深基坑安全事故案例分析

合集下载

九种基坑坍塌事故案例分析

九种基坑坍塌事故案例分析

四、围护结构底部地基承载力失稳
• 围护结构底部地基承载力失稳是指重力式围护结构的底面压力过大,地基承载力不足引起
的失稳。由于在围护结构的外侧还作用着土压力,因此其合力是倾斜的。在倾斜荷载作用下, 地基土发生向坑内的挤出,围护结构产生不均匀的沉降,可能导致部分围护结构的开裂损坏。
如天恒大厦开挖深度约5m,淤泥及淤泥质土的厚度近20m,工程桩采用1000m钻孔灌注嵌岩桩,开
五、围护结构滑移失稳
• 围护结构滑移失
• 2004年6月4日中午,汉口新华下路新华豪庭的基坑护坡突然出 现塌方,一墙之隔的中鑫汽车修理公司的维修车间坍塌 。
稳亦主要发生在重力 式结构中,在坑外主
动土压力的作用下,
围护结构向坑内平移。 抵抗滑移的阻力主要 由围护体底面的摩阻 力以及内侧的被动土 压力构成。当坑底土 软弱或围护结构底部 的地基土软化时,墙 体发生滑移失稳。
七、围护结构的结构性破坏
• 围护结构的结构性破坏是指围护体本身发生开裂、折断、剪断或压屈,致使结构失去了承载能力的破坏模式。 如支撑体系不当或围护结构不闭合;也可能是设计计算时荷载估计不足或结构材料强度估计过高,支撑或围檩截
面不足导致破坏;此外,结构节点处理不当,也会因局部失稳而引起整体破坏,特别在钢支撑体系中,节点多,
华瑞大厦位于卓刀泉南路与雄楚大街交汇处,一幢26层高层建筑,基础埋深 约-10.8m。基坑支护地面以下约6m,坡率1:03喷锚支护,6m以下为人工挖孔桩锚
杆支护。2005年6月26日,基坑西侧产生滑坍,支护桩严重内倾,部分护坡桩断裂;
西侧坡顶地面沉降,坡面外鼓;南侧、东侧坡顶地面(含人行道产生裂缝),险情严 重。事故的原因主要是红粘土层遇水后强度迅速降低,导致浅层滑坡

最新 建筑基坑安全事故案例

最新 建筑基坑安全事故案例

海珠城广场位置
基坑位于江南大道与江南西路
十字路口的西南角
基坑周长约330米
开挖深度为20.3米
2005年7月21日12时左右,在广州海 珠区江南大道南珠城海广场深基坑发生 滑坡,导致3人死亡,4人受伤,地铁二 号线停运近一天,七层的海员宾馆倒塌, 多家商铺失火被焚,一栋七层居民楼受 损,三栋居民被迫转移。
Add Your Text
Add Your Text
Add Your Text
3-D Pie Chart
Text2 Text3 Text1
Text4
Text6 Text5
加固排险
设计因素
1. 支撑和地下连续墙设计存在严重的问 题是造成结构局部破坏的主要原因。 支撑与墙体连接部位没有设置围檩支 撑,连杆系节点设计不当,抗剪强度 不要求,地下连续墙设计强度不足。 2. 邻近基坑比本工程先完工,降水可能 导致地下土流失,引起马路下方土体 局部掏空,使本工程情况更加严重。
保护钢角撑和龙门架
爆破拆除海员宾馆北楼
基坑滑塌的原因分析
⑴本基坑原设计深度只有16.2米,而实际开挖深度 为20.3米,超深4.1米,造成原支护桩成为吊脚桩, 尽管后来设计有所变更,但对已施工的支护桩和锚索 等构件已无法调整,成为隐患。 ⑵从地质勘察资料反应和实际开挖揭露,南边地 层向坑里倾斜,并存在软弱透水夹层,随着开挖深度 增大,导致深部滑动。 ⑶本基坑施工时间长达2年9个月,基坑暴露时间大 大超过临时支护为一年的时间,导致开挖地层的软化 渗透水和已施工构件的锈蚀和锚索预应力损失,强度 降低,甚至失效。
建筑基坑安全事故案例
建筑科学研究院
案例一:广州海珠城广场基坑坍塌事故
海珠城广场基坑周边概况: •基坑位于广州江南大道与江南西路十字路口的西南角。 •基坑周长约330米,开挖深度为20.3米。 •基坑东侧距地铁二号线隧道结构边线为5.7~6.6米(隧道 埋深约20米),南侧距7层海员宾馆和7层隔山1号楼约16 米,西侧距马涌约6米。 基坑东侧、西侧边坡和南侧东段、北侧东段边坡上部 高6m采用土钉墙喷锚支护,6m以下采用人工挖孔桩与三 道钢管角撑支护,人工挖孔桩桩底深度为20.0m。基坑其 它地段边坡采用土钉墙喷锚加两道预应力锚索支护形式。

基坑坍塌事故

基坑坍塌事故

精选课件
21
▪ 承总设计院 作为设计单位在基坑支护结构施工 设计文件中没有提出保障施工作业人员安全和 预防生产安全事故的措施建议,并且承担的主 体结构(条形基础工程)设计与基坑设计衔接不 良,致使主体结构条形基础开挖到-20.3米后基 坑出现安全隐患问题,并且没有提出有效的防 护措施进行加固排险,对重大安全事故的发生 负有重要的管理责任 责令改正和罚款30万元
精选课件
25
事故思考(1)
1. 签订监理合同时要明确监理范围和工作内容 特别是涉及深基坑工程施工的监理合同,对监 理范围和工作内容的约定更应具体。
精选课件
26
思考(2)
2. 施工许可证申报表的关注要点 1)工程名称 2)合同造价 3)建设规模 4)合同开工、竣工日期 5)施工组织设计(盖章) 监理单位确认盖章后,应保留申报表的原件
别是监理程序更应严格遵守,不断提高防范责任风
险的能力.
1)按程序办理施工许可证.
2)深基坑工程(开挖深度大于等于7m计方案
(包括重大变更)必须经广州市建科委组织专家审查.
区城管部门、市余泥渣土排放管理处、原市质
安站和市建委.
精选课件
6
工程概况(3)
基坑工程自2002年10月31日在未领 取建筑工程施工许可证情况下开始施工, 中间多次停工,直到2005年7月7日才由 市建委发给建筑工程施工许可证,7月 15日完成施工,历时2年9个月。
精选课件
7
事故的发生及后果
2005年7月21日12时10分左右,B区基坑
8
事故直接原因分析(1)
1.施工与设计不符:该基坑原设计 深度只有-17米,2004年7月设计深度变 更为-19.6米,而实际基坑局部开挖深 度为-20.3米,超深3.3米,造成原支护桩 (深度-20米)变为吊脚桩.

九种基坑坍塌事故案例分析

九种基坑坍塌事故案例分析
三金.鑫城国际C地块事故
*
三、围护结构倾覆失稳
围护结构倾覆失稳主要发生在重力式结构或悬臂式围护结构,重力式结构在坑外主动土压力的作用下,围护结构绕其下部的某点转动,围护结构的顶部向坑内倾倒。抵抗倾覆失稳的力矩主要由围护结构自身的重力形成,坑底的被动抗力也是构成抵抗力矩的因素。
如武汉火炬大厦开挖深度10m,上部为老钻土,下部为基岩,采用¢900mm人工挖孔嵌岩排桩支护,开挖至设计标高后,由于老粘土局部浸水,强度降低,土压力剧增,由于桩嵌人岩层,变形不易谐调,造成十余根支护桩折断,危及邻近六层综合楼,使该楼楼梯间悬空,情况危急。经紧急回填,增设锚杆后。得以稳定。
*
4.加强对地表水的控制
在基坑施工产前,应摸清基坑周边的管网情况,避免在施工过程中对管网造成损害,出现爆或渗漏。同时为减少地表水渗入坑壁土体,基坑顶部四周应用混凝土封闭,施工现场内应设地表排水系统,对雨水、施工用水、从降水井中抽出的地下水等进行有组织排放,对坑边的积水坑、降水沉砂池应做防水处理,防止出现渗漏。对采用支护结构的坑壁应设置泄水孔,保证护壁内侧土体内水压力能及时消除,减少土体含水率,也便于观察基坑周边土体内地表水的情况,及时采取措施。泄水孔外倾坡度不宜小于5%,间距宜为2~3m,并宜按梅花形布置。
基坑施工前,首先应按照规范的要求,依据基坑坑壁破坏后可能造成后果的严重性确定基坑坑壁的等级,然后根据坑壁安全等级、基坑周边环境、开挖深度、工程地质与水文地质、施工作业设备和施工季节的条件等因素选择坑壁的形式。 当坑基顶部无重要建(构)筑物,场地有放坡条件且基坑深度≤10m时,可以优先采用坡率法。采用坡率法时,关键是要确定正确的坡率允许值。一般坑壁的坡率允许值可按工程类比的原则并结合已有稳定边坡的坡率值分析确定。如:土质均匀良好的硬塑粘性土,当坡高小于5m时,坡率允许值可确定为:1:1.00~1:1.25。若坑壁土质较软或基坑顶部边缘附近有较大荷载,坡率允许值还必须采用圆弧滑动法进行稳定性分析确定。 当施工场地不能满足设计坡率值的要求时,应对坑壁采取支护措施。选择支护结构,首先要确定基坑坑壁的安全等级。按照规范的要求,坑壁的安全等级按其损坏后可能造成的破坏后果的严重性、坑壁类型和基坑深度等因素,确定为一、二、三级。坑壁安全等级一、二级适合采用挖孔灌注桩护壁,坑壁安全等级二、三级适合采用土钉墙护壁。

基坑事故调查报告

基坑事故调查报告

基坑事故调查报告篇一:基础工程事故调查报告基础工程事故调查报告土木102案例一工程概述北京百盛大厦二期工程,基坑深15米,采用桩锚支护,钢筋混泥土灌注桩直径为800mm,桩顶标高—,桩顶设一道钢筋混泥土圈梁,圈梁上做3m高的挡土砖墙,并加钢筋混泥土结构柱。

在圈梁下2m处设置一层锚杆,用钢腰梁将锚杆固定,其实锚杆长20m,角度15度到18度,锚筋为钢绞线。

该场地地质情况从上到下依次为:杂填土,粉质粘土,粘质粉土,粉细砂,中粗砂,石层等。

地下水分为上层滞水和承压水两种。

基坑开挖完毕后,进行底版施工。

一夜的大雨,基坑西南角30余根支护桩折断坍塌,圈梁拉断,锚杆失效拔出,砖护墙倒塌,大量土方涌入基坑。

西侧基坑周围地面也出现大小不等的裂缝。

事故分析1、锚杆设计的角度偏小,锚固段大部分位于粘性土层中,使得锚固力较小,后经验算,发现锚杆的安全储备不足。

2、持续的大雨使地基土的含水量剧增,粘性土体的内摩擦角和粘聚力大大降低,导致支护桩的主动土压力增加。

同时沿地裂缝(甚至于空洞)渗入土体中的雨水,使锚杆锚固端的摩阻力大大降低,锚固力减小。

3、基坑西南角挡土墙后滞留着一个老方洞,大量的雨水从此窜入,对该处的支护桩产生较大的侧压力,并且冲刷锚杆,使锚杆失效。

事故处理事故发生后,施工单位对西侧桩后出现裂缝的地段紧急用工字钢斜撑支护的圈梁,阻止其继续变形。

西南角塌方地带,从上到下进行人工清理,一边清理边用土钉墙进行加固。

案例二工程概况某渔委商住楼为322层钢筋混凝土框筒结构大楼,一层地下室,总面积23150平方米。

基坑最深出(电梯井)- 该大楼位于珠海市香洲区主干道凤凰路与乐园路交叉口,西北两面临街,南面与市粮食局5层办公楼相距3~4m,东面为渔民住宅,距离大海200m。

地质情况大致为:地表下第一层为填土,厚2m;第而层为海砂沉积层,厚7m;第三层为密实中粗砂,厚10m;第四层为黏土,厚6m;-25以下为起伏岩层。

地下水与海水相通,水位为-,砂层渗透系数为K=~/d。

施工技术--最详细的深基坑工程安全事故总结及坍塌案例分析(工程人必读)

施工技术--最详细的深基坑工程安全事故总结及坍塌案例分析(工程人必读)

施工技术最详细的深基坑工程安全事故总结及坍塌案例分析(工程人必读!!)深基坑工程是最近30多年中迅速发展起来的一个领域,由于高层建筑、地下空间的发展,深基坑工程的规模之大、深度之深,成为岩土工程中事故最为频繁的领域,给岩土工程界提出了许多技术难题,当前,深基坑工程已成为国内外岩土工程中发展最为活跃的领域之一。

深基坑工程概念住房和城乡建设部《危险性较大的分部分项工程安全管理办法的通知》规定:深基坑工程指开挖深度超过5m(含5m)或地下室3层以上(含3层),或深度虽未超过5m,但地质条件和周围环境及地下管线特别复杂的基坑土方开挖、支护、降水工程。

深基坑工程特点当前我国各大城市深基坑工程主要突出了以下四个特点:①深基坑距离周边建筑越来越近由于城市的改造与开发,基坑四周往往紧贴各种重要的建筑物,如轨道交通设施、地下管线、隧道、天然地基民宅、大型建筑物等,设计或施工不当,均会对周边建筑造成不利影响。

②深基坑工程越来越深随着地下空间的开发利用,基坑越来越深,对设计理论与施工技术都提出的更难的要求。

如无锡恒隆广场基坑深近27m,上海中心深基坑达30m,均已挖入了承压水层。

下图为宁波嘉和中心二期项目基坑,平均开挖深度18.3m,最大挖深25。

9m,整体为3层地下室布局,局部有夹层。

③基坑规模与尺寸越来越大图为天津西站二期项目基坑,总面积为39000m2,基坑周长达855m。

④施工场地越来越紧凑图为宁波春江花城二期项目基坑全景,地下室距离外墙用地红线仅3。

5m.深基坑工程安全质量问题深基坑工程安全质量问题类型很多,成因也较为复杂.在水土压力作用下,支护结构可能发生破坏,支护结构形式不同,破坏形式也有差异。

渗流可能引起流土、流砂、突涌,造成破坏.围护结构变形过大及地下水流失,引起周围建筑物及地下管线破坏也属基坑工程事故。

粗略地划分,深基坑工程事故形式可分为以下三类:1)基坑周边环境破坏在深基坑工程施工过程中,会对周围土体有不同程度的扰动,一个重要影响表现为引起周围地表不均匀下沉,从而影响周围建筑、构筑物及地下管线的正常使用,严重的造成工程事故.引起周围地表沉降的因素大体有:基坑墙体变位;基坑回弹、隆起;井点降水引起的地层固结;抽水造成砂土损失、管涌流砂等。

深基坑工程事故案例分析.

深基坑工程事故案例分析.

2、 杭州地铁深基坑事故的原因分析
2.1 破坏模式分析
根据勘查结果对基坑土体破坏滑动面及地下连续 墙破坏模式进行了分析,并绘制相应的基坑破坏时调 查平面图与施工工况图以及基坑土体滑动面与地下连 续墙破坏形态断面图。
据靠近西侧地下连续墙静力 触探试验表明,在绝对标高-8m~ -10m处(近基坑底部), qc值为 0.20MPa(qc仅为原状土的30%左 右),土体受到严重扰动,接近 于重塑土强度,证明土体产生侧 向流变,存在明显的滑动面。
深基坑工程事故案例分 析
一、深基坑的概念及特点 二、深基坑工程事故类型及处理措施 三、土方开挖阶段事故预防 四、深基坑工程事故预防及处理 五、深基坑工程事故案例分析
五、深基坑工程事故案例分 析
1、杭州地铁深基坑事故概况
1.1 事故调查结果公布
2008年11月15日下午3时15分,正在施工的杭州地铁湘湖站 北2基坑现场发生大面积坍塌事故,造成21人死亡,24人受伤(截 止2009年9月已先后出院),直接经济损失4961万元。
• 不符合规范要求 1)基坑采取原状土样及相应主要力学试验指标较少, 不能完全反映基坑土性的真实情况。 2)勘察单位未考虑薄壁取土器对基坑设计参数的影响 ,以及未根据当地软土特点综合判断选用推荐土体力学 参数。 3)勘察报告推荐的直剪固结快剪指标c、Φ值采用。平 均值,未按规范要求采用标准值,指标偏高。 4)勘察报告提供的④2层的比例系数m值( m=2500kN/m4)与类似工程经验值差异显著。 • 提供的土体力学参数互相矛盾,不符合土力学基本理 论。 1)推荐用于设计的主要地层土的三轴CU、UU试验指标 、无侧限抗压强度指标与验证值、类似工程经验值差异 显著。
粘土
粉质粘
⑧2

建筑行业中的安全事故案例分析与教训

建筑行业中的安全事故案例分析与教训

建筑行业中的安全事故案例分析与教训在建筑行业中,安全事故经常发生,这不仅造成了人员伤亡和财产损失,还严重影响了工程进度和施工质量。

本文将通过分析几个真实的安全事故案例,探讨事故发生的原因,并总结出宝贵的教训,以期能够引起行业从业人员对安全问题的重视。

1. 案例一:塔吊坍塌事故在某高层建筑施工现场,一次塔吊坍塌事故造成了多人死亡和重伤。

事后经过调查,发现事故的主要原因是塔吊的基础没有按照设计要求进行固定,而是采用了简易的方式,导致塔吊失稳。

此外,塔吊操作人员对于安全操作规程缺乏了解,致使事故发生。

教训:在建筑工地上,塔吊的安装和维护必须按照规范进行,并由专业人员进行操作。

只有严格遵守安全操作规程,才能有效地防止类似事故的发生。

2. 案例二:高空坠落事故在一处屋顶工地上,一名工人在进行高处作业时失足坠落,造成了生命危险。

调查发现,事故的原因是因为工人没有正确使用安全带,并且没有正确安装安全网。

此外,工地管理人员没有进行足够的监督,没有及时指导工人正确使用安全设备。

教训:在高空作业中,工人必须严格遵守安全操作规程,正确佩戴和使用安全带,并确保安全网的正确安装。

工地管理人员要加强对工人的培训和监督,确保所有人员的安全意识和操作技能。

3. 案例三:建筑物倒塌事故某城市一高层建筑在施工过程中发生了倒塌事故,导致多人死亡。

调查发现,事故的主要原因是施工单位在进行深基坑支护时,没有考虑到土质条件和水平差异,导致支护结构失效,进而引起了倒塌。

教训:在进行基坑工程时,必须对土质和地下水情况进行充分的勘察和分析,并制定合理的支护方案。

同时,施工单位和监理单位要严格把关,确保支护结构合理并按照规范进行施工。

4. 案例四:消防设施失灵事故一栋写字楼在发生火灾时,消防设施无法正常运行,导致火势无法迅速得到控制,最终造成大面积损失和人员伤亡。

经过调查,发现是因为消防设施长期未进行维护检查,其中灭火器失灵、喷淋系统堵塞等问题未能及时发现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深基坑安全事故案例分析基坑工程的主要内容:一、深基坑的概念及特点二、深基坑工程事故类型处理措施三、以某项目为例如何进行土方开挖阶段事故预防四、深基坑工程事故预防及处理五、深基坑工程事故案例分析六、未来基坑支护的发展一、深基坑的概念及特点●1、深基坑的概念●开挖深度超过5米(含5米)成地下室三层以上(含三层),或深度虽未超过5米,|但地质条件和周围环境及地下管线特别复杂的工程●本规定所称深基坑工程,包括工程勘察、围护结构设计、围护结构施工、地下水控制、基坑监测、土方挖填等内容由于岩王工程具有很强的地城性,所以各地对于深基坑的定义也有所差别。

如上海、广东、山东、江西、南京规定5m以上为深基坑。

宁波、厦门、苏州规定4m以上为深基坑。

《建筑基坑工程监测技术规范》(GB50497-2009●开挖深度大于等于5m的基坑或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及需要监测的基坑工程应实施基坑工程监测也有一些专家的建议,可采用稳定系数Ns来判定,但不常用:N=r·H/CH●其中: (kN/m3); 开挖深度(m),是土的不固结不排水抗剪强度(kPa)。

对于27的基坑为深基坑2、深基坑工程的特点(1)深基坑工程具有很强的区域性岩土工程区域性强岩土工程中的深基坑工程区域性更强。

如黄土地基、砂土地基、软粘土地基等工程地质和水文地质条件不同的地基中,基坑工程差异性很大。

因此,深基坑开挖要因地制宜,根据本地具体情况,具体问题具体分析,而不能简单地完全照搬外地的经验。

(2)深基坑工程具有很强的个性深基坑工程不仅与当地的工程地质条件和水文地质条件有关还与基坑相邻建筑物、构筑物及市政地下管网的位置、抵御变形的能力、重要性以及周围场地条件有关。

因此,对深基坑工程进行分类,对支护结构允许变形规定统一的标准是比较困难的,应结合地区具体情况具体运用。

(3)基坑工程具有很强的综合性深基坑工程涉及土力学中强度(或称稳定)、变形和渗流3个基本课题三者融溶一起需要综合处理。

有的基坑工程土压力引起支护结构的稳定性问题是主要矛盾,有的土中渗流引起土破坏是主要矛盾,有的基坑周围地面变形是主要矛盾。

深基坑工程的区域性和个性强也表现在这方面同时,深基坑工程是岩土工程、结构工程及施工技术相互交叉的学科,是多种复杂因素相互影响的系统工程,是理论上尚待发展的综合技术学科。

(4)深基坑工程具有较强的时空效应深基坑的深度和平面形状,对深基坑的稳定性和变形有较大影响。

在深基坑设计中要注意深基坑工程的空间效应。

土体蠕变体,特别是软粘士,具有较强的蠕变性。

作用在支护结构上的土压力随时间变化蠕变将使土体强度降低,使土坡稳定性减小,故基坑开挖时应注意其时空效应。

(5)深基坑工程具有较强的环境效应深基坑工程的开挖,必将引起周围地基中地下水位变化和应力场的改变,导致周围地基土体的变形,对相邻建筑物、构筑物及市政地下管网产生影响。

影响严重的将危及相邻建筑物、构筑物及市政地下管网的安全与正常使用。

大量土方运输也对交通产生影响。

所以应注意其环境效应。

(6)深基坑工程具有较大工程量及较紧工期由于深基坑开挖深度一般较大,工程量比浅基坑增加很多。

抓紧施工工期,不仅是施工管理上的要求,它对减小基坑变形,减小基坑周围环境的变形也具有特别的意义。

(7)深基坑工程具有很高的质量要求由于深基坑开挖的区城也就是将来地下结构施工的区域,甚至有时深基坑的支护结构还是地下永久结构的部分,而地下结构的好坏又将直接影响到上部结构,所以必须保证深基坑工程的质量,才能保证地下结构和上部结构的工程质量,创造一个良好的前提条件,进而保证整幢建筑物的工程质量。

另一方面,由于深基坑工程中的挖方量大,土体中原有天然应力的释放也大,这就使基坑周围环境的不均匀沉降加大,使基坑固围的建筑物出现不利的拉应力,地下管线的某些部位出现应力集中等,故深基坑工程的质量要求高。

(8)深基坑工程具有较大的风险性深基坑工程是个临时工程,安全储备相对较小,因此风险性较大。

由于深基坑工程技术复杂,涉及范围广,事故频繁,因此在施工过程中应进行监测,并应具备应急措施。

深基坑工程造价较高,但有时临时性工程,一般不愿投入较多资金,一旦出现事故造成的经济损失和社会影响往往十分严重。

(9)深基坑工程具有较高的事故率深基坑工程施工周期长,从开挖到完成地面以下的全部隐蔽工程,常常经历多次降雨、周边堆载、振动等许多不利条件,安全度的随机性较大,事故的发生往往具有突发性。

风险性等特点外,当前我国各大城市深基坑工程更突出了以下几个特点:近--离管道、建筑物近大-- 基坑大深---基坑比较深紧--工期紧深:随着地下空间的开发利用,基坑越来越深,如无锡恒隆广场基坑深近27m,上海中心深基坑30m,均已挖入了承压水层。

特别是在软土地区,对设计理论与施工技术都提出的更难的要求.例如:某项目二期平均开挖深度为18.3m,最大挖深为25.9m,整体三层地下室、局部有夹层近:即深基坑离周边的环境保护对象近。

由于城市的改造与开发,基坑四周往往紧贴各种重要的建(构)筑物,如轨道交通设施、地下管线(煤气、水、电、通讯管道等)、隧道、防汛墙、天然地基民宅、古建筑、大型建筑物等,环境保护已成为突出问题,设计或施工不当,均会对环境造成不利影响大:基坑的规模与尺寸越来越夫。

目前随着我国高铁及地铁的迅猛发展,现在许多大城市的高铁站前广场下均修建或计划修建与地铁及汽车公交的地下换乘空间,如虹桥枢纽、天津西站、南京南站、济南西站等,均有大规模地下空间的开发。

上海招商银行信用卡中心工程基坑面积达81000m2,无锡恒隆广场基坑面积35000m2。

这类基坑在支护结构的设计中,特别是支撑系统的布置、困护墙的位移及坑底隆起的控制均有相当的难度。

天津中银117大厦单体工程基坑开挖面积之最:开挖面积达13.9万m2(324mX428m(1)单体工程基坑士方工程量,约200万m、(2)房建工程基坑深度:达3537m紧:即场地紧凑。

市区大规模的改造与开发,其中不少以土地出让形式吸开外资、内资开发,为充分利用土地质源,常要求建筑物造下室做足红线,场地可用空间小,大大增加了施工难度。

这必须通过有效的资源整合,才能顺利实现。

二、深基坑工程事故类型及处理措施基坑工程事故类型很多。

在水土压力作用下,支护结构可能发生破坏,支护结构型式不同,破坏形式也有差异。

渗流可能引起流土、流砂、突涌,造成破坏。

围护结构变形过大及地下水流失,引起周围建筑物及地下管线破坏也属基坑工程事故。

粗略地划分,基坑工程事故形式可分为全(1)周边环境破坏(2)支护体系破坏(3)渗透破坏(1)周边环境破坏:困护结构变形过大或地下水位降低造成周围路面、建筑物及地下管线破坏事故。

(2)支护体系破坏:主要包括:①墙体折断;②整体失稳;③基坑踢脚隆起破坏;④锚撑失稳。

涌)(3)渗透破坏:土体渗透破坏 (流土、管涌、突涌)1、周边环境破坏支护结构变形引起的沉降在深基坑工程施工过程中,会对周围土体有不同程度的扰动,一个重要影响表现为引起周围地表不均匀下沉从而影响周围建筑、构筑物及地下管线的正常使用,严重的造成工程事故。

引起周围地表沉降的因素大体有:墙体变位;基坑回弹隆起;井点降水地层固结;抽水造成砂土损失、管涌流砂等。

在这些因素中又以前三种为主,因此如何预测和减小其所引起的地面沉降为基坑工程界的一一个重要课题。

基坑降水引起的沉降在深基坑开挖过程中,降低地下水位过大或围护结构有较大变形时,可能会引起基坑周围地面沉降。

若不均匀沉降过大时,还有可能引起建筑物倾斜,墙体、道路及地下管线开裂等严重问题。

2、支护体系破坏(1)围护体系折断由于施工抢速度,超量挖土,支撑架没跟不上,是围护体系缺少大量设计上必要的支撑。

或者由于施工单位不按图施工,抱侥幸心理,少加支撑,致使围护体系应力过大而折断或支撑轴力过大破坏或产生大变形。

(2)围护体整体失稳模式基坑开挖后,土体沿围护墙体下,形成的园弧滑面或软弱夹层,发生整体滑动失稳的破坏。

(3)围护体踢脚破坏模式由于基坑围护墙体插入基坑底部深度较小,同时由于底部土体强度较低,从而发生围护墙底向基坑内发生较大的“踢脚变形”同时引起坑内土体隆起。

(4)坑内土滑结使内支撑失稳在地铁车站那样的长条形基抗内区放坡挖土,由于放坡较陡、降雨或其它原因引致滑坡,冲毁基坑内先期施工的支撑及立柱,导致基坑破坏。

3、土体渗透破坏(1)基坑壁流土破坏:在饱和含水地层(特别是有砂层、粉砂层或者其它的夹层等逶水性较好的地层)由于围护墙的止水效果不好,或止水结构失效,致使大量的水夹带砂粒涌入基坑,严重的水土流失会造成地面塌陷。

(2)基坑底突涌破坏:由于承压水的降水不当,在隔水层中开挖基坑时,当基底以下承压含水层的水头压力冲破基坑底部土层,发生坑底突涌破坏。

(3)基坑底管涌在砂层或粉砂成层中开挖基坑时,在不打井点或井点失效后,会产生冒水翻砂(即管涌)严重时会导致基坑失稳。

以上基坑工程事故,只是从某一种形式上表现了基坑破坏,实际上基坑工程事故的表现形式往往具有多样性,有一个连锁效应,表现的形式也呈多样性。

所以基坑工程事故发生的原因往往是多方面的,具有复杂性。

4、基坑内边坡失稳应急措施1)在失稳边坡外侧卸载或在内侧回填,稳定边坡。

2)在坡脚设置排水明沟和集水坑,设置大功率水泵抽水。

对相邻开挖的土层的坡面上采用钢丝网水泥砂浆抹面的方法进行护坡。

1)在失稳的深坑周围打设井点进行降水。

4)在深坑周围和坑内进行注浆加固。

5)加设支撑。

(1)基坑开挖引起坑底起失稳基底隆起失稳主要是基坑内支护体系未进稳水层,同时由于坑内外水头高差引起坑底土体的隆起。

避免基底隆起失稳的措施有:1)基坑开挖前应进行预降水,时间不少于三周。

坑底加固区以上土体须满足挖士要求,坑底加固区以外范围要求降水后水位离坑底0.5^ 1. 0米(含不作封底加固处理的落深区)。

基坑开挖至基底后继续进行降水,确保地下水位位于落深区基底以下不小于1.0米。

1)基坑周围地区做好排水工作,围护结构周边一定距高设置排水明沟,防止雨水流入基底,保证基底土体干燥。

3)加强基坑监测,及时发现隐患。

4)底板分区分块浇注混凝土,尽量减少坑底暴露的时间。

2)对落深超过2m深度的局部深坑进行加固处理,深坑边采用高压旋喷桩作为坝体,同时采用高压旋喷桩对坑底进行封底。

高压旋喷桩直径800mm,相邻桩间搭接长度为200mm。

采用P42.5级普通硅酸盐水泥,水泥用量550kg/m3,水泥:粉煤灰=1:0.3,水泥浆液水灰比为0.86)一旦发生坑底隆起失稳必须及时启动应急预案,应急领导小组组长统一指挥,组织人力、物力采取有效措施进行处理。

3、基坑变形过大的应急处理措施1、危险源分析地下室阶段危险源分析针对以上危险源从人员管理、应急程序、物资保证上落实到位。

相关文档
最新文档