湖南省湘潭市高考数学备考复习(理科)专题五:导数及其应用
(完整版)导数知识点总结及应用

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。
5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。
高考理科数学二轮课件专题导数及其应用

结合边际分析和弹性分析的结果, 确定经济变量的最优取值范围,为 制定经济政策提供科学依据。
05 微分方程初步知识及其应用
微分方程基本概念和分类
微分方程定义
微分方程是描述自变量、未知函数及其导数之间关系的数学方程。可分为一阶、二阶等微分方程;根据方程形式,可分为线性、非线 性微分方程。
函数能够满足问题的需求。
利用构造函数法证明不等式的步骤
03
首先构造函数,然后求导并判断函数的单调性或最值,最后根
据函数的性质证明不等式。
04 导数在优化问题中的应用
最值问题求解策略
一阶导数测试法
闭区间上连续函数的性质
通过求一阶导数并判断其符号变化来 确定函数的单调性,进而找到函数的 极值点。
对于闭区间上的连续函数,通过比较 区间端点和驻点的函数值来确定函数 的最值。
优化方法的选择
针对不同类型的优化问题 ,选择合适的优化方法, 如梯度下降法、牛顿法等 ,进行求解。
经济学中边际分析和弹性分析
边际分析
利用导数研究经济变量之间的边 际关系,如边际成本、边际收益 等,为经济决策提供定量依据。
弹性分析
通过导数研究经济变量之间的相对 变化率,如需求弹性、供给弹性等 ,揭示经济变量之间的相互影响程 度。
02
01
电路分析问题
电路中的电压、电流等物理量的变化可以通 过电路微分方程进行分析和计算。
04
03
06 总结与提高
知识体系回顾与总结
A
导数的定义与计算
导数描述了函数在某一点处的切线斜率,可以 通过极限的定义进行计算。
导数的几何意义与应用
导数在几何上表示切线斜率,可以用于求 曲线的切线方程和法线方程。
高考数学导数及其应用知识点

高考数学导数及其应用知识点数学导数及其应用知识点一函数的单调性在a,b内可导函数fx,f′x在a,b任意子区间内都不恒等于0.f′x≥0?fx在a,b上为增函数.f′x≤0?fx在a,b上为减函数.1、f′x>0与fx为增函数的关系:f′x>0能推出fx为增函数,但反之不一定.如函数fx=x3在-∞,+∞上单调递增,但f′x≥0,所以f′x>0是fx为增函数的充分不必要条件.2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′x0=0是可导函数fx在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.数学导数及其应用知识点二函数的极值1、函数的极小值:函数y=fx在点x=a的函数值fa比它在点x=a附近其它点的函数值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函数y=fx的极小值点,fa叫做函数y=fx的极小值.2、函数的极大值:函数y=fx在点x=b的函数值fb比它在点x=b附近的其他点的函数值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函数y=fx的极大值点,fb叫做函数y=fx的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.数学导数及其应用知识点三函数的最值1、在闭区间[a,b]上连续的函数fx在[a,b]上必有最大值与最小值.2、若函数fx在[a,b]上单调递增,则fa为函数的最小值,fb为函数的最大值;若函数fx在[a,b]上单调递减,则fa为函数的最大值,fb为函数的最小值.数学导数及其应用知识点四求可导函数单调区间的一般步骤和方法1、确定函数fx的定义域;2、求f′x,令f′x=0,求出它在定义域内的一切实数根;3、把函数fx的间断点即fx的无定义点的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数fx的定义区间分成若干个小区间;4、确定f′x在各个开区间内的符号,根据f′x的符号判定函数fx在每个相应小开区间内的增减性.数学导数及其应用知识点五函数极值的步骤1、确定函数的定义域;2、求方程f′x=0的根;3、用方程f′x=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;4、由f′x=0根的两侧导数的符号来判断f′x在这个根处取极值的情况.六、求函数fx在[a,b]上的最大值和最小值的步骤1、求函数在a,b内的极值;2、求函数在区间端点的函数值fa,fb;3、将函数fx的各极值与fa,fb比较,其中最大的一个为最大值,最小的一个为最小值.感谢您的阅读,祝您生活愉快。
高考数学导数及应用知识点

高考数学导数及应用知识点导数是高中数学中重要的概念之一,也是高考数学必考的知识点。
掌握导数的概念和应用是理解数学中许多问题的关键。
本文将以“step by step thinking”为主线,逐步讲解导数的基本概念、性质以及常见的应用。
一、导数的概念导数可以理解为函数在某一点上的变化率。
对于给定的函数f(x),在某一点x上的导数表示为f’(x),它的定义如下:f’(x) = lim(h→0)[f(x+h) - f(x)] / h其中,lim表示极限,h表示自变量x的增量。
导数的定义可以理解为当自变量x的增量h趋近于0时,函数f(x)在点x处的变化量与自变量增量的比值。
二、导数的性质 1. 常数函数的导数为0:对于常数函数f(x) = c,其中c为常数,其导数为f’(x) = 0。
因为常数函数在任意一点的函数值都相同,所以其变化率为0。
2. 幂函数的导数:对于幂函数f(x) = x^n,其中n为正整数,其导数为f’(x) = n *x^(n-1)。
幂函数的导数是指数函数。
3. 指数函数的导数:对于指数函数f(x) = a^x,其中a为正实数且不等于1,其导数为f’(x) = ln(a) * a^x。
指数函数的导数是指数函数本身与常数ln(a)的乘积。
4. 对数函数的导数:对于对数函数f(x) = log_a(x),其中a为正实数且不等于1,其导数为f’(x) = 1 / (x * ln(a))。
对数函数的导数是关于自变量的倒数。
5. 三角函数的导数:常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)。
它们的导数分别为cos(x)、-sin(x)和sec^2(x)。
三、导数的应用导数在数学中有广泛的应用,以下是一些常见的应用场景:1.切线和法线:导数可以用来求曲线上一点处的切线和法线。
切线是曲线在该点处的斜率,即导数;法线则是与切线垂直的直线,其斜率为导数的负倒数。
(完整版)高考数学二轮复习名师知识点总结:导数及其应用

导数及其应用高考主要考察1.利用导数的几何意义求曲线在某点处的切线方程.2.考查导数的有关计算,尤其是简单的函数求导. 3.利用导数研究函数的单调性,会求函数的单调区间.4.由函数单调性和导数的关系,求参数的范围. 5.利用导数求函数的极值.6.利用导数求函数闭区间上的最值.7.利用导数解决某些实际问题. 8.考查定积分的概念,定积分的几何意义,微积分基本定理. 9.利用定积分求曲边形面积、变力做功、变速运动的质点的运动路程. 【复习指导】复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导. ;复习时,应理顺导数与函数的关系,理解导数的意义,体会导数在解决函数有关问题时的工具性作用,重点解决利用导数来研究函数的单调性及求函数的单;复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等.基础梳理1.函数y =f (x )从x 1到x 2的平均变化率函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1.若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为ΔyΔx .2.函数y =f (x )在x =x 0处的导数 (1)定义称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0 ΔyΔx. (2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地, 切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数:称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x )Δx为f (x )的导函数,导函数有时也记作y ′.4.基本初等函数的导数公式 若f (x )=c ,则f ′(x )=0;若f (x )=x α(α∈R ),则f ′(x )=αx α-1; 若f (x )=sin x ,则f ′(x )=cos x ; 若f (x )=cos x ,则f ′(x )=-sin x ;若f (x )=a x (a >0,且a ≠1),则f ′(x )=a x ln_a ; 若f (x )=e x ,则f ′(x )=e x ;若f (x )=log a x (a >0,且a ≠1),则f ′(x )=1x ln a ;若f (x )=ln x ,则f ′(x )=1x .5.导数四则运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 6.复合函数的求导法则复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′. 注意:一个区别曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别:曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 7.导数的几何意义函数y =f (x )在x =x 0处的导数f ′(x 0)是曲线y =f (x )在点(x 0,f (x 0))处切线l 的斜率,切线l 的方程是y -f (x 0)=f ′(x 0)(x -x 0). 8.导数的物理意义若物体位移随时间变化的关系为s =f (t ),则f ′(t 0)是物体运动在t =t 0时刻的瞬时速度. 9.函数的单调性在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0. f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减. 10.函数的极值(1)判断f (x 0)是极值的方法一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根左右值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点. 11.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.12.定积分(1)定积分的定义及相关概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式i =1n f (ξi )Δx =∑i =1nb -an f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x .在⎠⎛ab f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. (2)定积分的性质①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .③⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).13.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式. 14.定积分的应用(1)定积分与曲边梯形的面积定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来定:设阴影部分面积为S .①S =⎠⎜⎜⎛abf (x )d x ; ②S =-⎠⎜⎜⎛ab f (x )d x ; ③S =⎠⎜⎜⎛ac f (x )d x -⎠⎜⎜⎛cb f (x )d x ; ④S =⎠⎜⎜⎛ab f (x )d x -⎠⎜⎜⎛ab g (x )d x = ⎠⎜⎜⎛ab [f (x )-g (x )]d x .(2)匀变速运动的路程公式作变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即 s =⎠⎜⎜⎛ab v(t)d t .双基自测1.(人教A 版教材习题改编)函数f (x )=(x +2a )(x -a )2的导数为( ). A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2) D .3(x 2+a 2)解析 f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2). 答案 C2.(2011·湖南)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ). A .-12 B.12 C .-22 D.22解析 本小题考查导数的运算、导数的几何意义,考查运算求解能力.y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12.答案 B3.(2011·江西)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ).A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)解析 令f ′(x )=2x -2-4x =2(x -2)(x +1)x >0,利用数轴标根法可解得-1<x <0或x >2,又x >0,所以x >2.故选C.答案 C 答案 2 -24.(2011·福建)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ). A .2 B .3 C .6 D .9解析 f ′(x )=12x 2-2ax -2b ,由函数f (x )在x =1处有极值,可知函数f (x )在x =1处的导数值为零,12-2a -2b =0,所以a +b =6,由题意知a ,b 都是正实数,所以ab ≤⎝ ⎛⎭⎪⎫a +b 22=⎝⎛⎭⎫622=9,当且仅当a =b =3时取到等号. 答案 D5.已知函数f (x )=14x 4-43x 3+2x 2,则f (x )( ).A .有极大值,无极小值B .有极大值,有极小值C .有极小值,无极大值D .无极小值,无极大值 解析 f ′(x )=x 3-4x 2+4x =x (x -2)2 f ′(x ),f (x )随x 变化情况如下x (-∞,0)0 (0,2) 2 (2,+∞)f ′(x ) -0 +0 +f (x )43因此有极小值无极大值. 答案 C6.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.解析 ∵f (x )在x =1处取极值,∴f ′(1)=0, 又f ′(x )=2x (x +1)-(x 2+a )(x +1)2,∴f ′(1)=2×1×(1+1)-(1+a )(1+1)2=0,即2×1×(1+1)-(1+a )=0,故a =3. 答案 32.(2011·湖南)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( ).A.12 B .1 C.32 D.3 解析 S =∫π3-π3cos x d x =2∫π30cos x d x = |2sin x π30= 3.答案 D4.如图,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( ).双基自测1.(2011·福建)⎠⎜⎜⎛01(e x+2x )d x 等于( ). A .1 B .e -1 C .e D .e +1 解析⎠⎜⎜⎛01(e x +2x )d x= ⎪⎪⎪(e x +x 2)1=(e +1)-1=e. 答案 C3.(2011·山东)由曲线y =x 2,y =x 3围成的封闭图形面积为 ( ).A.112B.14C.13D.712解析 由⎩⎪⎨⎪⎧y =x 2,y =x 3,得交点坐标为(0,0),(1,1),因此所求图形面积为S =⎠⎜⎜⎛01(x 2-x 3)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-14x 410=112. 答案 AA.1πB.2πC.π4D.3π定积分的计算【例1】 计算下列积分 \\当原函数较难求时,可考虑由其几何意义解得. 解析 阴影部分的面积S =⎪⎪⎪⎠⎜⎜⎛0πsin x d x =-cos x π0=-(-1-1)=2,矩形的面积为2π.概率P =阴影部分的面积矩形面积=22π=1π.故应选A.答案 A考向二 导数的运算【例2】►求下列各函数的导数:(1)y =x +x 5+sin x x 2; (2)y =(x +1)(x +2)(x +3); (3)y =sin x 2⎝⎛⎭⎫1-2cos 2x 4; (4)y =11-x +11+x ; [审题视点] 先把式子化为最简式再进行求导. 解 (1)∵y =x 12+x 5+sin x x 2=x -32+x 3+sin xx2,∴y ′=⎝⎛⎭⎫x -32′+(x 3)′+(x -2sin x )′=-32x -52+3x 2-2x -3sin x +x -2cos x . (2)法一 y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11. 法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)· (x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2) =3x 2+12x +11.(3)∵y =sin x 2⎝⎛⎭⎫-cos x 2=-12sin x , ∴y ′=⎝⎛⎭⎫-12sin x ′=-12(sin x )′=-12cos x . (4)y =11-x +11+x =1+x +1-x (1-x )(1+x )=21-x,∴y ′=⎝⎛⎭⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2. (1)熟记基本初等函数的导数公式及四则运算法则是正确求导的基础.(5)由y =x cos x -5sin x 为奇函数⎠⎜⎜⎛-11(x cos x -5sin x +2)d x = ⎪⎪⎪⎠⎛1-12d x =2x 1-1=4.(2)必要时对于某些求导问题可先化简函数解析式再求导. 【训练2】 求下列函数的导数:(1)y =x n e x ; (2)y =cos xsin x ; (3)y =e x ln x ; (4)y =(x +1)2(x -1).解 (1)y ′=nx n -1e x +x n e x =x n -1e x (n +x ). (2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x . (3)y ′=e x ln x +e x ·1x=e x ⎝⎛⎭⎫1x +ln x . (4)∵y =(x +1)2(x -1)=(x +1)(x 2-1)=x 3+x 2-x -1, ∴y ′=3x 2+2x -1.考向三 求复合函数的导数【例3】►求下列复合函数的导数.(1)y =(2x -3)5;(2)y =3-x ; (3)y =sin 2⎝⎛⎭⎫2x +π3;(4)y =ln(2x +5). [审题视点] 正确分解函数的复合层次,逐层求导.解 (1)设u =2x -3,则y =(2x -3)5,由y =u 5与u =2x -3复合而成, ∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′=5u 4·2=10u 4=10(2x -3)4. (2)设u =3-x ,则y =3-x .由y =u 12与u =3-x 复合而成.y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′=12u -12(-1)=-12u -12=-123-x =3-x 2x -6.(3)设y =u 2,u =sin v ,v =2x +π3,则y x ′=y u ′·u v ′·v x ′=2u ·cos v ·2=4sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3=2sin ⎝⎛⎭⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y x ′=y u ′·u x ′ y ′=12x +5·(2x +5)′=22x +5.由复合函数的定义可知,中间变量的选择应是基本函数的结构,解这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外向内,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程. 【训练3】 求下列函数的导数:(1)y =x 2+1; (2)y =sin 22x ; (3)y =e -x sin 2x; (4)y =ln 1+x 2. 解 (1)y ′=12 x 2+1·2x =xx 2+1,(2)y ′=(2sin 2x )(cos 2x )×2=2sin 4x(3)y ′=(-e -x )sin 2x +e -x (cos 2x )×2=e -x (2cos 2x -sin 2x ). (4)y ′=11+x 2·121+x 2·2x =x 1+x 2.考向四:求曲线上某一点的切线方程【示例】► (2010·山东)已知函数f (x )=ln x -ax +1-ax -1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当a ≤12时,讨论f (x )的单调性.(1)求出在点(2,f (2))处的斜率及f (2),由点斜式写出切线方程;(2)求f ′(x ),再对a 分类讨论.[解答示范] (1)当a =-1时,f (x )=ln x +x +2x-1,x ∈(0,+∞).所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),(1分)因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2, 所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0.(3分) (2)因为f (x )=ln x -ax +1-a x -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞).(4分)令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;②当a ≠0时,由f ′(x )=0, 即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1.a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减;(7分)b .当0<a <12时,1a-1>1>0.x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝⎛⎭⎫1,1a -1时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;x ∈⎝⎛⎭⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;(9分)c .当a <0时,由于1a -1<0,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增.(11分)综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减,函数f (x )在(1,+∞)上单调递增; 当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,函数f (x )在⎝⎛⎭⎫1,1a -1上单调递增, 函数f (x )在⎝⎛⎭⎫1a -1,+∞上单调递减.(12分)考向五 求曲线切线的方程【例1】►已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在x =2处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.[审题视点] 由导数几何意义先求斜率,再求方程,注意点是否在曲线上,是否为切点. 解 (1)f ′(x )=3x 2-8x +5 f ′(2)=1,又f (2)=-2∴曲线f (x )在x =2处的切线方程为 y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4) f ′(x 0)=3x 20-8x 0+5则切线方程为 y -(-2)=(3x 20-8x 0+5)(x -2),又切线过(x 0,x 30-4x 20+5x 0-4)点,则x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2,或x 0=1,因此经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.首先要分清是求曲线y =f (x )在某处的切线还是求过某点曲线的切线.(1)求曲线y =f (x )在x =x 0处的切线方程可先求f ′(x 0),利用点斜式写出所求切线方程; (2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标后再写切线方程. 【训练1】 若直线y =kx 与曲线y =x 3-3x 2+2x 相切,试求k 的值. 解 设y =kx 与y =x 3-3x 2+2x 相切于P (x 0,y 0)则y 0=kx 0,①y 0=x 30-3x 20+2x 0,② 又y ′=3x 2-6x +2,∴k =y ′|x =x 0=3x 20-6x 0+2,③ 由①②③得:(3x 20-6x 0+2)x 0=x 30-3x 20+2x 0,即(2x 0-3)x 20=0.∴x 0=0或x 0=32,∴k =2或k =-14. 考向六 函数的单调性与导数【例2】►已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =3是f (x )的极值点,求f (x )的单调区间.[审题视点] 函数单调的充要条件是f ′(x )≥0或f ′(x )≤0且不恒等于0. 解 (1)对f (x )求导,得f ′(x )=3x 2-2ax -3. 由f ′(x )≥0,得a ≤32⎝⎛⎭⎫x -1x . 记t (x )=32⎝⎛⎭⎫x -1x ,当x ≥1时,t (x )是增函数, ∴t (x )min =32(1-1)=0. ∴a ≤0.(2)由题意,得f ′(3)=0,即27-6a -3=0, ∴a =4.∴f (x )=x 3-4x 2-3x ,f ′(x )=3x 2-8x -3. 令f ′(x )=0,得x 1=-13,x 2=3.当x 变化时,f ′(x )、f (x )的变化情况如下表:∴当x ∈⎝⎛⎦⎤-∞,-13,[3,+∞)时,f (x )单调递增,当x ∈⎣⎡⎦⎤-13,3时,f (x )单调递减.函数在指定区间上单调递增(减),函数在这个区间上的导数大于或等于0(小于或等于0),只要不在一段连续区间上恒等于0即可,求函数的单调区间解f′(x)>0(或f′(x)<0)即可.【训练2】已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,说明理由.解f′(x)=e x-a,(1)若a≤0,则f′(x)=e x-a≥0,即f(x)在R上递增,若a>0,e x-a≥0,∴e x≥a,x≥ln a. 因此f(x)的递增区间是[ln a,+∞).(2)由f′(x)=e x-a≤0在(-2,3)上恒成立.∴a≥e x在x∈(-2,3)上恒成立.又∵-2<x<3,∴e-2<e x<e3,只需a≥e3.当a=e3时f′(x)=e x-e3在x∈(-2,3)上,f′(x)<0,即f(x)在(-2,3)上为减函数,∴a≥e3. 故存在实数a≥e3,使f(x)在(-2,3)上单调递减.考向七利用导数解决不等式问题【例3】►设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.[审题视点] 第(2)问构造函数h(x)=e x-x2+2ax-1,利用函数的单调性解决.(1)解由f(x)=e x-2x+2a,x∈R知f′(x)=e x-2,x∈R.令f′(x)=0,得x=ln 2,于是当x变化时,f′(x),f(x)的变化情况如下表.单调递减单调递增故f(x)f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2(1-ln 2+a).(2)证明设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)的最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对∀x ∈[a ,b ]都有f (x )≥g (x ),可设h (x )=f (x )-g (x )只要利用导数说明h (x )在[a ,b ]上的最小值为0即可.【训练3】 已知m ∈R ,函数f (x )=(x 2+mx +m )e x (1)若函数没有零点,求实数m 的取值范围; (2)当m =0时,求证f (x )≥x 2+x 3. (1)解 由已知条件f (x )=0无解, 即x 2+mx +m =0无实根,则Δ=m 2-4m <0,解得0<m <4,实数m 的取值范围是(0,4) (2)证明 当m =0时,f (x )=x 2e x 设g (x )=e x -x -1,∴g ′(x )=e x -1, g (x ),g ′(x )随x 变化情况如下:由此可知对于x ∈R ,g (x )≥g 2e x ≥x 3+x 2,即f (x )≥x 3+x 2.考向八 函数的极值与导数【例1】设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.[审题视点] 由条件x =-12为y =f ′(x )图象的对称轴及f ′(1)=0求得a ,b 的值,再由f ′(x )的符号求其极值.解 (1)因f (x )=2x 3+ax 2+bx +1,故f ′(x )=6x 2+2ax +b .从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26,即y =f ′(x )的图象关于直线x =-a6对称,从而由题设条件知-a 6=-12,解得a =3.又由于f ′(1)=0,即6+2a +b =0,解得b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1,f ′(x )=6x 2+6x -12=6(x -1)(x +2). 令f ′(x )=0,即6(x -1)(x +2)=0,解得x 1=-2,x 2=1.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,1)时,f ′(x )<0,故f (x )在(-2,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数.从而函数f (x )在x 1=-2处取得极大值f (-2)=21,在x 2=1处取得极小值f (1)=-6.运用导数求可导函数y =f (x )的极值的步骤:(1)先求函数的定义域,再求函数y =f (x )的导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值,如果左负右正,那么f (x )在这个根处取得极小值. 【训练1】 (2011·安徽)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.综合①,可知x ⎝⎛⎭⎫-∞,1212 ⎝⎛⎭⎫12,32 32 ⎝⎛⎭⎫32,+∞ f ′(x ) +0 -0 +f (x )极大值极小值所以,x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立. 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.考向九 函数的最值与导数【例2】►已知a 为实数,且函数f (x )=(x 2-4)(x -a ). (1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值. [审题视点] 先化简再求导,求极值、端点值,进行比较得最值. 解 (1)f (x )=x 3-ax 2-4x +4a ,得f ′(x )=3x 2-2ax -4. (2)因为f ′(-1)=0,所以a =12,有f (x )=x 3-12x 2-4x +2,所以f ′(x )=3x 2-x -4.令f ′(x )=0,所以x =43或x =-1.又f ⎝⎛⎭⎫43=-5027,f (-1)=92,f (-2)=0,f (2)=0, 所以f (x )在[-2,2]上的最大值、最小值分别为92、-5027.一般地,在闭区间[a ,b ]上的连续函数f (x )必有最大值与最小值,在开区间(a ,b )内的连续函数不一定有最大值与最小值,若函数y =f (x )在闭区间[a ,b ]上单调递增,则f (a )是最小值,f (b )是最大值;反之,则f (a )是最大值,f (b )是最小值. 【训练2】 函数f (x )=x 3+ax 2+b 的图象 在点P (1,0)处的切线与直线3x +y =0平行 (1)求a ,b ;(2)求函数f (x )在[0,t ](t >0)内的最大值和最小值. 解 (1)f ′(x )=3x 2+2ax由已知条件⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=-3,即⎩⎪⎨⎪⎧ a +b +1=0,2a +3=-3,解得⎩⎪⎨⎪⎧a =-3,b =2.(2)由(1)知f (x )=x 3-3x 2+2, f ′(x )=3x 2-6x =3x (x -2), f ′(x )与f (x )随x 变化情况如下:x (-∞,0)0 (0,2) 2 (2,+∞)f ′(x )+-+f (x )2-2由f (x )=f (0)解得x =0因此根据f (x )的图象当0<t ≤2时,f (x )的最大值为f (0)=2最小值为f (t )=t 3-3t 2+2; 当2<t ≤3时,f (x )的最大值为f (0)=2,最小值为f (2)=-2; 当t >3时,f (x )的最大值为f (t )=t 3-3t 2+2,最小值为f (2)=-2.考向十 利用定积分求面积【例2】 求下图中阴影部分的面积.[审题视点] 观察图象要仔细,求出积分上下限,找准被积函数.解 解方程组⎩⎪⎨⎪⎧ y =x -4,y 2=2x ,得⎩⎪⎨⎪⎧ x =2y =-2,或⎩⎪⎨⎪⎧x =8y =4S 阴影=⎠⎛082x d x -8+⎠⎛02|-2x |d x +2=2 ⎪⎪⎝⎛⎭⎫23x 3280+2⎪⎪⎝⎛⎭⎫23x 3220-6=18. 求由两条曲线围成的图形的面积的解题步骤(1)画出图形,确定图形的范围,通过解方程组求出交点的横坐标.定出积分的上、下限;(2)确定被积函数,特别要注意分清被积函数的上、下位置;(3)写出平面图形面积的定积分的表达式;(4)运用微积分基本定理计算定积分,求出平面图形的面积.【训练2】 求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解 由⎩⎨⎧y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x y =-13x 得交点B (3,-1).故所求面积S =⎠⎛01⎝⎛⎭⎫x +13x d x +⎠⎛13⎝⎛⎭⎫2-x +13x d x = ⎪⎪⎝⎛⎭⎫23x 32+16x 210+⎪⎪⎝⎛⎭⎫2x -13x 231=23+16+43=136. 【示例】► 已知r >0,则d x =________.二、积分与概率【示例】► (2010·陕西)从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为__________.。
高考数学:专题一 第五讲 导数及其应用课件

解得 1<a<6,故 a 的取值范围是(1,6).
题型与方法
方法提炼 利用导数研究函数单调性的一般步骤:
第五讲
(1)确定函数的定义域; (2)求导数 f′(x);
本 讲 栏 目 开 关
(3)①若求单调区间(或证明单调性), 只需在函数 f(x)的定义域 内解(或证明)不等式 f′(x)>0 或 f′(x)<0. ② 若 已 知 f(x) 的 单 调 性 , 则 转 化 为 不 等 式 f′(x)≥0 或 f′(x)≤0 在单调区间上恒成立问题求解.
答案
D
考点与考题
第五讲
1 3.(2012· 课标全国)已知函数 f(x)= , y=f(x)的图 则 lnx+1-x 象大致为
本 讲 栏 目 开 关
(
)
考点与考题
第五讲
解析
1 当 x=1 时,y= <0,排除 A; ln 2-1
当 x=0 时,y 不存在,排除 D;
本 讲 栏 目 开 关
当 x 从负方向无限趋近 0 时,y 趋向于-∞,排除 C,
∴当 f′(x)≥0 时,
即 ex(1+x)≥0,即 x≥-1,
∴x≥-1 时函数 y=f(x)为增函数.
同理可求,x<-1 时函数 f(x)为减函数. ∴x=-1 时,函数 f(x)取得极小值.
考点与考题
第五讲
5.(2011· 课标全国)在下列区间中,函数 f(x)=ex+4x-3 的零 点所在的区间为 1 A.(- ,0) 4 1 1 C.( , ) 4 2 ( C ) 1 B.(0, ) 4 1 3 D.( , ) 2 4
导数及其应用 第二讲 导数的应用—2023届高考理科数学一轮复习 课件(共33张PPT)

b.求方程 (f x) 0 在 (a,b) 内的根; c.求在 (a,b) 内使 (f x) 0 的所有点的函数值和 f (x) 在闭区间 端点处的函数值 (f a),(f b); 比较上面所求的值,其中最大者为函数 y (f x) 在闭区间[a,b] 上的最大值, 最小者为函数 y (f x)在闭区间[a,b] 上的最小值.
3
又
0
m
2
,所以实数
m
的取值范围为
4 3
,
2
.
故选 B.
Thanks
依据函数 h(x) 的图象关于直线 x 2 对称,得当 x (,2) 时,
不等式 5 f (2 x) (x 2) f (5) 0 的解集为 3 x 2 ,
故原不等式的解集为 (3,2) (2,7) ,故选 D.
考点2:导数与函数的极(最)值
1.函数的极值 a.函数的极值的定义 一般地,设函数 f (x) 在点 x x0 及其附近有定义, (1) 若对于 x0 附近的所有点,都有 (f x) (f x0), 则 (f x0)是函数 f (x) 的一个极大值,记作 y极大值 (f x0);
(2)求导数 f (x) ; (3)求方程 f (x) 0 的根; (4)检查 f (x) 在方程根左右的值的符号,如果左正右负,
则 (f x)在这个根处取得极大值;如果左正右负, 则 (f x)在这个根处取得极小值(最好通过列表法).
2. 函数的最值 (1)函数的最小值与最大值定理 若函数 y (f x)在闭区间[a,b] 上连续,
[解析]
由已知得当 x (0,) 时, xf (x) f (x) 0 .
令 g(x)
高考数学导数及其应用考点

高考数学导数及其应用考点高考数学中,导数及其应用是一个重要的考点,它不仅在函数的研究中发挥着关键作用,还与实际问题的解决紧密相关。
一、导数的定义导数的定义是函数在某一点处的瞬时变化率。
如果函数$y = f(x)$在点$x_0$ 处的增量$\Delta y = f(x_0 +\Delta x) f(x_0)$与自变量的增量$\Delta x$ 之比当$\Delta x \to 0$ 时的极限存在,那么这个极限值就称为函数$y = f(x)$在点$x_0$ 处的导数,记作$f'(x_0)$。
通俗来讲,导数就像是函数图象在某一点处的“斜率”,它反映了函数在这一点处的变化快慢程度。
二、导数的几何意义导数的几何意义是函数在某一点处的切线斜率。
函数$y = f(x)$在点$x_0$ 处的导数$f'(x_0)$,就是曲线$y = f(x)$在点$(x_0, f(x_0))$处的切线斜率。
通过导数,我们可以求出函数图象在某一点处的切线方程。
假设切点为$(x_0, y_0)$,导数为$f'(x_0)$,那么切线方程为$yy_0 = f'(x_0)(x x_0)$。
三、基本初等函数的导数公式1、常数函数的导数:$(C)'= 0$ ,其中$C$ 为常数。
2、幂函数的导数:$(x^n)'= nx^{n 1}$。
3、正弦函数的导数:$(\sin x)'=\cos x$ 。
4、余弦函数的导数:$(\cos x)'=\sin x$ 。
5、指数函数的导数:$(a^x)'= a^x \ln a$ ($a > 0$ 且$a \neq 1$ );特别地,$(e^x)'= e^x$ 。
6、对数函数的导数:$(\ln x)'=\frac{1}{x}$;$({\log}_a x)'=\frac{1}{x \ln a}$($a > 0$ 且$a \neq 1$ )。
熟练掌握这些基本初等函数的导数公式,是解决导数问题的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省湘潭市高考数学备考复习(理科)专题五:导数及其应用
姓名:________ 班级:________ 成绩:________
一、单选题 (共15题;共30分)
1. (2分)(2019·肇庆模拟) 已知是的极小值点,则实数的取值范围是()
A .
B .
C .
D .
2. (2分) (2015高二上·集宁期末) 如图,是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是()
A . 在区间(﹣2,1)上f(x)是增函数
B . 在(1,3)上f(x)是减函数
C . 在(4,5)上f(x)是增函数
D . 当x=4时,f(x)取极大值
3. (2分) (2015高一下·枣阳开学考) 函数y=cosx在图象上一点()处的切线斜率为()
A . ﹣
B .
C . ﹣
D . ﹣
4. (2分)函数的导函数是()
A .
B .
C .
D .
5. (2分)已知函数的导数的最大值为5,则在函数图像上的点处的切线方程是()
A .
B .
C .
D .
6. (2分)曲线在处的切线方程是()
A .
B .
C .
D .
7. (2分)要得到函数的图象,只需将函数的图象()
A . 左移个单位
B . 右移个单位
C . 右移个单位
D . 左移个单位
8. (2分) (2019高三上·广东月考) 已知函数在上的最大值为
,最小值为,则()
A . 1
B . 2
C . 3
D . 4
9. (2分) (2019高二下·珠海期末) 若函数的图像如下图所示,则函数的图像有可能是()
A .
B .
C .
D .
10. (2分)(2017·长沙模拟) 已知函数f(x)= sin(x+ )﹣ cos(x+ ),若存在x1 , x2 ,x3 ,…,xn满足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…
,则n的最小值为()
A . 6
B . 10
C . 8
D . 12
11. (2分)已知函数f(x)=ex+x,则函数f(x)的导函数为()
A . ex
B . ex+1
C . lnx+1
D . ex+x
12. (2分)已知一个物体的运动方程是s=1+t+t2 ,其中s的单位是米,t的单位是秒,那么该物体在3秒末的瞬间速度是()
A . 6米/秒
B . 7米/秒
C . 8米/秒
D . 9米/秒
13. (2分)已知函数,若互不相等,且,则
的取值范围是()
A .
B .
C .
D .
14. (2分)已知偶函数f(x)在R上的任一取值都有导数,且则曲线y=f(x)在x=-5处的切线的斜率为()
A . 2
B . -2
C . 1
D . -1
15. (2分)(2019高二上·昌平月考) 设是上的奇函数,当时,
,且,则不等式的解集是()
A .
B .
C .
D .
二、填空题 (共6题;共6分)
16. (1分)已知且,则实数 a 的值等于________
17. (1分) (2020高二下·江西期中) 函数在上的最大值是________.
18. (1分) (2019高三上·广东月考) 值为________.
19. (1分)函数的导数y′=________.
20. (1分) (2017高二下·蚌埠期中) 曲线y=x3+x在x=1处的切线与x轴,直线x=2所围成的三角形的面积为________.
21. (1分) (2020高二下·衢州期末) 当时,不等式恒成立,则a的取值范围是________
三、综合题 (共5题;共60分)
22. (15分) (2018高三上·定远期中) 已知函数f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在点(1,g(1))处的切线方程为2y-1=0.
(1)求g(x)的解析式;
(2)设函数G(x)=若方程G(x)=a2有且仅有四个解,求实数a的取值范围.
23. (10分) (2016高三上·杭州期中) 已知函数f(x)=aln(x+1)+ x2﹣x,其中a为非零实数.
(1)讨论函数f(x)的单调性;
(2)若y=f(x)有两个极值点x1 , x2 ,且x1<x2 ,求证:<.
24. (10分)(2017·淮北模拟) 已知函数发f(x)=(x+1)lnx﹣ax+2.
(1)当a=1时,求在x=1处的切线方程;
(2)若函数f(x)在定义域上具有单调性,求实数a的取值范围;
(3)求证:,n∈N* .
25. (10分)(2020·海南模拟) 已知函数(,为自然对数的底数).
(1)若函数存在极值点,求的取值范围;
(2)设,若不等式在上恒成立,求的最大整数值.
26. (15分)(2019·靖远模拟) 已知函数,是函数的两个极值点 .
(1)求的取值范围.
(2)证明: .
参考答案一、单选题 (共15题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、填空题 (共6题;共6分)
16-1、
17-1、
18-1、
19-1、
20-1、
21-1、
三、综合题 (共5题;共60分)
22-1、
22-2、
23-1、
23-2、24-1、
24-2、24-3、
25-1、25-2、
26-1、26-2、。