力,Di为该力作用点沿力方向的线位移; Fi为力偶,则Di为该力偶作用面内沿力偶转向的角 位移(转角)。
材料力学
a
14
先加F1后加F2 F1
F2
先加F2后加F1 F1
F2
不同加载次序外力功均相同,若按比例同时加载, 外力同时达到最终值,即比例加载,外力功不变。
材料力学
a
15
三、克拉贝依隆(Clapeyron)原理 线弹性体上,作用有载荷F1,F2 , … Fi, … Fn 与外力方向相应的位移为D1, D2, … Di, … Dn 由线弹性体的叠加原理,各位移是载荷的线性函数
材料力学
a
7
第十章 能量法
§10.1 概 述
一、能量法
利用能量原理解决力学问题的方法。
可用来求解变形、静不定、动载荷、稳定等问题。
二、外力功与应变能
1、外力功W F
F从零逐渐增加到最终值, 变形亦缓慢增加最终值。
D
载荷在其作用点位移上所作的功,属于变力作功。
材料力学
a
8
2、应变能 弹性体因载荷引起的变形而储存的能量。
三、功能原理
条 件:(1)弹性体(线弹性、非线弹性) (2)静载荷 —— 可忽略弹性体变形过程中的 能量损失。
原 理:外力功全部转化成弹性体的应变能。 Ve = W
材料力学
a
9
已知:EI = 常数,用功能原理
F
计算A点的挠度。
A
B
解:①建立坐标系
wA
x
l
②列弯矩方程 M =-Fx ( 0 ≤ x < l )
13
二、外力功与变形能的特点
外力功的数值与加载顺序无关,
只与载荷与位移的最终数值有关。
加载顺序:
F1, F2, …Fi,… F2, F1, … Fj,…
……………
不同时加载,加载顺 序不同,外力功不变。
如果外力功和变形能与加载顺序有关,会出现 什么结果?
按一种顺序加载,按另一种顺序卸载,能量还 能守恒么?——反证法!
F
D
dD D
材料力学
a
2
对于线弹性体
F
W 1FD
F
2
F为广义力,D为与力对应的广义位移。
2、应变能Ve
D
D
弹性体因变形而储存的能量,称为应变能。
由能量守恒定律,储存在弹性体内的应变能Ve 在数值上等于外力所作的功W。(忽略能量损失)
即 Ve =W
材料力学
a
3
二、线弹性体的应变能
1、轴向拉压
F
FF
+
1 2
Fn D n
n i 1
1 2
Fi Di
材料力学
a
17
设各外载荷按相同的比例,从零开始缓慢增加到最 终值。即任一时刻各载荷的大小为: F1*=lF1, F2*=lF2 ,… Fi*=lFi ,…Fn*=lFn
其中 l从0缓慢增加到1,说明加载完毕。
F
l
Dl Fl
EA
Ve W1 2FDl2FE2A l 2FE N 2A l
FN为变量时
Ve
FN2 (x) d x l 2EA
Dl Dl
材料力学
a
4
2、扭 转
Me
j M el G IP
Me Me
j j
Ve W1 2Mej2M GeI2lP
T2l 2GIP
T为变量时
Ve
T 2 (x) d x l 2GIP
材料力学
a
5
3、平面弯曲 纯弯曲
1 dq M d x EI
dq
dq M d x
EI
Ve
W1MdqM2dx
2
2EI
横力弯曲时忽略剪力对应变能的影响,如矩形截面,当 l /b=10时,剪力的应变能只占弯矩应变能的3﹪。
横力弯曲M(x)为变量
Ve
M2(x) d x l 2EI
材料力学
a
6
应变能Ve是内力(FN、T、M)的二次 函数,应变能一般不符合叠加原理。但若几 种载荷只在本身的变形上作功,而在其它载 荷引起的变形上不作功,则应变能可以叠加。
弹性固体的应变能
一、外力功与应变能 1、外力功W 载荷在其作用点位移上所作的功。 (1) 常力作功
F AF B D
M
q
M
W=FD
W=Mq
材料力学
a
1
(2) 静载作功 静载是指从零开始逐渐地、缓慢地加载到弹性
体上的载荷,静载作功属于变力作功。
对于一般弹性体
F
W DF d D 0
F
F—D图下方面积
③求外力功W 和应变能Ve
W
1 2
FwA
V e0 lM 2E 2d Ix0 l(F 2x E )I2dxF 6E 2lI3
1 2
FwA
F 2l3 6EI
wA
Fl 3 3EI
()
仅仅只能求力作用点与力相对应的位移,
其它位移的求解有待进一步研称结构,各杆抗拉刚度EA均相等。 B C
D
①由平衡方程,通过功能原理导出变形几 何方程;②由平衡方程结合功能原理求出 各杆内力。
l
解:A点的位移等于③杆的变形Dl3。
A Dl1
由功能原理有
1 2FD l31 2(F 1D l1F 2D l2F 3D l3)
F (1) Dl3
由平衡方程和对称条件有 F1F2, Dl1Dl2 (2)
2F1cosF3F (3)
……
Di= di1F1+di2F2+ … +diiFi + … +dinFn
……
其中dij 是与载荷无关的常数。
注意:各载荷和位移都是指最终值,所以是常数。
材料力学
a
16
设各外载荷有一增量,于是位移亦有一增量。载荷 在位移增量上所作的元功为:
Di 简称为与力Fi (相)对应的位移。
材料力学
a
12
外力功属于静载作功。
静载是指从零开始逐渐地、缓慢地加载到弹性 体上的载荷,静载作功属于变力作功。
对于一般弹性体
F
W DF d D 0
F
F—D 图下方面积
对于线弹性体 W 1FD 2
F
D
F dD D
F
F为广义力,D为广义位移。
D
D
材料力学
a
dW=F1*dD1*+…+Fi*dDi*+…+Fn*dDn*
=lF1d(lD1)+…+lFid(lDi)+…+lFnd(lDn)
=(F1D1+…+FiDi+…+FnDn)ldl
外力作的总功为:
1
W (F1D1+L +FiDi +L + FnDn )
ldl
0
1 2
F1D1 +L
+
1 2
Fi Di
+L
(2)、(3)代入(1)得 Dl3cosDl1 变形几何方程
(1)考虑物理方程得 FE F 3 A lEA F c1o 2lsEA F c2o 2lsF E 3A 2l
几何方程
(2)、(3)代入上式并化简得得 F3cos2F1 和物理方
程的联立
材料力学
a
11
§10.2 互等定理
一、外力功的计算
Fi —— 广义力(集中力,力偶) Di —— 广义位移(线位移,角位移) Fi 为集中力,Di为该力作用点沿力方向的线位移; Fi为力偶,则Di为该力偶作用面内沿力偶转向的角 位移(转角)。
材料力学
a
14
先加F1后加F2 F1
F2
先加F2后加F1 F1
F2
不同加载次序外力功均相同,若按比例同时加载, 外力同时达到最终值,即比例加载,外力功不变。
材料力学
a
15
三、克拉贝依隆(Clapeyron)原理 线弹性体上,作用有载荷F1,F2 , … Fi, … Fn 与外力方向相应的位移为D1, D2, … Di, … Dn 由线弹性体的叠加原理,各位移是载荷的线性函数
材料力学
a
7
第十章 能量法
§10.1 概 述
一、能量法
利用能量原理解决力学问题的方法。
可用来求解变形、静不定、动载荷、稳定等问题。
二、外力功与应变能
1、外力功W F
F从零逐渐增加到最终值, 变形亦缓慢增加最终值。
D
载荷在其作用点位移上所作的功,属于变力作功。
材料力学
a
8
2、应变能 弹性体因载荷引起的变形而储存的能量。
三、功能原理
条 件:(1)弹性体(线弹性、非线弹性) (2)静载荷 —— 可忽略弹性体变形过程中的 能量损失。
原 理:外力功全部转化成弹性体的应变能。 Ve = W
材料力学
a
9
已知:EI = 常数,用功能原理
F
计算A点的挠度。
A
B
解:①建立坐标系
wA
x
l
②列弯矩方程 M =-Fx ( 0 ≤ x < l )
13
二、外力功与变形能的特点
外力功的数值与加载顺序无关,
只与载荷与位移的最终数值有关。
加载顺序:
F1, F2, …Fi,… F2, F1, … Fj,…
……………
不同时加载,加载顺 序不同,外力功不变。
如果外力功和变形能与加载顺序有关,会出现 什么结果?
按一种顺序加载,按另一种顺序卸载,能量还 能守恒么?——反证法!
F
D
dD D
材料力学
a
2
对于线弹性体
F
W 1FD
F
2
F为广义力,D为与力对应的广义位移。
2、应变能Ve
D
D
弹性体因变形而储存的能量,称为应变能。
由能量守恒定律,储存在弹性体内的应变能Ve 在数值上等于外力所作的功W。(忽略能量损失)
即 Ve =W
材料力学
a
3
二、线弹性体的应变能
1、轴向拉压
F
FF
+
1 2
Fn D n
n i 1
1 2
Fi Di
材料力学
a
17
设各外载荷按相同的比例,从零开始缓慢增加到最 终值。即任一时刻各载荷的大小为: F1*=lF1, F2*=lF2 ,… Fi*=lFi ,…Fn*=lFn
其中 l从0缓慢增加到1,说明加载完毕。
F
l
Dl Fl
EA
Ve W1 2FDl2FE2A l 2FE N 2A l
FN为变量时
Ve
FN2 (x) d x l 2EA
Dl Dl
材料力学
a
4
2、扭 转
Me
j M el G IP
Me Me
j j
Ve W1 2Mej2M GeI2lP
T2l 2GIP
T为变量时
Ve
T 2 (x) d x l 2GIP
材料力学
a
5
3、平面弯曲 纯弯曲
1 dq M d x EI
dq
dq M d x
EI
Ve
W1MdqM2dx
2
2EI
横力弯曲时忽略剪力对应变能的影响,如矩形截面,当 l /b=10时,剪力的应变能只占弯矩应变能的3﹪。
横力弯曲M(x)为变量
Ve
M2(x) d x l 2EI
材料力学
a
6
应变能Ve是内力(FN、T、M)的二次 函数,应变能一般不符合叠加原理。但若几 种载荷只在本身的变形上作功,而在其它载 荷引起的变形上不作功,则应变能可以叠加。
弹性固体的应变能
一、外力功与应变能 1、外力功W 载荷在其作用点位移上所作的功。 (1) 常力作功
F AF B D
M
q
M
W=FD
W=Mq
材料力学
a
1
(2) 静载作功 静载是指从零开始逐渐地、缓慢地加载到弹性
体上的载荷,静载作功属于变力作功。
对于一般弹性体
F
W DF d D 0
F
F—D图下方面积
③求外力功W 和应变能Ve
W
1 2
FwA
V e0 lM 2E 2d Ix0 l(F 2x E )I2dxF 6E 2lI3
1 2
FwA
F 2l3 6EI
wA
Fl 3 3EI
()
仅仅只能求力作用点与力相对应的位移,
其它位移的求解有待进一步研称结构,各杆抗拉刚度EA均相等。 B C
D
①由平衡方程,通过功能原理导出变形几 何方程;②由平衡方程结合功能原理求出 各杆内力。
l
解:A点的位移等于③杆的变形Dl3。
A Dl1
由功能原理有
1 2FD l31 2(F 1D l1F 2D l2F 3D l3)
F (1) Dl3
由平衡方程和对称条件有 F1F2, Dl1Dl2 (2)
2F1cosF3F (3)