材料力学习题册-第13章 能量法

合集下载

材料力学第十三章 能量法

材料力学第十三章 能量法

1 vε = = τγ 2G 2
τ2
三、扭转
由实验知,线弹性范围内,扭转角与扭转力偶成线性关系: 由实验知,线弹性范围内,扭转角与扭转力偶成线性关系:
M e l M e 2l 1 1 Vε = W = M e ⋅ ∆φ = M e = 2 2 G I p 2G I p
T 2 ( x) Vε = ∫ dx 2G I p ( x) l
截面的挠度。 例:求图示简支梁C截面的挠度。 求图示简支梁 截面的挠度
F
θ B2
wC1
解:由功的互等定理 F ⋅ wC1 = M ⋅ θ B 2
得:F ⋅ wC1
Fl =M⋅ 16 E I Ml = 16 E I
2
2
由此得:wC1
例:求图示悬臂梁中点C处的铅垂位移∆ C 。 求图示悬臂梁中点 处的铅垂位移
故:
M ( x) M ( x) ∆=∫ dx EI l
M ( x) M ( x) 莫尔定理 ∆=∫ dx 莫尔积分) (莫尔积分) EI l
对于组合变形: FN ( x) FN ( x) T ( x) T ( x) M ( x) M ( x) ∆=∫ dx + ∫ dx + ∫ dx EA GI p EI l l l
积分得: 积分得:
FN (x)dx M (x)dx T (x)dx Vε = ∫ +∫ +∫ 2EA 2EI 2GIP L L L
2
2
2
例:试求图示悬臂梁的应变能,并利用功 试求图示悬臂梁的应变能,并利用功 求自由端B的挠度 能原理求自由端 的挠度。 能原理求自由端 的挠度。
F
解:
B
A
l
x
M ( x) = − F ⋅ x

材料力学课后习题答案13章

材料力学课后习题答案13章

= 7.44 × 10− 2 m = 74.4mm

2 × 0.050 Fd = (300 N ) 1 1 + + 2.22 × 10 − 2
= 1.004 × 10 3 N
M max = 1.004 ×10 3 N (1.00m ) = 1.004 ×10 3 N ⋅ m
设压杆微弯平衡时的挠曲轴方程为
πx w = f sin l
式中,f 为压杆中点的挠度即最大挠度。
题 13-8 图 解:由题设可知,
w = f sin
πx , l
6
w′ =
πf πx cos l l
据此可得
λ (x ) =
q cr 所作之功为
1 x 2 * 1 ( w′) dx = 2 0 2


x 0
(也可通过左侧题号书签直接查找题目与解)
13-2
比为 8:3。
图示圆截面简支梁,直径为 d,承受均布载荷 q 作用,弹性模量 E 与切变模量 G 之
(1)若同时考虑弯矩与剪力的作用,试计算梁的最大挠度与最大转角; (2)当 l/d =10 与 l/d =5 时,试计算剪切变形在总变形(最大挠度与最大转角)中所占百分比。
(2)被冲击面(弹簧顶面)的静位移为
∆st =
最大冲击载荷为
Pl P 500 + = 1.516 × 10 − 5 m + m = 2.52 × 10 − 3 m 3 EI k 200 × 10
2h + + Fd = P 1 1 ∆ st
于是,杆内横截面上最大的正应力为
Fl 3 ∆= 48EI
得刚度系数
0.030 4 48 × 200 × 10 × F 48 EI 12 N = 6.48 × 10 5 N k= = 3 = 3 ∆ m m l 1.00

材料力学第十三章 能 量 法

材料力学第十三章 能 量 法

Vε Vε (D1 , D 2 ,, D i ,, D n )
假设位移 Di 有一微小增量 dDi 其它位移均保持不变 梁的应变能也有一增量 dVe
外力功的增量
d W Fi d D i
Ve d Ve d Di D i
d Ve d W
Ve Fi D i
卡氏第一定理
卡氏第一定理

l
0
F ( x) T ( x) dx dx 0 2GI 2 EA p
l
2 N
2
F ( x) M ( x) d x s dx 0 2 EI 0 2GA
l l
2
2 S
应变能恒为正 ,是内力或外力的二次函数。
非线性函数
一般情况:非线性弹性体
s s1 s e
外力作功:
de e 1
DAB 方向水平向外
§3-4 用能量法解超静定系统
解超静定问题要综合考虑三方面 几何方面 —— 建立变形几何相容条件 物理方面 —— 建立补充方程 静力学方面 —— 建立平衡方程
等直杆,发生基本变形,材料为线性弹性体 非等直杆或杆系结构,受较复杂荷载作用, 材料为非线性弹性体 易 难
能量法
例1:求图示超静定梁支座处的约束力。
③ 先加M,后加F
A
M AM
F
B
AF DCF
AM
Ml 3EI
D CF
Fl 48 EI
3
AF
Fl 16 EI
2
1 1 应变能: V M ε AM ( FD CF M AF ) 2 2 2 3 2 2 1 F l M l MFl ( ) EI 96 6 16
Ve Fi D i

材料力学-13能量方法

材料力学-13能量方法

一、单位载荷法
通过建立单位力系统,以真实的位移(欲求)作为 单位力系统的虚位移。应用虚位移原理,可以得到杆件 在弹性变形内任意点沿任意方向的位移。
求任意点A的位移
F1
5
4、组合变形的应变能
截面上存在几种内力,各个内力及相应的各个位移相互 独立,力独立作用原理成立,各个内力只对其相应的位移做 功.
V
FN2 (x) dx l 2EA
T 2 (x) dx l 2GIp
M 2(x) dx
l 2EI

V
FN2l T 2l 2EA 2GIp
M 2 (x)dx l 2EI
6
五、应变能的应用 1、计算应变能 2、利用功能原理计算变形
7
例1 拉杆在线弹性范围内工作. 受到F1和F2 两个力作用.
(1) 若先在 B 截面加 F1 , 然后在 C 截面加 F2 ;
(2) 若先在 C 截面加 F2 , 然后在 B 截面加 F1.
A
a
B
F1 b
分别计算两种加力方法拉杆的应变能. C F2
令P M , BA AB
C
18
思考:仅用一个挠度计,且只能安装一次,如
何测得图示悬臂梁1、2、3、4各点的挠度?
P
123 4
5
15
P
123 4
5
51 15
19
§13-3 虚功原理
杆件在外力Fi(F1,F2,…,Fn)(广义力)作用下作用 点会有(真实的)位移。
如果再有另外的外力(如温度变化,人为假象施加 等)施加在杆件上,则沿着原有力系各力作用线方向将
V W
外力功的统一表达式 W 1 F
2
F:广义力, :广义变形 2

材料力学第十三章 能量法2013

材料力学第十三章 能量法2013

§13-7 计算莫尔积分的图乘法 ★重点
(Energy methods)
§13-1 概述(Introduction)
能量方法 (Energy methods )
利用功能原理 U = W 来求解可变形固体的位移、变形和内 力等的方法.
功能原理(Work-energy principle) 外力功等于变形能
2
Me ( x) U dx l 2 EI ( x )
2
(Energy ( Strain energy density for pure shearing state of stresses )
1 u ηγ 2
将 = G 代如上式得
G 2 2 u γ 2 2G
F1a
F2
M图
a B x A
F1a+F2l
特点:在刚节点处,弯矩值连续 ;
(Chapter Thirteen)
(Energy Method)
(Energy methods)
第十三章 能量法 (Energy Methods)
§13-1 概述(Introduction) §13-2 杆件变形能的计算及普遍表达式 §13-3 互等定理(Reciprocal theorems) §13-4 卡氏定理(Castigliano’s Theorem) §13-5 虚功原理(了解) §13-6 单位荷载法 莫尔定理 ★重点
2、利用功能原理计算变形 (Work-energy principle for calculating deflection)
2 FN ( x) T 2 ( x) M 2 ( x) U dx dx dx l 2 EA( x ) l 2GI ( x ) l 2 EI ( x ) p

材料力学第13章能量法

材料力学第13章能量法
2
T
扭转变形:
T

L
T

一般情形:
T 1 T L T 2 L W T 2GI P 2 2 GI P
L
V
L
0
T ( x) 2 dx 2GI P
弯曲变形:
2 1 ML M L M M W 2 2 EI z 2 EI z
一般情形: 2 L M ( x ) dx V 0 2 EI z
FP1 FP2 FPm

P
1
FP:第一组力
P
m
P
2
FS2 FS1
FSn

S 2 S
n
S 1
FS:第二组力
第一组力在第二组力引起的位移上所作的功,等于 第二组力在第一组力引起的位移上所作的功。
2.位移互等定理:
F1 12 F 2 21 如果: F1 F 2 则: 12 21
F
1
(a)
W dW F d
0 0
1
1
F F
F W 2
当载荷与相应的位移保持正 比关系,并且载荷由零逐渐 增加时,载荷所作之功为载 荷最大值与位移最大值乘积 的一半。 式中力F是广义力(力, 力矩)、Δ为广义位移( 线位移,角位移)。
O
d
F F
(a)
o
d
(b)
F
F
例如: 拉压变形: N
2112对于线弹性体当两个力对于线弹性体当两个力广义的广义的数值相等数值相等时则第一个力在第二个力作用处引起的位移数值时则第一个力在第二个力作用处引起的位移数值上等于第二个力在第一个力作用处引起的位移称为上等于第二个力在第一个力作用处引起的位移称为位移互等定理

材料力学 第十三章能量方法

材料力学 第十三章能量方法

杆件的应变能在数值上等于变形过程中外力所做的功。 在线弹性范围内,外力由零开始缓慢增加到某一值,将外 力做的功统一写成
V
W

1 2
F
式中 F——广义力;
δ——与广义力对应的位移,即为广义力作用 点且与广义力方向一致的位移。称为广义位移。
6
§13-1 杆件应变能的计算
例题13-1
求图示悬臂梁的应变能V 和自由端的挠度yA。已知梁的抗弯刚度为EI。
拉压
dV

FN2 x 2EAx
dx
V l 2FEN2Axxdx
扭转
T 2x dV 2GIP x dx
弯曲
M 2x dV 2EIx dx
T 2x
V l 2GIP xdx
M 2x
V l 2EIxdx
5
§13-1 杆件应变能的计算
10
应变能不能叠加:
简单说明
A:F1单独作用 B:F2单独作用
1 V1 2 F1l1
V 2

1 2
F2l2
F2
F1
F2
F1
E:同时加F1、 F2
C:先加F1,再加F2
常力F1在 Δl2上作功
V

1 2
F1l1

1 2
F2l2
F1l2
F1

F12l 2EA

F2 2l 2EA
15
F112 F2 21
上式表明第一组力F1在第二组力引起的位移δ12上所做的 功,等于第二组力F2在第一组力引起的位移δ21上所做的功。 这就是功的互等定理 在F1=F2的情况下,由功的互等定理可得

1 2
Fy

材料力学 第十三章能量方法

材料力学 第十三章能量方法

l
l
l
25
例13-4 结构如图,用卡氏定理求A 面的挠度和转角。 P A 解:求挠度,建坐标系 ①求内力
M ( x ) xP
EI
L
x
O
②将内力对PA求偏导
M ( x) PA x
③变形
fA
U PA
L

2

M ( x ) M ( x ) EI PA
dx
L


0
Px EI
U U ( P1 , P2 ,..., Pn )
给Pn 以增量 dPn ,则:应变能增量:
结构的应变能: U1 U U dPn
P n
U Pn
d Pn
n
Pn
2.先给物体加力 dPn ,则应变能
1 2 ( d Pn ) ( d n )
再给物体加P1、 P2、•••、Pn 个力,则:
F l
2 3
6 EI
由于应变能V 等于外载荷所做的功W。即V =W
F l
2 3

1 2
6 EI
Fy A
由该式得自由端的挠度
yA
Fl
3
3EI
由该例题可以看出,只有当弹性体上仅作用一个广义力,且所求 位移为相应的广义位移时,才可直接利用功能原理计算。
7
例13-2 图示半圆形等截面曲杆位于水平面内,在A点受铅垂力P 的作用,求A点的垂直位移。
12
二、组合变形杆件应变能的普遍表达式:
在组合变形时,杆件横截面上同时有几种内力分 量作用,为计算杆件的应变能,可取dx微段来研究。
M x
FN x
dx
M x
T x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 十三 章 能 量 法
一、选择题
1.一圆轴在图1所示两种受扭情况下,其( A )。

A 应变能相同,自由端扭转角不同; B 应变能不同,自由端扭转角相同; C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。

(图1)
2.图2所示悬臂梁,当单独作用力F 时,截面B 的转角为θ,若先加力偶M ,后加F ,则在加F 的过程中,力偶M ( C )。

A 不做功;
B 做正功;
C 做负功,其值为θM ;
D 做负功,其值为
θM 2
1。

3.图2所示悬臂梁,加载次序有下述三种方式:第一种为F 、M 同时按比例施加;第二种为先加F ,后加M ;第三种为先加M ,后加F 。

在线弹性范围内,它们的变形能应为( D )。

A 第一种大; B 第二种大; C 第三种大; D 一样大。

4.图3所示等截面直杆,受一对大小相等,方向相反的力F 作用。

若已知杆的拉压刚度为EA ,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为EA
Fl
μ,l 为杆件长
度。

(提示:在杆的轴向施加另一组拉力F 。

) A 0; B EA
Fb
; C
EA
Fb μ; D 无法确定。

(图2) (图3)
二、计算题
1.图示静定桁架,各杆的拉压刚度均为EA 相等。

试求节点C 的水平位移。

解:解法1-功能原理,因为要求的水平位移与P 力方向一致,所以可以用这种方法。

由静力学知识可简单地求出各杆的内力,如下表所示。

(
)()
EA
a
P EA
Pa EA Pa P C 22222212
2
2
2++=∆
可得出:()
EA
Pa
C 122+=

解法2-卡氏定理或莫尔积分,这两种方法一致了。

则C 点水平位移为:()
EA
Pa
C 122+=∆
2.图示刚架,已知各段的拉压刚度均为EA ,抗弯刚度均为EI 。

试求A 截面的铅直位移。

解:采用图乘法,如果不计轴向拉压,在A 点施加单位力,则刚架内力图和单位力图如图所示。

h Fl Fl l h Fl l l Fl EI A 233
1
3221+=⋅⋅+⋅⋅=

EA Fh
dx EA F dx EA N N dx EA N N h h BC BC l
AB AB AN
=--+=+=∆⎰⎰⎰20
2010)1)((0
故A 点总的铅直位移为:
EA
Fh
EI h Fl Fl A ++=∆3323
3.试求图示悬臂梁B 截面的挠度和转角(梁的EI 为已知常数)。

B
解:应用图乘法,在B 点分别加单位力和单位力偶。

它们的内力图如图所示。

⎪⎭⎫ ⎝⎛-=⎪⎭
⎫ ⎝⎛-⋅⋅
=∆4642
313
2
a l qa a l qa a EI B
6
12313
2qa qa a EI B =⋅⋅=θ
4.图示刚架,已知EI 及EA 。

试用莫尔积分法或图乘法计算B 截面的垂直位移w B 和转角θ
B 。

解:应用图乘法,如果不计轴向拉压,在B 点分别加单位力和单位力偶。

它们的内力图如图所示。

852432314
22qa a a qa a qa a EI B =⋅⋅+⋅⋅=∆
3
21212313
22qa a qa qa a EI B =⋅⋅+
⋅⋅=θ
如果考虑轴向拉压,解法同第2题,略。

5.如图所示刚架受一对平衡力F 作用,已知各段的EI 相同且等于常量,试用图乘法求两端A 、B 间的相对转角。

Fa
B
A
Fa
Fa
1
1
解:应用图乘法,在A 、B 点加一对单位力偶。

它们的内力图如图所示。

221212
1
Fa a Fa a Fa EI AB =⋅⋅+⋅⋅⋅=
θ
6.图示刚架,已知各段的抗弯刚度均为EI 。

试计算B 截面的水平位移和C 截面的转角。

P
A
Pl Pl-M
解:应用图乘法,在B 截面加一水平单位力,在C 截面加一单位力偶,它们的内力图如图所示。

()2331
232213221Ml Pl l l M Pl l l Pl l l Pl EI B -=⋅⋅-+⋅⋅+⋅⋅=∆ ()()l M Pl l M Pl EI AB
-=⋅⋅-=3
1
3221θ。

相关文档
最新文档