2012年中考数学复习考点跟踪训练45方程型综合问题

合集下载

绝对值方程(组、应用)基本知识及习题(四合一)

绝对值方程(组、应用)基本知识及习题(四合一)

绝对值方程(组、应用)四合一(请做课后的学力训练)≮知识纵横≯四合一早在300多年前法国数学家笛卡尔有一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为解方程.虽然笛卡尔“伟大设想”没有实现,但是充分说明了方程的重要性。

一元一次方程是代数方程中最基础的部分,是后续学习的基础,其基本内容包括:解方程、方程的解及其讨论。

解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程。

当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax =b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论:1.当a ≠0时,方程有唯一解x=ab 。

2.当a=0且b ≠0时,方程无解。

3.当a=0且b=0时,方程有无数个解。

绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程。

解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解。

前者是通法,后者是技巧。

解绝对值方程时,常常要用到绝对值的几何意义、去绝对值的符号法则、非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法。

一次方程组是在一元一次方程的基础上展开的,教材只介绍了二元一次方程组、三元一次方程组的概念、解法,类似地我们可得到四元一次方程组、五元一次方程组等,尽管元数可以增加,但是它们的解法却是一样的。

“消元”是解一次方程组的基本思想,即通过消元把一次方程组转化为一元一次方程来解,而代人法、加减法是消元的两种基本方法。

解一些复杂的方程组(如未知数系数较大、方程个数较多等),需要观察方程组下系数特点,着眼于整体上解决问题,常用到整体叠加、整体叠乘、设元引参、对称处理、换元转化等方法技巧。

2012年中考数学复习考点跟踪训练08 列方程(组)解应用题

2012年中考数学复习考点跟踪训练08 列方程(组)解应用题

考点跟踪训练8 列方程(组)解应用题一、选择题1.(2010·曲靖)练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么下面所列方程正确的是( )A .5(x -2)+3x =14B .5(x +2)+3x =14C .5x +3(x +2)=14D .5x +3(x -2)=14答案 A解析 水性笔的单价为x 元,则练习本的单价为(x -2)元,5本练习本和3支水性笔的总价为5(x -2)+3x 元,故选A.2.(2010·恩施)某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( )A. 21元B. 19.8元 C .22.4元 D .25.2元答案 A解析 设该商品的进价为x 元,28×0.9-x =20%x,1.2x =28×0.9,x =21.3.(2011·泰安)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种各买了多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧ x +y =30,12x +16y =400B.⎩⎪⎨⎪⎧ x +y =30,16x +12y =400 C.⎩⎪⎨⎪⎧ 16x +12y =30,x +y =400 D.⎩⎪⎨⎪⎧12x +16y =30,x +y =400 答案 B解析 甲种奖品每件16元、x 件需16x 元,乙种奖品每件12元、y 件需12y 元,合计16x +12y =400,故选B.4.(2010·绵阳)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为( )A .129B .120C .108D .96答案 D解析 设1艘大船一次载客x 人,1艘小船一次载客y 人,⎩⎪⎨⎪⎧x +4y =46,2x +3y =57,解之,得⎩⎪⎨⎪⎧x =18,y =7,∴3x +6y =3×18+6×7=54+42=96. 5.(2011·凉山)某品牌服装原价173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( )A .173()1+x %2=127B .173()1-2x %=127C .173()1-x %2=127D .127()1+x %2=173答案 C解析 该品牌服装降价一次后为173-173×x %=173(1-x %)元,降价两次后为173(1-x %)-173(1-x )×x %=173(1-x %)2元,故选C.二、填空题6.(2011·湘潭)湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为________.答案 50-8x =38解析 每个莲蓬的单价为x 元,8个莲蓬合计8x 元,找回(50-8x )元,所以50-8x =38.7.(2011·浙江)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为 ________元.答案 440 解析 设一束鲜花的价格为x 元,一个礼盒的价格为y 元,则⎩⎪⎨⎪⎧x +2y =143,①2x +y =121,②由①+②得3x +3y =264.∴x +y =88.∴5x +5y =88×5=440.8.(2011·潼南)某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费.某用户在5月份用电100度,共交电费56元,则a =________度.答案 40解析 0.50×100<56,可知该用户超量用电.0.50a +0.50(1+20%)(100-a )=56,0.5a +60-0.6a =56,-0.1a =-4,a =40.9.(2011·上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是________.答案 20%解析 设每年屋顶绿化面积的增长率为x .2000(1+x )2=2880.(1+x )2=1.44.1+x =±1.2.所以x 1=0.2,x 2=-2.2(舍去).故x =0.2=20%.10.(2011·宿迁)如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m 2,则AB 的长度是______m(可利用的围墙长度超过6m).答案 1解析 设AB 长为x m ,则BC =(6-2x )m.∴x (6-2x )=4,x 2-3x +2=0.x 1=2,x 2=1.当x =2时,AB =2,BC =2,不合题意,舍去,所以x =1.三、解答题11.(2011·安徽)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.解 设粗加工的该种山货质量为x 千克,根据题意,得x +(3x +2000)=10000.解得 x =2000.答:粗加工的该种山货质量为2000千克.12.(2011·扬州)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下: 甲:⎩⎪⎨⎪⎧ x +y =12x +8y = 乙:⎩⎨⎧ x +y = x 12+y 8=根据甲、乙两名同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示____________________,y 表示 __________________;乙:x 表示 ____________________,y 表示 __________________;(2)求A 、B 两工程队分别整治河道多少米?(写出完整的解答过程)解 (1) 甲:⎩⎪⎨⎪⎧ x +y =20,12x +8y =180; 乙:⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20. 甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数;乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度;(2)若解甲的方程组 ⎩⎪⎨⎪⎧ x +y =20, ①12x +8y =180, ② ①×8,得:8x +8y =160, ③③-②,得:4x =20,∴x =5.把x =5代入①得:y =15,∴ 12x =60,8y =120.若解乙的方程组⎩⎪⎨⎪⎧x +y =180, ①x 12+y 8=20, ② ②×12,得:x +1.5y =240, ③③-①,得:0.5y =60.∴y =120.把y =120代入①,得,x =60.答:A 、B 两工程队分别整治河道60米和120米.13.(2011·益阳)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?解 设每吨水的政府补贴优惠价为x 元,市场调节价为y 元.⎩⎨⎧ 14x +()20-14y =29,14x +()18-14y =24,解得:⎩⎪⎨⎪⎧x =1,y =2.5. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)当0≤x ≤14时,y =x ;当x >14时,y =14×1+()x -14×2.5=2.5x -21,所求函数关系式为:y =⎩⎨⎧x ()0≤x ≤14,2.5x -21()x >14. (3)∵x =24>14,∴把x =24代入y =2.5x -21,得:y =2.5×24-21=39.答:小英家3月份应交水费39元.14.(2011·烟台)去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井的作业任务.部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?解 设原计划每天打x 口井,由题意可列方程30x -30x +3=5, 去分母得,30(x +3)-30x =5x (x +3),整理得,x 2+3x -18=0,解得x 1=3,x 2=-6(不合题意,舍去).经检验,x 2=3是方程的根,∴x =3.答:原计划每天打3口井.15.(2011·衢州)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?小明的解法如下:解 设每盆花苗增加x 株,则每盆花苗有()x +3株,平均单株盈利为()3-0.5x 元,由题意,得()x +3()3-0.5x =10.化简,整理得x 2-3x +2=0.解这个方程,得x 1=1,x 2=2,∴x +3=4或5.答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系:________________________________________________.请用一种与小明不相同的方法求解上述问题.解 (1)平均单株盈利×株数=每盆盈利;平均单株盈利=3-0.5×每盆增加的株数;每盆的株数=3+每盆增加的株数.(2)解法解法2(图象法):如图,纵轴表示平均单株盈利,横坐标表示株数,则相应长方形面积表示每一盆盈利.从图象可知,每盆植入4株或5株时,相应长方形面积都是10.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.解法3(列分式方程):设每盆花苗增加x 株时,每盆盈利10元,根据题意,得10x +3=3-0.5x . 解这个方程,得x 1=1,x 2=2.经验证,x1=1,x2=2是所列方程的解.∴x+3=4或5.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.四、选做题16.(2011·义乌)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?解(1)2x,50-x.(2)由题意得:(50-x)(30+2x)=2100,化简得:x2-35x+300=0,解得:x1=15, x2=20,∵该商场为了尽快减少库存,则x=15不合题意,舍去. ∴x=20.答:每件商品降价20元,商场日盈利可达2100元.。

2012年中考复习考点跟踪训练6 一次方程与方程组(含答案)

2012年中考复习考点跟踪训练6 一次方程与方程组(含答案)

考点跟踪训练6 一次方程与方程组一、选择题1.(2011·凉山)下列方程组中是二元一次方程组的是( )A.⎩⎪⎨⎪⎧xy =1,x +y =2 B. ⎝⎛5x -2y =3,1x+y =3 C.⎩⎪⎨⎪⎧ 2x +z =0,3x -y =15 D.⎩⎪⎨⎪⎧x =5,x 2+y 3=72.(2011·东营)方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解是( )A.⎩⎪⎨⎪⎧ x =1,y =2B.⎩⎪⎨⎪⎧ x =1,y =-2C.⎩⎪⎨⎪⎧ x =2,y =1D.⎩⎪⎨⎪⎧x =0,y =-1 3.(2010·河北)小明买书需用48元,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根题意,下列所列方程正确的是( ) A .x +5(12-x )=48 B .x +5(x -12)=48 C .x +12(x -5)=48 D .5x +(12-x )=484.(2010·台湾)解二元一次联立方程式⎩⎪⎨⎪⎧8x +6y =3,6x -4y =5,得y =( )A .-112 B .-217 C .-234 D .-11345.(2011·荆州)对于非零的两个实数a 、b ,规定a ⊗b =1b -1a,若1⊗(x +1)=1,则x 的值为( )A.32B.13C.12 D .-12 二、填空题6.(2011·滨州)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13, ( )去分母,得3(3x +5)=2(2x -1). ( ) 去括号,得9x +15=4x -2. ( ) ( ),得9x -4x =-15-2. ( ) 合并,得5x =-17. ( ) ( ),得x -175. ( )7.(2011·淮安)小明根据方程5x +2=6x -8编写了一道应用题,请你把空缺部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;________,请问手工小组有几个人?(设手工小组有x 人). 8.(2011·泉州)已知x 、y 满足方程组⎩⎪⎨⎪⎧2x +y =5,x +2y =4,则x -y 的值为________.9.(2011·湛江)若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为________. 10.已知关于x 、y 的二元一次方程(a -1)x +(a +2)y +5-2a =0,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是________. 三、解答题11.(2010·乐山)解方程:5(x -5)+2x =-4.12.(2011·怀化)解方程组:⎩⎪⎨⎪⎧x +3y =8,①5x -3y =4.②13.(2011·桂林)解二元一次方程组:⎩⎪⎨⎪⎧x =3y -5,①3y =8-2x .②14.(2011·河北)已知⎩⎨⎧x =2,y =3是关于x 、y 的二元一次方程3x =y +a 的解.求(a +1)(a -1)+7的值.15.已知下面两个方程3(x +2)=5x ,①;4x -3(a -x )=6x -7(a -x ),②;有相同的解,试求a 的值.四、选做题16.已知关于x 的方程a (2x -1)=3x -2无解,试求a 的值.参考答案一、选择题1.(2011·凉山)下列方程组中是二元一次方程组的是( )A.⎩⎪⎨⎪⎧xy =1,x +y =2 B. ⎝⎛5x -2y =3,1x+y =3 C.⎩⎪⎨⎪⎧ 2x +z =0,3x -y =15D.⎩⎪⎨⎪⎧x =5,x 2+y 3=7答案 D解析 ⎩⎪⎨⎪⎧x =5,x 2+y 3=7每个方程都是一次方程,且总共含有两个未知数.2.(2011·东营)方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解是( )A.⎩⎪⎨⎪⎧ x =1,y =2B.⎩⎪⎨⎪⎧ x =1,y =-2C.⎩⎪⎨⎪⎧ x =2,y =1D.⎩⎪⎨⎪⎧x =0,y =-1 答案 A解析 ⎩⎪⎨⎪⎧ x +y =3,①x -y =-1,② ①+②,得2x =2,x =1,①-②,得2y =4,y =2,∴⎩⎪⎨⎪⎧x =1,y =2.3.(2010·河北)小明买书需用48元,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根题意,下列所列方程正确的是( ) A .x +5(12-x )=48 B .x +5(x -12)=48 C .x +12(x -5)=48 D .5x +(12-x )=48 答案 A解析 1元纸币x 张,则5元纸币(12-x )张,共值48元,则1·x +5(12-x )=48.4.(2010·台湾)解二元一次联立方程式⎩⎪⎨⎪⎧8x +6y =3,6x -4y =5,得y =( )A .-112 B .-217 C .-234 D .-1134答案 D解析 ⎩⎪⎨⎪⎧8x +6y =3,①6x -4y =5,② ①×3-②×4,得34y =-11,∴y =-1134.5.(2011·荆州)对于非零的两个实数a 、b ,规定a ⊗b =1b -1a,若1⊗(x +1)=1,则x 的值为( )A.32B.13C.12 D .-12答案 D解析 由规定,得1x +1-11=1,1x +1=2,2(x +1)=1,x =-12.经检验,x =-12是所列方程的根.二、填空题6.(2011·滨州)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13, ( )去分母,得3(3x +5)=2(2x -1). ( ) 去括号,得9x +15=4x -2. ( ) ( ),得9x -4x =-15-2. ( ) 合并,得5x =-17. ( ) ( ),得x -175. ( )答案 原方程可变形为3x +52=2x -13,(分式的基本性质)去分母,得3(3x +5)=2(2x -1). (等式性质2) 去括号,得9x +15=4x -2. (去括号法则或分配律) (移项),得9x -4x =-15-2.(等式性质1) 合并,得5x =-17.(合并同类项) (系数化为1),得x =-175. (等式性质2)7.(2011·淮安)小明根据方程5x +2=6x -8编写了一道应用题,请你把空缺部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;________,请问手工小组有几个人?(设手工小组有x 人).答案 如果每人做6个,那么就比计划多8个. 8.(2011·泉州)已知x 、y 满足方程组⎩⎪⎨⎪⎧2x +y =5,x +2y =4,则x -y 的值为________.答案 1 解析 ⎩⎪⎨⎪⎧2x +y =5,①x +2y =4,②①-②,得x -y =1.9.(2011·湛江)若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为________.答案 -1解析 把x =2代入方程,4+3m -1=0,m =-1.10.已知关于x 、y 的二元一次方程(a -1)x +(a +2)y +5-2a =0,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是________. 答案 ⎩⎪⎨⎪⎧x =3y =-1解析 解法一:取a =1,得3y +3=0,y =-1, 取a =-2,得-3x +9=0,x =3, ∴⎩⎪⎨⎪⎧x =3,y =-1.解法二:整理,得(x +y -2)a =x -2y -5, ∵方程有一个公共解,∴⎩⎪⎨⎪⎧ x +y -2=0,x -2y -5=0,解得⎩⎪⎨⎪⎧x =3,y =-1.三、解答题11.(2010·乐山)解方程:5(x -5)+2x =-4.解 5x -25+2x =-4,7x =21,∴x =3.12.(2011·怀化)解方程组:⎩⎪⎨⎪⎧x +3y =8,①5x -3y =4.②解 ①+②得,6x =12,解得x =2, 将x =2代入①得y =2, ∴方程组的解为⎩⎪⎨⎪⎧x =2,y =2.13.(2011·桂林)解二元一次方程组:⎩⎪⎨⎪⎧x =3y -5,①3y =8-2x .②解 把①代入②得:3y =8-2(3y -5),∴y =2. 把y =2代入①可得:x =3×2-5,∴x =1. 所以此方程组的解为⎩⎪⎨⎪⎧x =1,y =2.14.(2011·河北)已知⎩⎨⎧x =2,y =3是关于x 、y 的二元一次方程3x =y +a 的解.求(a +1)(a -1)+7的值.解 将x =2,y =3代入3x =y +a 中,2 3=3+a ,得a = 3. ∴(a +1)(a -1)+7=a 2-1+7=a 2+6=(3)2+6=9.15.已知下面两个方程3(x +2)=5x ,①;4x -3(a -x )=6x -7(a -x ),②;有相同的解,试求a 的值.解 由方程①可得3x -5x =-6,所以x =3.由已知,x =3也是方程②的解,根据方程解的定义,把x =3代入方程②,有4×3-3(a -3)=6×3-7(a -3),7(a -3)-3(a -3)=18-12,4(a -3)=6,4a -12=6,4a =18,a =184=92.四、选做题16.已知关于x 的方程a (2x -1)=3x -2无解,试求a 的值.解 将原方程变形为2ax -a =3x -2,即 (2a -3)x =a -2.由已知该方程无解,所以⎩⎪⎨⎪⎧2a -3=0,a -2≠0,解得a =32,所以a =32即为所求.。

考点跟踪训练47方程与函数相结合型综合问题

考点跟踪训练47方程与函数相结合型综合问题

考点跟踪训练47 方程与函数相结合型综合问题一、选择题1.在平面直角坐标系中,抛物线y =x 2-1与x 轴的交点的个数是( ) A .3 B .2 C .1 D .0答案 B解析 令y =0,得x 2-1=0,x =1或-1,抛物线交x 轴于点(1,0),(-1,0).2.(2011·兰州)如图所示的二次函数y =ax 2+bx +c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a -b <0;(4)a +b +c <0.你认为其中错误..的有( )A .2个B .3个C .4个D .1个 答案 D解析 由抛物线与x 轴交于两点,可知关于x 的二次方程ax 2+bx +c =0有两个不相等的实数根,则b 2-4ac >0;又抛物线的对标轴直线x =-b 2a >-1,而a <0,所以b >2a,2a -b <0;当x =1时,函数值y =a +b +c <0,信息(1),(3),(4)正确;抛物线与y 轴交于点(0,c ),在点(0,1)下方,c <1,信息(2)错误.3.(2011·潍坊)已知一元二次方程ax 2+bx +c =0(a >0)的两个实数根x 1、x 2满足x 1+x 2=4和x 1·x 2=3,那么二次函数y =ax 2+bx +c (a >0)的图象有可能是( )答案 C解析 由x 1+x 2=4和x 1x 2=3,可解得两根为1、3,抛物线与x 轴交点为(1,0),(3,0),选C.4.(2011·呼和浩特)已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点⎝⎛⎭⎫-45,y 1、⎝⎛⎭⎫-54,y 2、⎝⎛⎭⎫16,y 3,y 1、y 2、y 3的大小关系是( ) A . y 1<y 2<y 3 B .y 2<y 1<y 3 C . y 3<y 1<y 2 D .y 1<y 3<y 2答案 A解析 当方程的一根为x =-3时,(-3)2-3b -3=0,b =2,所以y =x 2+2x -3=(x +1)2-4,∴对称轴x =-1,∴x =-54与x =-34时y 值相同,∵在x =-1右侧,y 随x 增大而增大,∴y 1<y 2<y 3,选A.5.已知函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根 答案 D解析 画直线y =-2,与抛物线y =ax 2+bx +c 交于两点,且在第四象限,故方程ax 2+bx +c =-2,有两个不等的正数根.二、填空题 6.(2008·义乌)李老师给出了一个函数,甲、乙、丙三位学生分别指出这个函数的一个特征.甲:它的图象经过第一象限;乙:它的图象也经过第二象限;丙:在第一象限内函数值y 随x 增大而增大.在你学过的函数中,写出一个满足上述特征的函数解析式____________________.答案 形如y =kx +b (k >0,b >0)或y =ax 2+bx +c (a >0,b >0)7.要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短?小聪根据实际情况,以街道旁为x 轴,建立了如图所示的平面直角坐标系,测得A 点的坐标为(0,3),B 点的坐标为(6,5),则从A 、B 两点到奶站距离之和的最小值是__________.答案 10解析 如图,画点A 关于x 轴的对称点A 1,其坐标为(0,-3),根据两点之间线段最短,可知AC 、BC 距离之和的最小值为线段A 1B ,画BD ⊥y 轴于D ,在Rt △A 1BD 中,A 1D =3+5=8,BD =6,所以A 1B =62+82=10.8.(2010·绥化)已知关于x 的分式方程 a +2x +1=1的解是非正数,则a 的取值范围是____________.答案 a ≤-1且a ≠-2解析 去分母,a +2=x +1,∵x ≠-1,a ≠-2,x =a +1≤0,∴a ≤-1且a ≠-2.9.(2008·西宁)如图所示的是函数y =kx +b 与y =mx +n 的图象,则方程组⎩⎪⎨⎪⎧y =kx +b ,y =mx +n 的解关于原点对称的点的坐标是___________.答案 (-3,-4)解析 两直线y =kx +b 与y =mx +n 交于点(3,4),所以关于原点对标的点的坐标为(-3,-4).10.如图,点D 的纵坐标等于______________;点A 的横坐标是方程______________的解;大于点B 的横坐标是不等式______________的解集;点C 的坐标是方程组______________的解;小于点C 的横坐标是不等式______________的解集.答案 b ;k 1x +b 1=0;kx +b <0;⎩⎪⎨⎪⎧y =k 1x +b 1,y =kx +b;kx +b >k 1x +b 1三、解答题11.如果一个二次函数的图象经过点A (6,10),与x 轴交于B 、C 两点,点B 、C 的横坐标为x 1、x 2,且x 1+x 2=6,x 1·x 2=5.求这个二次函数的解析式.解 ∵这个二次函数的图象与x 轴交于B (x 1,0)、C (x 2,0)两点,∴这个二次函数的解析式是y =a (x -x 1)(x -x 2),即y =a [x 2-(x 1+x 2)x +x 1x 2]. ∵x 1+x 2=6,x 1·x 2=5, ∴y =a (x 2-6x +5).∵这个二次函数的图象经过点A (6,10), ∴a ×(62-6×6+5)=10, 解之,得a =2,∴所求二次函数的解析式为:y =2x 2-12x +10.12.如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角尺ABC 放在第二象限,且斜靠在两坐标轴上,直角顶点C 的坐标为(-1,0),点B 在抛物线y =ax 2+ax -2上.(1)点A 的坐标为________,点B 的坐标为________; (2)抛物线的关系式为________________;(3)设(2)中抛物线的顶点为D ,求△DBC 的面积; (4)将三角尺ABC 绕顶点A 逆时针方向旋转90°,到达△AB ′C ′的位置.请判断点B ′、C ′是否在(2)中的抛物线上,并说明理由.解 (1)A (0,2),B (-3,1). (2)y =12x 2+12x -2.(3)如图①,可求得抛物线的顶点D ⎝⎛⎭⎫-12,-178.设直线BD 的关系式为y =kx +b ,将点B 、D 的坐标代入,求得k =-54,b =-114,∴BD 的关系式为y =-54x -114.设直线BD 和x 轴交点为E ,则点E ⎝⎛⎭⎫-115,0,CE =65. ∴△DBC 的面积为12×65×⎝⎛⎭⎫1+178=158.(4)如图②,过点B ′作B ′M ⊥y 轴于点M ,过点B 作BN ⊥y 轴于点N ,过点C ′作C ′P ⊥y 轴于点P .在Rt △AB ′M 与Rt △BAN 中,∵AB =AB ′,∠AB ′M =∠BAN =90°-∠B ′AM , ∴Rt △AB ′M ≌Rt △BAN .∴B ′M =AN =1,AM =BN =3,∴B ′(1,-1).同理:△AC ′P ≌△CAO ,C ′P =OA =2,AP =OC =1, ∴C ′(2,1).将点B ′、C ′的坐标代入y =12x 2+12x -2,可知点B ′、C ′在抛物线上(事实上,点P与点N 重合).13.已知抛物线y =(9-m 2)x 2-2(m -3)x +3m 的顶点D 在双曲线y =-5x上,直线y =kx+c 过点D 和点C (a ,b ),且y 随x 的增大而减小,a 、b 满足方程组⎩⎪⎨⎪⎧a 2-b 2-3=0,2a 2-5ab +2b 2=0.求直线y =kx +c 的解析式.解 ∵y =(9-m 2)x 2-2(m -3)x +3m ,∴抛物线的顶点D 的坐标为⎝⎛⎭⎫-1m +3,3m 2+10m -3m +3.∵点D 在双曲线y =-5x 上,∴⎝⎛⎭⎫-1m +3·⎝⎛⎭⎫3m 2+10m -3m +3=-5, 整理得:m 2+10m +24=0, 解之,得m 1=-4,m 2=-6,∴D 点的坐标为D 1(1,-5)或D 2⎝⎛⎭⎫13,-15.解方程组⎩⎪⎨⎪⎧a 2-b 2-3=0,2a 2-5ab +2b 2=0,得⎩⎪⎨⎪⎧ a 1=-2,b 1=-1,,⎩⎪⎨⎪⎧a 2=2,b 2=1,∴C 点的坐标为C 1(-2,-1)或C 2(2,1).∵直线y =kx +c 经过D 、C 两点,且y 随x 的增大而减小, ∴点C 2(2,1)不合题意,舍去.∴直线x 1y =kx +c 经过点D 1(1,-5)和点C 1(-2,-1)或点D 2⎝⎛⎭⎫13,-15和C 1(-2,-1).∴⎩⎪⎨⎪⎧k +c =-5,-2k +c =-1,或⎩⎪⎨⎪⎧13k +c =-15,-2k +c =-1,解之,得⎩⎨⎧k =-43,c =-113,或⎩⎪⎨⎪⎧k =-6,c =-13. ∴这条直线的解析式为y =-43x -113或y =-6x -13.。

2012年全国中考数学试题分类解析汇编专题24:方程、不等式和函数的综合

2012年全国中考数学试题分类解析汇编专题24:方程、不等式和函数的综合

2012年全国中考数学试题分类解析汇编(159套63专题)专题24:方程、不等式和函数的综合一、选择题1. (2012福建龙岩4分)下列函数中,当x<0时,函数值y随x的增大而增大的有【】①y=x②y=-2x+1 ③1y=x-④2y=3xA.1个B.2个C.3个D. 4个【答案】【考点】【分析】2. (20121b yx+ =A. y【答案】【考点】【分析】∴△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,解得:b=-3或1。

∵反比例函数1byx+=的图象在每个象限内y随x的增大而增大,∴1+b<0。

∴b<-1。

∴b=-3。

∴反比例函数的解析式是13yx-=,即2yx=-。

故选D。

3.(2012山东菏泽3分)已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中的图象大致是【 】A .B .C . D【答案】【考点】【分析】4.(2012【 】A C 【答案】【考点】二次函数的图象,一次函数的性质。

【分析】∵抛物线的顶点在第四象限,∴﹣m >0,n <0。

∴m <0,∴一次函数y mx n =+的图象经过二、三、四象限。

故选C 。

5. (2012内蒙古呼和浩特3分)已知:M ,N 两点关于y 轴对称,且点M 在双曲线1y=2x上,点N 在直线y =x +3上,设点M 的坐标为(a ,b ),则二次函数y =﹣abx 2+(a +b )x 【 】A .有最大值,最大值为92-B .有最大值,最大值为92C .有最小值,最小值为92D .有最小值,最小值为92-【答案】B 。

【考点】关于y 轴对称的点的坐标,曲线上点的坐标与方程的关系,二次函数的最值。

【分析】∵M ,N 两点关于y 轴对称,点M 的坐标为(a ,b ),∴N 点的坐标为(﹣a ,b )。

又∵点M 在反比例函数1y=的图象上,点N 在一次函数y =x +3的图象上, 29+2。

2012年安徽中考数学试题及答案(解析版)

2012年安徽中考数学试题及答案(解析版)

2012年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012•安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.2.(2012•安徽)下面的几何体中,主(正)视图为三角形的是()A.B.C.D.3.(2012•安徽)计算(﹣2x2)3的结果是()A.﹣2x5B.﹣8x6C.﹣2x6D.﹣8x54.(2012•安徽)下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1C.m2﹣n D.m2﹣2m+15.(2012•安徽)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%)(1+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%+15%)万元6.(2012•安徽)化简的结果是()A.x+1B.x﹣1C.﹣x D.x7.(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a28.(2012•安徽)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()9.(2012•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线ℓ,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.10.(2012•安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题共4小题,每小题5分,满分20分)11.(2012•安徽)2011年安徽省棉花产量约378000吨,将378000用科学记数法表示应是_________.12.(2012•安徽)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为,,,则数据波动最小的一组是_________.13.(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= _________°.14.(2012•安徽)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是_________(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.(2012•安徽)计算:(a+3)(a﹣1)+a(a﹣2)16.(2012•安徽)解方程:x2﹣2x=2x+1.四、(本大题共2小题,每小题8分,满分16分)17.(2012•安徽)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是_________(不需要证明);(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立.18.(2012•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.五、(本大题共2小题,每小题10分,满分20分)19.(2012•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.20.(2012•安徽)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?21.(2012•安徽)甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.七、(本题满分12分)22.(2012•安徽)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG 的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.23.(2012•安徽)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.2012年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012•安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.考点:有理数的加法。

2012年中考数学分类解析(159套63专题)专题54_图形的旋转变换

2012年中考数学分类解析(159套63专题)专题54_图形的旋转变换

2012年全国中考数学试题分类解析汇编(159套63专题)专题54:图形的旋转变换一、选择题1. (2012天津市3分)将下列图形绕其对角线的交点逆时针旋转900,所得图形一定与原图形重合的是【 】(A )平行四边形 (B )矩形 (C )菱形 (D )正方形 【答案】D 。

【考点】旋转对称图形【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件:此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形。

故选D 。

2. (2012广东佛山3分)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .πB ..3+42π.11124π【答案】D 。

【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。

【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。

∴AC =∴AB C 1S B C A C 22∆=⨯⨯=设点B 扫过的路线与AB 的交点为D ,连接CD , ∵BC=DC,∴△BCD 是等边三角形。

∴BD=CD=1。

∴点D 是AB 的中点。

∴AC D AB C 11S S 2224∆∆==⨯=S 。

∴1AC D AC A BC D ABC S S S ∆∆=++扇形扇形的面扫过积26013113603604464124ππππ⨯⨯=+=++=+故选D 。

3. (2012广东汕头4分)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【 】A .110° B.80° C.40° D.30° 【答案】B 。

2012年中考复习考点跟踪训练《三角形与全等三角形》

2012年中考复习考点跟踪训练《三角形与全等三角形》

2012年中考复习考点跟踪训练(二十一)《三角形与全等三角形》一、选择题1.(2011·大理)三角形的两边长分别是3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.11或13答案 C解析方程x2-6x+8=0的两根为2和4,只有4与3、6可组成三角形,其周长为4+3+6=13.2.(2011·济宁)若一个三角形三个内角度数的比为2∶7∶6,那么这个三角形是() A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形答案 B解析这个三角形的最大角为72+7+6×180°=715×180°=84°,是锐角.3.(2011·连云港)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()答案 C解析三角形最长边是12,过其所对角的顶点作这边的垂线段,可知C是正确的.4.(2011·怀化)如图所示,∠A、∠1、∠2的大小关系是()A.∠A>∠1>∠2B.∠2>∠1>∠AC.∠A>∠2>∠1D.∠2>∠A>∠1答案 B解析∠2是∠1所在三角形中与∠1不相邻的外角,所以∠2>∠1,同理∠1>∠A,故∠2>∠1>∠A.5.(2011·宿迁)如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD的条件是() A.AB=AC B.BD=CDC.∠B=∠C D.∠BDA=∠CDA答案 B解析当∠1=∠2,AD=AD,BD=CD时,边边角不一定能使两个三角形全等.二、填空题6.(2011·丽水)已知三角形的两边长为4,8,则第三边的长度可以是______(写出一个即可).答案答案不唯一,在4<x<12之间的数都可.7.(2011·绵阳)如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A=______.答案25°解析因为AB∥CD,所以∠POB=∠C=50°.又AO=PO,得∠A=∠P,由∠A+∠P =∠POB,可知2∠A=50°,∠A=25°.8.(2011·无锡)如图,在△ABC中,AB=5 cm,AC=3 cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为__________cm.答案8解析因为DE垂直平分BC,所以DB=DC,故△ACD的周长AC+AD+DC=AC+AD+DB=AC+AB=5+3=8 cm.9.(2011·大理)如图,AB=AD,∠1=∠2,请你添加一个适当的条件,使得△ABC≌△ADE,则需添加的条件是________(只要写出一个即可).答案∠D=∠B,或∠DEA=∠C,或AE=AC等.10.(2011·江西)如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°.有以下四个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG∶DE=3∶4,其中正确结论的序号是__________.答案 ①②③④解析 ∵∠DAB =30°,∠DAE =90°,∴∠BAE =60°,∠AFB =90°,AF ⊥BC ;由AD =AC ,∠D =∠C =60°,∠DAB =∠CAE =30°,可证得△ADG ≌△ACF ;在Rt △ABF 中,∠B =30°,可知AF =12AB =12AE =EF ,EF ⊥BC ,所以BC 垂直平分AE ,连AO ,则有OA=OE ,∠OAE =∠E =30°,∠OAC =∠C =60°,△AOC 是等边三角形,OC =AC =12BC ,O为BC 中点;设DG =k ,则有AG =3k ,EG =3k ,DE =4k ,故AG ∶DE =3∶4k =3∶4,综上,①②③④均正确. 三、解答题11.(2011·东莞)已知:如图,E 、F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B . 求证:AE =CF .解 ∵AD ∥CB , ∴∠A =∠C .又∵AD =CB ,∠D =∠B , ∴△ADF ≌△CBE . ∴AF =CE .∴AF +EF =CE +EF , 即AE =CF .12.(2011·菏泽)已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC .证明 ∵BD 平分∠ABC ,CA 平分∠DCB ,∴∠ACB =12∠DCB ,∠DBC =12∠ABC .∵∠ABC =∠DCB , ∴∠ACB =∠DBC .在△ABC 与△DCB 中, ⎩⎪⎨⎪⎧∠ABC =∠DCB (已知),∠ACB =∠DBC (已证),BC =BC (公共边),∴△ABC ≌△DCB , ∴AB =DC .13.(2011·江津)在△ABC 中,AB =CB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF .(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF度数.解(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°.在Rt△ABE和Rt△CBF中,∵AE=CF, AB=BC,∴Rt△ABE≌Rt△CBF(HL).(2)解:∵AB=BC, ∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB-∠CAE=45°-30°=15°,由(1)得Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.14.(2011·扬州)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.解(1)证明:∵BD、CE是△ABC的高,∴∠BEC=∠CDB=90°.∵OB=OC,∴∠OBC=∠OCB.又∵BC=BC,AAS.∴△BEC≌△CDB()∴∠ABC=∠ACB.∴AB=AC,即△ABC是等腰三角形.(2)解:点O在∠BAC的角平分线上.理由如下:∵△BEC≌△CDB,∴BD=CE.∵OB=OC,∴OD=OE.又∵OD⊥AC,OE⊥AB,∴点O在∠BAC的角平分线上.15.(2011·邵阳)数学课堂上,徐老师出示一道试题:如图所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.证明:在AB上截取EA=MC,连接EM,得△AEM.∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.又CN 平分∠ACP ,∠4=12∠ACP =60°,∴∠MCN =∠3+∠4=120°.①又∵BA =BC ,EA =MC ,∴BA -EA =BC -MC ,即BE =BM . ∴△BEM 为等边三角形.∴∠6=60°. ∴∠5=180°-∠6=120°.② ∴由①②得∠MCN =∠5. 在△AEM 和△MCN 中,________________________________________________________________________ ∴△AEM ≌△MCN (ASA ).∴AM =MN .(2)若将试题中的“正三角形ABC ”改为“正方形A 1B 1C 1D 1”(如图),N 1是∠D 1C 1P 1的平分线上一点,则当∠A 1M 1N 1=90°时,结论A 1M 1=M 1N 1是否还成立?(直接写出答案,不需要证明)(3)若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,请你猜想:当∠A n M n N n =________°时,结论A n M n =M n N n 仍然成立?(直接写出答案,不需要证明)解 (1)∠1=∠2,AE =MC ,∠MCN =∠5.(2)成立. 在A 1B 1上截取A 1H =M 1C 1,连接M 1H ,易证△A 1M 1H ≌△M 1N 1C 1.(3)∠AMN =60°=(3-2)3×180°,∠A 1M 1N 1=90°=(4-2)4×180°,∠A n M n N n =(n -2)n180°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点跟踪训练45 方程型综合问题一、选择题1.已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片.若将此10包饼干平分给23名学生,则最少剩多少片?( )A. 0B. 3C. 7 D .10 答案 C解析 设这包饼干有y 片,则y >23x +3(x 是大于0的整数),而10y =230x +30,因而10y23=10x +3023=10x +1+723,考虑余数723,故最少剩7片.2.一元二次方程x 2+x +2=0的根的情况是( )A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根 答案 C解析 由x 2+x +2=0,得x 2+x +14=-74,所以⎝⎛x +122=-74,方程没有实数根.3.(2010·攀枝花)下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .x 2+1=0B .9x 2-6x +1=0 C .x 2-x +2=0 D .x 2-2x -1=0 答案 D解析 x 2-2x -1=0,x 2-2x +1=2,(x -1)2=2,x 1=1+2,x 2=1- 2. 4.(2010·莆田)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A .x (x -1)=10 B.x (x -1)2=10C .x (x +1)=10 D.x (x +1)2=10答案 B解析 设有x 人参加聚会,则每个人需握手(x -1)次,所以x (x -1)2=10.5.设a 、b 是方程x 2+x -2009=0的两个实数根,则a 2+2a +b 的值为( ) A .2006 B .2007 C .2008 D .2009 答案 C解析 根据题意,有a 2+a -2009=0,a 2+a =2009;又a +b =-1,所以a 2+2a +b =2008.二、填空题6.一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润______元.答案 60解析 450×0.8-450÷(1+50%)=360-300=60. 7.(2009·牡丹江)五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了________折优惠.答案 九解析 设贵宾卡又享受x 折优惠,则有10000×0.8×⎝⎛x10=10000-2800,800x =7200,x=9.8.(2011·铜仁)当k ________时,关于x 的一元二次方程x 2+6kx +3k 3+6=0有两个相等的实数根.答案 ±1解析 当(6k )2-4×1×(3k 2+6)=0时,方程有两个相等的实数根,解这个方程,得k =±1. 9.(2011·苏州)已知a 、b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式()a -b ()a +b -2+ab 的值等于________.答案 -1解析 由根与系数的关系得a +b =2,ab =-1,所以(a -b )(a +b -2)+ab =(a -b )×0+(-1)=-1.10.(2009·江苏)某县2008年农民人均年收入为7800元,计划到2010年,农民人均年收入达到9100元.设人均年收入的平均增长率为x ,则可列方程__________.答案 7800(1+x )2=9100 三、解答题11.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式; (2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.解 (1)由已知,得C (3,0),D (2,2), ∵∠ADE =90°-∠CDB =∠BCD , 又∠AOD =∠COD =∠ADO , ∴AD =AO =BC =2. 又∠DAE =∠B =90°, ∴△ADE ≌△BCD ,∴AE =BD =1,∴OE =1, ∴E (0,1).设过点E 、D 、C 的抛物线的解析式为 y =ax 2+bx +c (a ≠0).将点E 的坐标代入,得c =1.将c =1和点D 、C 的坐标分别代入,得⎩⎪⎨⎪⎧4a +2b +1=2,9a +3b +1=0.解得⎩⎨⎧a =-56,b =136.故抛物线的解析式为y =-56x 2+136x +1.(2)EF =2GO 成立,证明如下:∵点M 在该抛物线上,且它的横坐标为65,∴点M 的纵坐标为125.设DM 的解析式为y =kx +b 1(k ≠0),将点D 、M 的坐标分别代入,得⎩⎪⎨⎪⎧ 2k +b 1=2,65k +b 1=125.解得⎩⎪⎨⎪⎧k =-12,b 1=3. ∴DM 的解析式为y =-12x +3.∴F (0,3),EF =2.如图①,过点D 作DK ⊥OC 于点K ,则DA =DK .∵∠ADK =∠FDG =90°,∴∠FDA =∠GDK . 又∵∠FAD =∠GKD =90°,∴△DAF ≌△DKG . ∴KG =AF =1.∴GO =1.∴EF =2GO .(3)∵点P 在AB 上,G (1,0),C (3,0),设P (t,2). ∴PG 2=(t -1)2+22,PC 2=(3-t )2+22,GC =2. ①若PG =PC ,则(t -1)2+22=(3-t )2+22, 解得t =2.∴P (2,2),此时点Q 与点P 重合,∴Q (2,2).②若PG =GC ,则(t -1)2+22=22,解得t =1,∴P (1,2),此时GP ⊥x 轴.GP 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73.∴Q ⎝⎛⎭⎫1,73. ③若PC =GC ,则(3-t )2+22=22, 解得t =3,∴P (3,2),此时PC =GC =2,△PCG 是等腰直角三角形.如图②,过点Q 作QH ⊥x 轴于点H ,则QH =GH ,设QH =h , ∴Q (h +1,h ).∴-56(h +1)2+136(h +1)+1=h .解得h 1=75,h 2=-2(舍去).∴Q ⎝⎛⎭⎫125,75. 综上所述,存在三个满足条件的点Q ,即Q 1(2,2)或Q 2⎝⎛⎭⎫1,73或Q 3⎝⎛⎭⎫125,75. 12.已知,如图抛物线y =ax 2+3ax +c (a >0)与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧.点B 的坐标为(1,0),OC =3OB .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 的面积的最大值;(3)若点E 在x 轴上,点P 在抛物线上,是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.解 (1)∵对称轴x =-3a 2a =-32,又∵OC =3OB =3,a >0,∴C (0,-3).把B (1,0)、C (0,-3)代入y =ax 2+3ax +c 得 ⎩⎪⎨⎪⎧c =-3,a +3a +c =0,解得a =34,c =-3.∴y =342+94-3(2)过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M 、N .∴S 四边形ABCD =S △ABC +S △ACD =152+12DM ·(AN +ON )=152+2DM .∵A (-4,0),C (0,-3),设直线AC 的解析式为y =kx +b ,代入求得:y =-34x -3,令D ⎝⎛⎭⎫x ,34x 2+94x -3,M ⎝⎛⎭⎫x ,-34x -3, 则DM =-34x -3-⎝⎛⎭⎫34x 2+94x -3=-34(x +2)2+3.当x =-2时,DM 有最大值3,此时四边形ABCD 面积有最大值272.(3)如图①所示,讨论:①过点C 作CP 1∥x 轴交抛物线于点P 1,过点P 1作P 1E 1∥AC 交x 轴于点E 1,此时四边形ACP 1E 1为平行四边形,∵C (0,-3),令34x 2+94x -3=-3得x 1=0,x 2=-3,∴CP 1=3.∴P 1(-3,-3).②如图②,平移直线AC 交x 轴于点E ,交x 轴上方的抛物线于点P ,当AC =PE 时,四边形ACEP 为平行四边形,∵C (0,-3),∴可令P (x,3),由34x 2+94x -3=3得:x 2+3x -8=0,解得x 1=-3+412或x 2=-3-412,此时存在点P 2⎝⎛⎭⎫-3+4123和P 3⎝⎛⎭⎫-3-412,3.综上所述,存在3个点符合题意,坐标分别是P 1(-3,-3),P 2⎝⎛⎭⎫-3+412,3,P 3⎝⎛⎭⎫-3-412,3.13.(2011·北京)在平面直角坐标系xOy 中,二次函数y =mx 2+(m -3)x -3(m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 的坐标; (2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P (n,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数的图象于N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.解 (1)∵ 点A 、B 是二次函数y =mx 2+(m -3)x -3 (m >0)的图象与x 轴的交点,∴ 令y =0,即mx 2+(m -3)x -3=0,解得x 1=-1, x 2=3m.又∵ 点A 在点B 左侧且m >0,∴ 点A 的坐标为(-1,0).(2)由(1)可知点B 的坐标为(3m,0).∵ 二次函数的图象与y 轴交于点C , ∴ 点C 的坐标为(0,-3).∵∠ABC =45°,∴3m=3,∴m =1.(3)由(2)得,二次函数解析式为y =x 2-2x -3.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3).将交点坐标分别代入一次函数解析式y =kx +b 中, 得⎩⎪⎨⎪⎧ -2k +b =5,2k +b =-3.解得⎩⎪⎨⎪⎧k =-2,b =1. ∴ 一次函数的解析式为y =-2x +1.。

相关文档
最新文档