2015春七年级(新人教版)同步习题第五章 相交线与平行线(预习导航+堂堂清+日日清)(共55张PPT)
人教版七年级下册第五章《相交线与平行线》同步练习(含答案)

第五章相交线与平行线5.1相交线5.1.1相交线基础题知识点1认识邻补角和对顶角(1)有一条公共边,另一边互为反向延长线,具有这种位置关系的两个角互为邻补角.(2)有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角互为对顶角.1.(2018·贺州)如图,下列各组角中,互为对顶角的是(A)A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠52.下面四个图形中,∠1与∠2是邻补角的是(D)3.如图,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠4,∠1的对顶角是∠3.知识点2邻补角和对顶角的性质(1)互为邻补角的两个角相加等于180°.(2)对顶角相等.4.(2017·河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是(C)A.60°B.90°C.120°D.150°5.(2018·钦州期末)如图,已知∠1=120°,则∠2的度数是(A)A.120°B.90°C.60°D.30°6.(教材P9复习题T9变式)如图,测角器测得工件(圆台)的角度是40度,其测量角的原理是对顶角相等.7.在括号内填写依据:如图,因为直线a,b 相交于点O,所以∠1+∠3=180°(邻补角互补),∠1=∠2(对顶角相等).8.如图,直线AB,CD 相交于点O,∠EOC=70°,OA 平分∠EOC,求∠BOD 的度数.解:因为OA 平分∠EOC,∠EOC=70°,所以∠AOC=12∠EOC=35°.所以∠BOD=∠AOC=35°.易错点1对对顶角的性质理解不透彻而判断失误9.下列说法正确的有(B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个易错点2未给出图形,考虑不全而致错10.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=40或80.中档题11.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=(C )A.90°B.120°C.180°D.360°12.如图,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为(A )A.62°B.118°C.72°D.59°13.(2018·揭阳揭西县期末)如图所示,直线AB 与CD 相交于点O,OE 平分∠BOC.若∠BOE=60°,则∠AOC 的度数为(A )A.60°B.30°C.120°D.45°14.如图,已知直线AB,CD,EF 相交于点O.(1)∠AOD 的对顶角是∠BOC,∠EOC 的对顶角是∠DOF;(2)∠AOC 的邻补角是∠AOD 和∠BOC,∠EOB 的邻补角是∠EOA 和∠BOF.15.如图,直线a,b,c 两两相交,∠1=80°,∠2=2∠3,则∠4=140°.16.如图,直线a,b 相交于点O,已知3∠1-∠2=100°,则∠3=130°.17.如图,直线AB,CD 相交于点O,∠AOE=∠BOE,OB 平分∠DOF.若∠DOE=50°,求∠DOF 的度数.解:因为∠AOE=∠BOE,且∠AOE+∠BOE=180°,所以∠AOE=∠BOE=90°.因为∠DOE=50°,所以∠DOB=∠BOE-∠DOE=40°.因为OB 平分∠DOF,所以∠DOF=2∠DOB=80°.18.如图,l 1,l 2,l 3交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.解:设∠1=∠2=x°,则∠3=8x°.由∠1+∠2+∠3=180°,得10x=180.解得x=18.所以∠1=∠2=18°.所以∠4=∠1+∠2=36°.综合题19.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有1个交点,最多有n(n-1)2个交点,对顶角有n(n-1)对,邻补角有2n(n-1)对.解:(1)图略,对顶角有6对,邻补角有12对.(2)图略,对顶角有12对,邻补角有24对.5.1.2垂线基础题知识点1认识垂直如果两条直线相交所成的四个角中的任意一个角等于90°,那么这两条直线互相垂直.其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.1.如图,OA⊥OB,若∠1=55°,则∠2=(A)A.35°B.40°C.45°D.60°2.(2018·来宾期末)如图,AB⊥CD于点O,EF为经过点O的一条直线,那么∠1与∠2的关系是(C)A.互为对顶角B.互补C.互余D.相等3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2画垂线4.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是(D)知识点3垂线的性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.5.(2017·柳州)如图,经过直线l外一点A画l的垂线,能画出(A)A.1条B.2条C.3条D.4条6.(2018·佛山顺德区期末)如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是(C)A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线7.下面可以得到在如图所示的直角三角形中斜边最长的原理是(D)A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个知识点4点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.9.(2017·北京)如图所示,点P到直线l的距离是(B)A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度易错点未给出图形,考虑不周全致错10.已知OA⊥OC,过点O作射线OB,且∠AOB=30°,则∠BOC的度数为120°或60°.中档题11.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的有(D)A.1个B.2个C.3个D.4个12.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是(C)13.如图所示,下列说法不正确的是(C)A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段14.(2018·贵港港南区期末)点P是直线l外一点,A,B,C为直线l上的三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离(C)A.小于2cm B.等于2cm C.不大于2cm D.等于4cm15.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.16.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为55°.17.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO与BO垂直吗?说明理由.解:(1)因为DO⊥CO,所以∠DOC=90°.因为∠1=36°,所以∠2=90°-36°=54°.(2)AO⊥BO.理由如下:因为∠3=36°,∠2=54°,所以∠3+∠2=90°.所以AO⊥BO.18.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.解:(1)因为∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°.所以∠BOD=∠AOC=70°,∠BOC=∠AOD=110°.又因为OE 平分∠BOD,所以∠BOE=∠DOE=12∠BOD=35°.所以∠COE=∠BOC+∠BOE=110°+35°=145°.(2)因为OF⊥OE,所以∠FOE=90°.所以∠FOD=∠FOE-∠DOE=90°-35°=55°.所以∠COF=180°-∠FOD=180°-55°=125°.5.1.3同位角、内错角、同旁内角基础题知识点认识同位角、内错角、同旁内角如图,直线AB,CD与EF相交.(1)图中∠1和∠2分别在直线AB,CD的同一方(或上方),并且都在直线EF的同侧(或右侧),具有这样位置关系的一对角叫做同位角;(2)图中∠2和∠8都在直线AB,CD之间,并且分别在直线EF的两侧,具有这样位置关系的一对角叫做内错角;(3)图中∠2和∠7都在直线AB,CD之间,且都在直线EF的同一旁(或右侧),具有这样位置关系的一对角叫做同旁内角.1.(2017·玉林)如图,直线a,b被c所截,则∠1与∠2是(B)A.同位角B.内错角C.同旁内角D.邻补角2.(2017·柳州期末)如图,与∠1是同位角的是(C)A.∠2B.∠3C.∠4D.∠53.如图,与∠1是同旁内角的是(D)A.∠2B.∠3C.∠4D.∠54.(2018·广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是(B)A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠45.如图,下列说法错误的是(D)A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角6.如图,若∠1=∠2,则在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中,相等的有(C)A.1对B.2对C.3对D.4对7.看图填空:(1)∠1和∠3是直线AB,BC被直线AC所截得的同旁内角;(2)∠1和∠4是直线AB,BC被直线AC所截得的同位角;(3)∠B和∠2是直线AB,AC被直线BC所截得的同位角;(4)∠B和∠4是直线AC,BC被直线AB所截得的内错角.8.如图,如果∠2=100°,那么∠1的同位角等于80°,∠1的内错角等于80°,∠1的同旁内角等于100°.中档题9.(2018·华南师大附中月考)在下列四个图中,∠1与∠2是同位角的图是(B)图①图②图③图④A.①②B.①③C.②③D.③④10.如图,属于内错角的是(D)A.∠1和∠2B.∠2和∠3C.∠1和∠4D.∠3和∠411.如图,下列说法错误的是(B)A.∠A和∠C是同旁内角B.∠1和∠3是同位角C.∠2和∠3是内错角D.∠3和∠B是同旁内角12.如图,∠ABC与∠EAD是同位角;∠ADB与∠DBC,∠EAD是内错角;∠ABC与∠DAB,∠BCD是同旁内角.13.根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和∠2是同位角;(2)若直线ED,BC被直线AF所截,则∠3和∠4是内错角;(3)∠1和∠3是直线AB,AF被直线ED所截构成的内错角;(4)∠2和∠4是直线AB,AF被直线BC所截构成的同位角.14.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.解:(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.15.如图,如果内错角∠1与∠5相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由.解:∠1=∠2,与∠1互补的角有∠3和∠4.理由:因为∠1=∠5,∠5=∠2,所以∠1=∠2.因为∠1=∠5,且∠5与∠3或∠4互补,所以与∠1互补的角有∠3和∠4.综合题16.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有2对,同旁内角有2对;图1图2(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有12对,内错角有6对,同旁内角有6对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有n(n-1)对,同旁内角有n(n-1)对.(用含n的式子表示)5.2平行线及其判定5.2.1平行线基础题知识点1认识平行在同一平面内,两条不相交的直线互相平行.1.下列说法中,正确的是(D)A.平面内,没有公共点的两条线段平行B.平面内,没有公共点的两条射线平行C.没有公共点的两条直线互相平行D.互相平行的两条直线没有公共点2.在同一平面内的两条不重合的直线的位置关系(C)A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b平行;(2)a与b有且只有一个公共点,则a与b相交;(3)a与b有两个及以上公共点,则a与b重合.4.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过点C画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.解:(1)如图所示.(2)EF∥AB,MC⊥CD.知识点2平行公理及其推论(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行,即:如果a∥b,b∥c,那么a∥c.5.若直线a∥b,b∥c,则a∥c的依据是(D)A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行6.点P,Q都是直线l外的点,下列说法正确的是(D)A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P只能画一条直线与直线l平行7.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是经过直线外一点,有且只有一条直线与这条直线平行.8.如图,P,Q分别是直线EF外两点.(1)过点P 画直线AB∥EF,过点Q 画直线CD∥EF;(2)AB 与CD 有怎样的位置关系?为什么?解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.易错点对平行线的有关概念及公理理解不清9.(2017·玉林北流市期中)下列说法中,正确的有(A)①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个中档题10.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有(C )A.4组B.5组C.6组D.7组11.如图,因为直线AB,CD 相交于点P,AB∥EF,所以CD 不平行于EF.理由是经过直线外一点,有且只有一条直线与这条直线平行.12.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.13.(教材P17习题T11变式)观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A 1B 1∥AB,AA 1⊥AB,A 1D 1⊥C 1D 1,AD∥BC;(2)AB 与B 1C 1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在同一平面内,两条不相交的直线才是平行线.14.如图,在∠AOB 内有一点P.(1)过点P 画l 1∥OA;(2)过点P 画l 2∥OB;(3)用量角器量一量l 1与l 2相交的角与∠O 的大小有怎样的关系.解:(1)(2)如图所示.(3)l 1与l 2的夹角有两个:∠1,∠2.量得∠1=∠O,∠2+∠O=180°,所以l1与l2的夹角与∠O相等或互补.15.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?解:因为AB∥EF,CD∥EF,所以CD∥AB.综合题16.利用直尺画图:(1)利用图1中的网格,过点P画直线AB的平行线和垂线;(2)在图2的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.解:(1)如图所示.CD∥AB,PQ⊥AB.(2)如图所示.四边形ABCD是符合条件的四边形.5.2.2平行线的判定基础题知识点1同位角相等,两直线平行1.(2017·玉林陆川县期末)如图,给出了过直线外一点画已知直线的平行线的方法,其依据是(A)A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等2.(2017·绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是(C)A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°3.(教材P21例2变式)已知a,b,c为平面内三条不同的直线,若a⊥b,c⊥b,则a与c的位置关系是平行.4.如图,∠3与∠1互余,∠3与∠2互余.试说明:AB∥CD.解:∵∠3与∠1互余,∠3与∠2互余,∴∠1=∠2.∴AB∥CD(同位角相等,两直线平行).知识点2内错角相等,两直线平行5.(2018·深圳龙岗区一模)如图,能判定AB∥CD的条件是(A)A.∠A=∠ACD B.∠A=∠DCE C.∠B=∠ACB D.∠B=∠ACD6.如图,请在括号内填上正确的理由:∵∠DAC=∠C(已知),∴AD∥BC(内错角相等,两直线平行).7.如图,∠BAD=∠DCB,∠BAC=∠DCA,试说明:AD∥BC.解:∵∠BAD=∠DCB,∠BAC=∠DCA(已知),∴∠BAD-∠BAC=∠DCB-∠DCA(等式的性质),即∠DAC=∠BCA.∴AD∥BC(内错角相等,两直线平行).知识点3同旁内角互补,两直线平行8.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是(C)A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°9.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于80°.10.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.解:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD(同旁内角互补,两直线平行).易错点不能准确识别截线与被截线,从而误判两直线平行11.(教材P36复习题T8(1)变式)(2018·贵港桂平期末)如图,点E在AC的延长线上,有下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠DCE;④∠D=∠DCE;⑤∠A+∠ABD=180°;⑥∠A+∠ACD=180°,其中能判定AB∥CD的是①③⑥.中档题12.(2018·郴州)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是(D)A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠1=∠313.如图,下列说法错误的是(C)A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c14.(2018·湘潭)如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为答案不唯一,如:∠C=∠CDE.(任意添加一个符合题意的条件即可)15.如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.解:(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).16.(2018·湛江廉江市期末)完成下面的推理.如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,试说明:AB∥CD.完成推理过程:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义).∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).17.如图,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.解:CF∥BD.方法一:∵BD⊥BE,∴∠DBE=90°.∴∠1+∠2=90°.∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD(同位角相等,两直线平行).方法二:∵BD⊥BE,∴∠DBE=90°.∵∠1+∠C=90°,∴∠C+∠DBC=∠1+∠DBE+∠C=90°+90°=180°.∴CF∥BD(同旁内角互补,两直线平行).18.如图,直线EF 分别与直线AB,CD 相交于点P 和点Q,PG 平分∠APQ,QH 平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.解:PG∥QH,AB∥CD.∵PG 平分∠APQ,QH 平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD(内错角相等,两直线平行).综合题19.如图,AB⊥BD 于点B,CD⊥BD 于点D,∠1+∠2=180°,试问CD 与EF 平行吗?为什么?解:CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴∠ABD=∠BDC=90°.∴∠ABD+∠BDC=180°.∴AB∥CD(同旁内角互补,两直线平行).∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行).∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).周周练(5.1~5.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.邻补角是指(D )A.和为180°的两个角B.有一条公共边且相等的两个角C.有公共顶点且互补的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角2.如图,∠1和∠2是对顶角的是(B )3.如图,直线AB,CD 被EF 所截,下列说法正确的有(C )①∠3与∠5是内错角;②∠2与∠7是同位角;③∠4与∠5是同旁内角;④图中有4对同位角,2对内错角,2对同旁内角;⑤∠1与∠7是内错角.A.1个B.2个C.3个D.4个4.下列说法错误的是(C )A.两条直线相交,有一个角是直角,则两条直线互相垂直B.若互为对顶角的两角之和为180°,则两直线互相垂直C.两直线相交,所构成的四个角中,若有两个角相等,则两直线互相垂直D.在同一平面上,过点A 作直线l 的垂线,这样的垂线只有一条5.如图,直线AB⊥CD 于点O,直线EF 经过点O,若∠1=26°,则∠2的度数是(B )A.26°B.64°C.54°D.以上都不对6.下列说法错误的是(A )A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,则它也和另一条相交7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是(D )A.线段AC 的长度是点A 到BC 的距离B.CD 与AB 互相垂直C.AC 与BC 互相垂直D.点B 到AC 的垂线段是线段CA8.(2017·深圳)下列选项中,哪个不可以得到l 1∥l 2?(C )A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°二、填空题(每小题4分,共24分)9.如图,已知∠1+∠2=100°,则∠3=130°.10.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是153°.11.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是垂线段最短.12.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是同一平面内,过一点有且只有一条直线与已知直线垂直.13.如图,已知∠C=105°,增加一个条件答案不唯一,如∠BEC=75°或∠AEC=105°,使得AB∥CD.14.如图,AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;图中∠4的内错角是∠5和∠2.三、解答题(共44分)15.(6分)完成下面的推理过程:如图,CB平分∠ACD,∠1=∠3.试说明:AB∥CD.解:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).16.(6分)如图,直线AO,BO 交于点O,过点P 作PC⊥AO 于点C,PD⊥BO 于点D,画出图形.解:作∠ACP=90°,作∠PDB=90°,则直线PC,PD 即为所求.17.(6分)如图,已知∠OEB=130°,∠FOD=25°,OF 平分∠EOD,试说明:AB∥CD.解:∵OF 平分∠EOD,∠FOD=25°,∴∠EOD=2∠FOD=50°.又∵∠OEB=130°,∴∠OEB+∠EOD=180°.∴AB∥CD(同旁内角互补,两直线平行).18.(8分)如图,已知直线l 1,l 2,l 3被直线l 所截,∠α=105°,∠β=75°,∠γ=75°,运用已知条件,你能找出哪两条直线是平行的吗?若能,请写出理由.解:l 1∥l 2∥l 3.理由:∵∠1=∠β,∠β=75°,∴∠1=75°.∵∠α=105°,∴∠α+∠1=180°.∴l 1∥l 2(同旁内角互补,两直线平行).∵∠β=75°,∠γ=75°,∴∠β=∠γ.∴l 2∥l 3(内错角相等,两直线平行).∴l 1∥l 2∥l 3.19.(8分)如图,AB 和CD 交于点O,OD 平分∠BOF,OE⊥CD 于点O,∠AOC=40°,求∠EOF 的度数.解:∵AB,CD 相交于点O,∴∠BOD=∠AOC=40°.∵OD 平分∠BOF,∴∠DOF=∠BOD=40°.∵OE⊥CD,∴∠EOD=90°.∴∠EOF=∠EOD+∠DOF=130°.20.(10分)如图,要判定AB∥CD,需要哪些条件?根据是什么?解:①若考虑截线AD,则需∠D+∠DAB=180°,根据是同旁内角互补,两直线平行.②若考虑截线AE,则需∠CEA+∠EAB=180°,根据是同旁内角互补,两直线平行或∠DEA=∠EAB,根据是内错角相等,两直线平行.③若考虑截线AC,则需∠DCA=∠CAB,根据是内错角相等,两直线平行.④若考虑截线FC,则需∠DCF+∠AFC=180°,根据是同旁内角互补,两直线平行或∠DCF=∠BFC,根据是内错角相等,两直线平行.⑤若考虑截线BC,则需∠DCB+∠B=180°,根据是同旁内角互补,两直线平行.5.3平行线的性质5.3.1平行线的性质基础题知识点1平行线的性质平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.1.(2018·桂林)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是(B)A.120°B.60°C.45°D.30°2.(2018·绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=44°,那么∠1的度数是(C)A.14°B.15°C.16°D.17°3.如图,在三角形ABC中,∠B=40°,过点C作CD∥AB,∠ACD=65°,则∠ACB的度数为(D)A.60°B.65°C.70°D.75°4.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.5.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为65°.6.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.解:∵EF∥BC,∴∠BAF=180°-∠B=100°(两直线平行,同旁内角互补).∵AC平分∠BAF,∴∠CAF=12∠BAF=50°.∵EF∥BC,∴∠C=∠CAF=50°(两直线平行,内错角相等).知识点2平行线性质的应用7.某商品的商标可以抽象为如图所示的三条线段,若AB∥CD,∠EAB=45°,则∠FDC的度数是(B)A.30°B.45°C.60°D.75°8.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化.若∠1=76°,则∠2的度数是(C)A.76°B.86°C.104°D.114°9.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东42°.10.如图,某次考古发掘出的一块梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.易错点误用平行线的性质11.已知∠1与∠2是同旁内角,若∠1=60°,则∠2的度数是(D)A.60°B.120°C.60°或120°D.不能确定中档题12.(2018·汕头澄海区一模)如图,点P是∠AOB的边OA上一点,PC⊥OB于点C,PD∥OB,∠OPC=35°,则∠APD的度数是(B)A.60°B.55°C.45°D.35°13.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的有(D )A.1个B.2个C.3个D.4个14.(2018·梧州岑溪市期末)如图是一汽车探照灯的纵剖面,从位于O 点的灯泡发出的两束光线OB,OC 经过灯碗反射以后平行射出.若∠ABO=α,∠DCO=β,则∠BOC 的度数是(A )A.α+βB.180°-αC.12(α+β)D.90°+(α+β)15.(2018·柳州期末)如图,AB∥CD∥EF,则下列四个等式中一定成立的有(A )①∠2+∠3=180°;②∠2=∠3;③∠1+∠3=180°;④∠2+∠3-∠1=180°.A.1个B.2个C.3个D.4个16.(2017·柳州期末)如图,已知AB∥CD,BC∥ED,请你猜想∠B 与∠D 之间具有什么数量关系,并说明理由.解:猜想:∠B+∠D=180°.理由如下:∵AB∥CD,∴∠B=∠C(两直线平行,内错角相等).∵BC∥ED,∴∠C+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠D=180°.17.(2017·南宁马山县期末)如图,CD∥AB,OE 平分∠AOD,OF⊥OE,∠D=50°,求∠BOF 的度数.解:∵CD∥AB,∴∠AOD=180°-∠D=180°-50°=130°.∵OE 平分∠AOD,∴∠EOD=12∠AOD=12×130°=65°.∵OF⊥OE,∴∠DOF=90°-∠EOD=90°-65°=25°.∴∠BOF=180°-∠AOD-∠DOF=180°-130°-25°=25°.综合题18.阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.解:过点P作PE∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.解:如图乙,过点P作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一条直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一条直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).5.3.2命题、定理、证明基础题知识点1命题的定义及结构判断一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是题设,“那么”后面接的部分是结论.1.(2018·玉林陆川县期末)下列语句不是命题的是(A)A.画两条相交直线B.互补的两个角之和是180°C.两点之间线段最短D.相等的两个角是对顶角2.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是如果两条直线垂直于同一条直线,那么这两条直线平行.3.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.解:(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同一个角的补角,那么它们相等.题设:两个角是同一个角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.知识点2真假命题及其证明(1)题设成立,并且结论一定成立的命题叫做真命题;题设成立,不能保证结论一定成立的命题叫做假命题.(2)经过推理证实为正确并可以作为推理的依据的真命题叫做定理.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做证明.4.(2017·柳州期末)下列命题是真命题的是(C)A.同位角相等B.有且只有一条直线与已知直线垂直C.垂线段最短D.直线外一点到这条直线的垂线段,叫做点到直线的距离5.下列命题中,是假命题的是(A)A.相等的角是对顶角B.若|x|=3,则x=±3C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线6.如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.证明:∵BD平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.。
七年级下册《相交线与平行线》同步训练(含答案 勤学早)

(((((((((((((
第+课时!垂!线
*!如图#直线 $%#&' 相交于点(#若 $%)&'#则 '$(&0 !0(/! ,
+!如上 题 图#若 '%('0,-1#则 $% ! ) !&',
,!点到直线的距离是指!直线外一点到这条直线的垂线段 的长度!!
如图#过点 $#% 分别画(%#($ 的垂线! -点睛.画 线 段 或 射 线 的 垂 线#
((((((((((((((
第一部分!课课清(专题通
第五章!相交线与平行线
)!*!相交线 第*课时!相交线
*!对 顶 角 ! 相 等 ! #邻 补 角 ! 互 补 ! ! +!如 图#直 线 "## 相 交
所 成 的 四 个 角 中# '#0 ! ',!#'& 0!'-!#'#('&0 !*.(/!#''( '.0 !*.(/! !
%+&设 '"#&6,*#'"#$6+*#8,*7+*6*.(/#*6,4/#8 '"#$65+/#8 '%#&6 '"#$65+/)
*-!%+(*0杭州改&如图#直线 $%#&' 相交于点(#() 平分'%('#(* 平分'&()! %#&若'$(&0*/1#求'%(* 的度数, %&&若'%(*0'/1#求'$(& 的度数, %'&请探究'$(& 与'%(* 的数量关系!
人教版初中七年级数学下册第五章《相交线与平行线》经典习题(含答案解析)(2)

一、选择题1.如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论① C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③B解析:B【分析】 由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC ⊥FD ,故③正确;∵AB ∥CD ,∴∠1=∠C ,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG ⊥CD ,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D ,故①不正确.故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.2.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等;A.1个B.2个C.3个D.4个B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.3.下列说法正确的是()A.命题一定是正确的B.定理都是真命题C.不正确的判断就不是命题D.基本事实不一定是真命题B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A、命题有真命题和假命题,此项说法错误;B、定理都是经过推论、论证的真命题,此项说法正确;C、不正确的判断是假命题,此项说法错误;D、基本事实是真命题,此项说法错误;故选:B.【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.4.下列所示的四个图形中,∠1和∠2是同位角的是()A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.5.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.6.下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.7.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质8.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A .75︒B .120︒C .135︒D .无法确定A解析:A【解析】 分析:根据两直线平行,内错角相等,得到∠BFD 的度数,进而得出∠CFD 的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED 交BC 于F .∵DE ∥AB ,∴∠DFB =∠ABF =120°,∴∠CFD =60°.∵∠CDE =∠C +∠CFD ,∴∠C =∠CDE -∠CFD =135°-60°=75°.故选A .点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.9.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)

第五章《相交线与平行线》单元检测题题号一二三总分192021222324分数1.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补2.如图,将△ABC沿BC方向平移得到△DEF,若△ABC的周长为12cm,四边形ABFD的周长为18cm,则平移的距离为()A.2cm B.3cm C.4cm D.6cm3.如图所示,下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角4.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1 个B.2个C.3 个D.4个10.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°二、填空题(每题3分,共24分)11.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式是.12.如图所示,DE∥BF,∠D=53°,∠B=30°,DC平分∠BCE,则∠DCE的度数为.13.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上.若∠1=35°,则∠2等于.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,已知直线AB,CD相交于点O,EO⊥AB于O,若∠1=32°,则∠2=°,∠3=°,∠4=°.18.已知:如图,CD平分∠ACB,∠1+∠2=180°,∠3=∠A,∠4=35°,则∠CED=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.20.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数.24.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.参考答案一、选择题:题号12345678910答案D B B C C D A D B B二、填空题:11.解:把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式,是“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”,故答案为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.12.解:∵DE∥BF,∠D=53°,∴∠F AC=∠D=53°,∵∠B=30°,∴∠ACB=23°,∵DC平分∠BCE,∴∠DCE=23°.故答案为:23°.13.解:∵a∥b∥c,∴∠1=∠3,∠2=∠4,∵∠1=35°,∴∠3=30°,∵∠4+∠3=90°,∴∠4=55°,∴∠2=55°,故答案为:55°.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵EO⊥AB于O,∴∠AOE=90°,∵∠1=32°,∴∠3=58°,∴∠2=58°,∴∠4=180°﹣58°=122°,故答案为:58;58;122.18.解:∵∠1+∠2=180°,∠1+∠BDC=180°∴∠2=∠BDC∴EF∥AB∴∠3=∠BDE∵∠3=∠A∴∠A=∠BDE∴AC∥DE∴∠ACB+∠CED=180°∵CD平分∠ACB,∠4=35°∴∠ACB=2∠4=2×35°=70°∴∠CED=180°﹣∠ACB=180°﹣70°=110°故答案为:110°.三.解答题:19.解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.20.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23.解:(1)由平移得,∠ONM=30°∠DCN=45°在△CEN中,∠CEN=180°﹣∠ONM﹣∠DCN=180°﹣30°﹣45°=105°;(2)由旋转知,∠N=30°,∵∠BON=30°∴∠BON=∠N=30°,∴MN∥BC∴∠CEN=180°﹣∠DCO=180°﹣45°=135°.24.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.。
新版七下数学第五章相交线与平行线复习题五套

第五章相交线与平行线专题(一)相交线1.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.2.如图,三条直线相交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°,(第2题图)),(第3题图))3.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC 等于()A.30°B.20°C.15°D.10°4.如图,AB和CD相交于点O.(1)若∠1+∠3=50°,则∠3=__ __;(2)若∠1∶∠2=2∶3,则∠3=__ __;(3)若∠2-∠3=70°,则∠3=__ __.5.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,∠2=___ _,∠3=__ __.6.如图所示,直线AB,CD,EF相交于点O.(1)试写出∠AOC,∠AOE,∠EOC的对顶角;(2)试写出∠AOC,∠AOE,∠EOC的邻补角;(3)若∠AOC=40°,求∠BOD,∠BOC的度数.7.如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试求∠BFC′的度数.8.如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,若∠3∶∠2=8∶1,求∠AOC 的度数.第五章相交线与平行线专题(二)平行线的判定1.如图所示,直线a ,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件为( )A .①②B .①③C .①④D .③④2.如图所示,要得到DE ∥BC ,则需要的条件为( )A .CD ⊥AB ,GF ⊥AB B .∠4+∠5=180°C .∠1=∠3D .∠2=∠33.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2=180°B .∠3=∠AC .∠1=∠4D .∠1=∠A5.)如图所示,下列判断不正确的是( )A .∵∠1=∠2,∴AE ∥BDB .∵∠1=∠2,∴AB ∥EDC .∵∠3=∠4,∴AB ∥CD D .∵∠5=∠BDC ,∴AE ∥BD6.如图,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠D =∠BFD.A .1个B .2个C .3个D .4个(第1题图)(第2题图) (第5题图)(第6题图)7.如图,给出下面的推理:①因为∠B =∠BEF ,所以AB ∥EF ;②因为∠B =∠CDE , 所以AB ∥CD ;③因为∠B +∠BDC =180°,所以AB ∥EF ;④因为AB ∥CD ,CD ∥EF , 所以AB ∥EF.其中正确的推理是( )A .①②③B .①②④C .①③④D .②③④9.如图,下列推理正确的是( )A .∵∠1=∠2,∴AB ∥CD B .∵∠1+∠2=180°,∴AB ∥CDC .∵∠3=∠4,∴AB ∥CD D .∵∠3+∠4=180°,∴AB ∥CD10.如图,已知直线EF 分别交CD ,AB 于点M ,N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( )A .AE ∥CFB .AB ∥CDC .∠A =∠D D .∠E =∠F11.如图,BD 平分∠ABC ,若∠1=∠2,则( )A .AB ∥CD B .AD ∥BC C .AD =BC D .AB =CD12.如图所示,AC ⊥BC ,垂足为C ,∠B =50°,∠ACD =40°,则AB 与CD 的位置关系是 AB ∥CD__.13.如图所示,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.能判定AB ∥CD的条件有 .(填序号),(第9题图)) ,(第10题图)) ,(第11题图)) ,(第12题图))14.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°,直线AB,CD有何位置关系?说明理由.16.(10分)如图,已知直线a,b,c被直线d,e所截,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?17.(12分)如图,AC⊥EC,B,C,D在同一直线上,∠A=∠1,∠E=∠2,直线AB与DE平行吗?试说明理由.第五章相交线与平行线专题(三)平行线的性质1.如图,直线m ∥n ,∠α为( )A .70 B .65° C .50° D .40°2.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( )A .155°B .145°C .110°D .35°3.如图,已知AB ∥CD ,∠1=130°,则∠2=__ .4.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A .60°B .50°C .40°D .30°6. 6.一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数为( )7.A .30° B .60° C .90° D .120°8.9. ,(第1题图)) ,(第2题图)) ,(第5题图)) ,(第6题图))10.7.(4分)如图,∠1=50°,∠2=140°,∠C =50°,则∠B =____.9.某次考古发掘出的一个梯形残缺玉片如下图,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.10.如图所示,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC ,若∠C =50°, ∠BDE =60°,则∠CDB 的度数等于( )A .70°B .100°C .110°D .120°11.如图所示,已知AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个12.如图所示,已知AB ∥CD ,BC ∥DE ,则∠B +∠D 的度数为____.13.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2=___ _.(第10题图) (第11题图), ( 第 7 题图 )14.(12分)如图所示,已知∠ABC=40°,∠ACB=60°,BO,CO分别平分∠ABC,∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.15.(12分)如图,直线AD与AB,CD相交于A,D两点,EC,BF与AB,CD相交于点E,C,B,F,如果∠1=∠2,∠B=∠C.小明在图上把两组相等角的信息标注出来后,略加分析,便发现CE∥BF,同桌的小慧说:“不光有这个发现,我还能得到∠A=∠D呢?”小明再深入其中,很快也明白了小慧是怎么得到∠A=∠D的了.你能帮助他们写出过程吗?16.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动时,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).第五章相交线与平行线专题(四)平行线的性质与判定的综合运用1.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 的度数为( ) A .30° B .45° C .60° D .120°2.如图,AB ∥CD ,∠DFE =135°,则∠ABE 的度数是( )A .30°B .45C .60°D .90°3.如图,a ,b ,c 为三条直线,且a ⊥c ,b ⊥c ,若∠1=70°,则∠2的度数为( )A .70°B .90°C .110°D .80°4.如图所示,已知∠1=∠2=∠3=55°,则∠4的度数是( )A .110°B .115°C .120°D .125°5.(4分)如图所示,已知∠1=∠2,∠3=80°,则∠4等于( )A .80°B .70°C .60°D .50°6.(4分)如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( )A .100°B .60°C .40°D .20°(第1题图)(第2题图) (第3题图)(第4题图)7.将一副直角三角板如图所示放置,使含30°角的三角板短直角边和含45°角 的三角板的一条直角边重合,则∠1的度数为__.8.如图所示是一大门的栏杆,AE 为地面,BA ⊥AE 于点A ,CD ∥AE ,则∠ABC +∠BCD= _9.(8分)如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D.若∠1=∠2,∠3=75°,求∠4的度数.10.如图,AB ∥CD ,AE 交CD 于C ,∠A =34°,∠DEC =90°,则∠D 的度数为() A .17° B .34° C .56° D .124°11.如图,已知AB ∥CD ,∠C =65°,∠E =30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°12.如图所示,AB ∥CD ∥EF ,则∠BAD +∠ADE +∠DEF 等于( )A .180°B .270°C .360°D .540°13.如图所示,∠A =60°,∠4=45°,DE ∥BC ,EF ∥AB ,则∠1=___ _, ∠2=__ __, ∠3=__ _,∠B =__ _,∠C =___ _. (第5题图) (第6题图,(第10题图)) ,(第11题图)(第7题图) (第8题图)14.如图,直线l1∥l2∥l3,点A ,B ,C 分别在直线l1,l2,l3上.若∠1=70°,∠2=50°,则∠ABC =____.15.如图,l ∥m ,等边△ABC 的顶点A 在直线m 上,则∠α=__.16.(8分)如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3.请问:AD 平分∠BAC 吗?若平分,请说明理由.17.(10分)如图所示,CD ⊥AB ,垂足为D ,F 是BC 上任意一点,EF ⊥AB ,垂足为E ,且∠1=∠2,∠3=80°,求∠BCA 的度数.18.(12分)如图所示,∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并(第12题图)(第13题图) ,(第14题图)),(第15题图)说明你的理由.第五章相交线与平行线专题(五)平行线的性质与判定变式训练【教材母题】(教材P36第8题(2)改编)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.变式1.(2014·菏泽)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°变式2.(2014·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°,(第1题图)),(第2题图))变式3.(2014·聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°变式4.(2014·遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=() A.30°B.35°C.36°D.40°,(第3题图)),(第4题图))变式5.如果一个角的两边分别与另一个角的两边平行,且一个角比另一个角的3倍少40°,则这两个角的度数分别为__变式6.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.变式7.如图所示,已知AD⊥BC于D,E是AB上一点,EF⊥BC于F,且∠1=∠2,试判断∠B与∠CDG的大小关系,并说明理由.变式8.如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.变式9.如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.变式10.若AB∥CD,∠1=∠2,∠3=∠4,AD与BC平行吗?为什么?变式11.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,试说明AB∥EF∥CD.变式12.(探究题)(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图③的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?。
(精校版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案

(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)的全部内容。
初一数学人教版七年级下册第五章 相交线与平行线5.1 相交线同步练习题1. 下列说法中正确的是( )A.不相等的角一定不是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.两条直线相交所成的角是对顶角2. 下列说法正确的是( )A.在同一平面内,过直线外一点向该直线画垂线,垂足一定在该直线上B.在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足一定在该线段或射线上C.过线段或射线外一点不一定能画出该线段或射线的垂线D.过直线外一点与直线上一点画的一条直线与该直线垂直3. 已知∠α和∠β的对顶角,若∠α=60°,则∠β的度数为( )A.30° B.60° C.70° D.150°4。
如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是( )A.同角的余角相等 B.对顶角相等C.同角的补角相等 D.等角的补角相等5. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余 D.不能确定6。
七年级初一数学第五章 相交线与平行线知识点及练习题及解析

七年级初一数学第五章相交线与平行线知识点及练习题及解析一、选择题1.下列命题是假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60°2.下列各命题中,原命题成立,而它逆命题不成立的是()A.平行四边形的两组对边分别平行B.矩形的对角线相等C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和3.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.125°B.75°C.65°D.55°4.下列说法中错误的是()A.一个锐角的补角一定是钝角;B.同角或等角的余角相等;C.两点间的距离是连结这两点的线段的长度;D.过直线l上的一点有且只有一条直线垂直于l5.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为().A.100︒B.80︒C.75︒D.50︒6.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A.115°B.65°C.35°D.25°7.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°8.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线 B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短9.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为(). A.20° B.80° C.160° D.20°或160°10.如图,在△ABC中,AB=AC,CD∥AB,点E在BC的延长线上.若∠A=30°,则∠DCE的大小为()A.30° B.52.5° C.75° D.85°二、填空题11.如图,已知AD//BC,BD平分∠ABC,∠A=112°,且BD⊥CD,则∠ADC=_____.12.如图,已知A1B//A n C,则∠A1+∠A2+…+∠A n等于__________(用含n的式子表示).13.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.14.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.15.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.16.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)17.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=12∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是_______.18.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.19.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.20.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.三、解答题21.如图,//AB CD ,EG 平分DEF ∠,FG 平分BFE ∠.(1)求证:90EFG GEF ∠+∠=︒;(2)在(1)问的条件下,过点G 作GH AB ⊥,垂足为H ,FGH ∠的平分线GI 交AB 于点I ,EGH ∠的平分线GJ 交AB 于点J ,求IGJ ∠的度数.22.在综合与实践课上,老师让同学们以“三条平行线m ,n ,l (即始终满足m ∥n ∥l )和一副直角三角尺ABC ,DEF (∠BAC =∠EDF =90°,∠FED =60°,∠DFE =30°,∠ABC =∠ACB =45°)”为主题开展数学活动.操作发现(1)如图1,展翅组把三角尺ABC 的边BC 放在l 上,三角尺DEF 的顶点F 与顶点B 重合,边EF 经过AB ,顶点E 恰好落在m 上,顶点D 恰好落在n 上,边ED 与n 相交所成的一个角记为∠1,求∠1的度数;(2)如图2,受到展翅组的启发,高远组把直线m 向下平移后使得两个三角尺的两个直角顶点A 、D 分别落在m 和l 上,顶点C 恰好落在n 上,边AC 与l 相交所成的一个角记为∠2,边DF 与m 相交所成的一个角记为∠3,请你说明∠2﹣∠3=15°;结论应用(3)老师在点评高远组的探究操作时提出,在(2)的条件下,若点N 是直线n 上一点,CN 恰好平分∠ACB 时,∠2与∠3之间存在一个特殊的倍数关系,请你直接写出它们之间的倍数关系,不需要说明理由.23.如图1所示,AB ∥CD ,E 为直线CD 下方一点,BF 平分∠ABE .(1)求证:∠ABE +∠C ﹣∠E =180°.(2)如图2,EG 平分∠BEC ,过点B 作BH ∥GE ,求∠FBH 与∠C 之间的数量关系. (3)如图3,CN 平分∠ECD ,若BF 的反向延长线和CN 的反向延长线交于点M ,且∠E +∠M =130°,请直接写出∠E 的度数.24.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.25.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.26.如图`,已知:直线AD BC ∥,且直线AB 、CD 与AD 、BC 分别交于A 、D 和B 、C 两点,点P 在直线AB 上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.【详解】A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,B.有两个角相等的三角形是等腰三角形,正确,是真命题,C.等腰三角形底边上的中线平分顶角,正确,是真命题,D.等边三角形的每一个内角都等于60°,正确,是真命题,故选:A.【点睛】本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.2.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.3.D解析:D【分析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145︒,∴∠DBC=180︒−∠1=180︒−125︒=55︒.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.4.D解析:D【详解】解:D选项中缺少先要条件,就是在同一平面内故选:D5.B解析:B【分析】根据平行线同位角相等和同旁内角互补的性质,即可完成求解.【详解】∵王村沿北偏东75︒方向到李村∴175∠=∵从张村到杜村的公路平行从王村到李村的公路,且从李村沿北偏西25︒方向到张村 ∴()()2180125180752580∠=-∠+=-+=∴张杜两村公路与李张两村公路方向夹角的度数为80︒故选:B .【点睛】本题考查了方位角、平行线的知识;解题的关键是熟练掌握平行线同位角相等和同旁内角互补的性质,从而完成求解.6.D解析:D【解析】解:∵直线a ∥b ,∴∠1+∠ABC +∠2=180°.又∵BC ⊥AB ,∠1=65°,∴∠2=180°﹣90°﹣65°=25°.故选D .7.C解析:C【解析】【分析】作AB ∥a,先证AB ∥a ∥b ,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.【详解】作AB ∥a,由直线a 平移后得到直线b ,所以,AB ∥a ∥b所以,∠2=180°-∠1+∠3,所以,∠2-∠3=180°-∠1=180°-70°=110°.故选:C【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.8.A解析:A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.9.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B的度数是20°或160°,故选:D.10.C解析:C【解析】试题分析:根据等腰三角形的性质:等边对等角,可得∠B=∠ACB,然后根据三角形的内角和可求得∠B=75°,然后根据平行线的性质可得∠B=∠DCE=75°.故选:C.点睛:此题主要考查了等腰三角形的性质,解题关键是利用等腰三角形的性质求得两底角的值,然后根据平行线的性质可求解问题.二、填空题11.124°【分析】先由平行线的性质求得∠ABC,然后根据角平分线的定义求得∠DBC,然后再根据平行线的性质求得∠ADB,最后结合BD⊥CD即可求得∠ADC.【详解】解:∵AD//BC∴∠AB解析:124°【分析】先由平行线的性质求得∠ABC,然后根据角平分线的定义求得∠DBC,然后再根据平行线的性质求得∠ADB,最后结合BD⊥CD即可求得∠ADC.【详解】解:∵AD//BC∴∠ABC=180°-∠A=180°-112°=68°,∵BD平分∠ABC,∠ABC=34°∴∠DBC=12∵AD//BC∴∠ADB=∠DBC=34°∵BD⊥CD,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=90°+34°=124°.故答案为124°.【点睛】本题考查了平行线的性质、角平分线的性质、垂直的性质,其中掌握平行线的性质是解答本题的关键.12.【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题n-⋅︒解析:()1180【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.13.9【分析】根据平移的特点,可直接得出AC 、DE 、AD 的长,利用EC=BC -BE 可得出EC 的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm ,AC=2cm ,将△ABC 沿BC 方向平解析:9【分析】根据平移的特点,可直接得出AC 、DE 、AD 的长,利用EC=BC -BE 可得出EC 的长,进而得出阴影部分周长.【详解】∵AB =3cm ,BC =4cm ,AC =2cm ,将△ABC 沿BC 方向平移a cm∴DE=AB=3cm ,BE=a cm∴EC=BC -BE=(4-a )cm∴阴影部分周长=2+3+(4-a )+a =9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE.14.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.15.70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.16.【解析】【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠解析:【解析】【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.17.①②③【解析】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,则①正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴解析:①②③【解析】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,则①正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+1 2(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,则②正确;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且EG⊥CG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,则③正确;④无法证明CA平分∠BCG,则④错误.故答案为①②③.18.80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.19.40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴∠ACB=12∠BCD=40°,∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.20.15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD,再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD,再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC ∥DE ,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a ∥b ,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC 为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.三、解答题21.(1)证明见解析;(2)45IGJ ∠=︒.【分析】(1)根据平行线的性质可得180DEF BFE ∠+∠=︒,再利用角平分线的定义即可得证; (2)过点G 作//GK AB ,则////AB GK CD ,根据平行线的性质可得DEG EGK ∠=∠,KGF GFB ∠=∠,再结合(1)的结论易得90EGK KGF ∠+∠=︒,利用角平分线的定义及垂线的定义即可求解.【详解】(1)证明:∵//AB CD ,∴180DEF BFE ∠+∠=︒.∵EG 平分DEF ∠,FG 平分BFE ∠,∴22DEF GEF DEG ∠=∠=∠,22BFE EFG GFB ∠=∠=∠,∴22180GEF EFG ∠+∠=︒,∴90EFG GEF ∠+∠=︒.(2)解:过点G 作//GK AB .∵//AB CD ,∴////AB GK CD ,∴DEG EGK ∠=∠,KGF GFB ∠=∠.由(1)得90DEG GFB ∠+∠=︒,∴90EGK KGF ∠+∠=︒.∵GH AB ⊥,∴GH KG ⊥,即90KGH KGF HGF ∠=∠+∠=︒,∴EGK HGF ∠=∠.∵GJ 平分EGH ∠,∴EGJ HGJ ∠=∠.又KGJ EGJ EGK ∠=∠-∠,FGJ HGJ HGF ∠=∠-∠,∴KGJ FGJ ∠=∠,∴2KGF FGJ ∠=∠.∵GI 平分HGF ∠,∴2HGF FGI ∠=∠,∴2290FGJ FGI ∠+∠=︒,即45FGJ FGI ∠+∠=︒,∴45IGJ FGJ FGI ∠=∠+∠=︒.【点睛】本题考查平行线的性质、角平分线的定义等内容,掌握平行线的性质是解题的关键.22.(1)75°;(2)见解析;(3)∠2=3∠3【分析】(1)利用三角板的度数,求出∠DBC 的度数,再利用平行线的性质得到∠BDN 的度数,由此得到∠1的度数;(2)过B 点作BG ∥直线m ,利用平行线的性质可得到∠3=DBG 和∠LAB =∠ABG ,再利用等量代换得到∠3+∠LAB =75°,利用余角性质得到∠LAB =90°-∠2,由此证明结论; (3)结论:∠2=3∠3.利用(2)中结论,结合平行线的性质得到∠2和∠3的度数由此证明结论.【详解】(1)∵直线n ∥直线l ,∴∠DBC =∠BDN ,又∵∠DBC =∠ABC ﹣∠ABD =45°﹣30°=15°,∴∠BDN =15°,∴∠1=90°﹣15°=75°.(2)如图所示,过B 点作BG ∥直线m ,∵BG ∥m ,l ∥m ,∴BG ∥l (平行于同一直线的两直线互相平行),∵BG ∥m ,∴∠3=DBG ,又∵BG ∥l ,∴∠LAB =∠ABG ,∴∠3+∠LAB =∠DBA =30°+45°=75°,又∵∠2和∠LAB 互为余角,∴∠LAB =90°﹣∠2,∴∠3+90°﹣∠2=75°,∴∠2﹣∠3=15°.(3)结论:∠2=3∠3.理由:在(2)的条件下,∠2﹣∠3=15°,又∵CN 平分∠BCA ,∴∠BCN =∠CAN =22.5°,又∵直线n ∥直线l ,∴∠2=22.5°,∴∠3=7.5°,∴∠2=3∠3.【点睛】考查平行线的性质并结合了三角板中的特殊角度,学生需要作辅助线利用平行线的传递性将特殊的角的关系联系起来,熟悉掌握平行线之间角的关系是解题的关键.23.(1)见解析;(2)2∠FBH +∠C =180°;(3)80°【分析】(1)过点E 作//EK AB ,由平行线的性质得出,180ABE BEK CEK C ∠=∠∠+∠=︒,进而得出答案;(2)设,ABF EBF BEG CEG αβ∠=∠=∠=∠=,由平行线的性质得出,HBE BEG FBH FBE HBE βαβ∠=∠=∠=∠-∠=-,由(1)知180ABE C BEC ∠+∠-∠=︒,即可得出答案;(3)设,ABF EBF x ECN DCN y ∠=∠=∠=∠=,由(1)知2()180E x y ∠=+-︒,过M 作////PQ AB CD ,由平行线的性质得出,PMF ABF x QMN DCN y ∠=∠=∠=∠=,求出130E FMN x y ∠+∠=+=︒,即可得出答案.【详解】(1)如图1,过点E 作//EK AB∴ABE BEK ∠=∠∵//AB CD∴//EK CD∴180CEK C ∠+∠=︒∴180ABE C E BEC CEK C BEC CEK C ∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; (2)∵BF 、EG 分别平分ABE ∠、BEC ∠∴,ABF EBF BEG CEG ∠=∠∠=∠设,ABF EBF BEG CEG αβ∠=∠=∠=∠=∵//BH EG∴HBE BEG β∠=∠=∴FBH FBE HBE αβ∠=∠-∠=-由(1)知,180ABE C BEC ∠+∠-∠=︒即222()180C C αβαβ+∠-=-+∠=︒∴2180FBH C ∠+∠=︒;(3)∵CN 、BF 分别平分ECD ∠、ABE ∠∴,ABF EBF ECN DCN ∠=∠∠=∠设,ABF EBF x ECN DCN y ∠=∠=∠=∠=由(1)知:180ABE C E ∠+∠-∠=︒即2()180E x y ∠=+-︒如图3,过M 作////PQ AB CD则,PMF ABF x QMN DCN y ∠=∠=∠=∠=∴180180()FMN PMF QMN x y ∠=︒-∠-∠=︒-+130E FMN ∠+∠=︒∴2()180180()130x y x y +-︒+︒-+=︒130x y ∴+=︒∴2()180213018080E x y ∠=+-︒=⨯︒-︒=︒.【点睛】本题考查了角平分线的定义、平行线的性质、角的和差等知识点,较难的是题(3),通过作辅助线,构造平行线是解题关键.24.(1)证明见解析;(2)∠BCD=108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF=∠DAB,由角平线的定义得出∠EDF=∠FDC,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF=x,则∠CFB=1.5x,由两直线平行,内错角相等得出∠ABF=1.5x,由角平分线的定义得出∠ABC=3x,最后利用两直线平行,同旁内角互补得出关于x的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF=∠CBF,由角平分线的定义与已知条件可求出∠ABC与∠FDC,由平移的性质与平行公理的推论得出AD∥PQ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB∥DE,∴∠EDF=∠DAB,∵DF平分∠EDC,∴∠EDF=∠FDC,∴∠FDC=∠DAB,∵∠FDC+∠ABC=180°,∴∠DAB+∠ABC=180°,∴AD∥BC;(2)∵32CFB DCF∠=∠,设∠DCF=x,则∠CFB=1.5x,∵CF∥AB,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD=70°,即∠DQP=70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.25.(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析【分析】(1)利用∠CAF=∠BAF-∠BAC求出∠CAF度数,求∠EMC度数转化到∠MCH度数;(2)过点C作CH∥GF,得到CH∥DE,∠CAF与∠EMC转化到∠ACH和∠MCH中,从而发现∠CAF、∠EMC与∠ACB的数量关系.【详解】(1)过点C作CH∥GF,则有CH∥DE,所以∠CAF=∠HCA,∠EMC=∠MCH,∵∠BAF=90°,∴∠CAF=90°-60°=30°.∠MCH=90°-∠HCA=60°,∴∠EMC=60°.故答案为30°,60°.(2)∠CAF+∠EMC=90°,理由如下:过点C作CH∥GF,则∠CAF=∠ACH.∵DE∥GF,CH∥GF,∴CH∥DE.∴∠EMC=∠HCM.∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.【点睛】考查了平行线的判定和性质,解题关键是熟记并灵活运用其性质和判定.26.(1)∠ADP+∠BCP=∠DPC,理由见解析;(2)∠ADP=∠DPC+∠BCP,理由见解析【分析】(1)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;(2)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;【详解】解:(1)过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ,∠BCP=∠CPQ,∴∠ADP+∠BCP=∠DPC;(2)∠ADP=∠DPC+∠BCP.过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ=∠DPC+∠CPQ,∠BCP=∠CPQ,∴∠ADP=∠DPC+∠BCP.【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键.。
七年级数学(下)第五章《相交线与平行线——同位角、内错角、同旁内角》练习题含答案

七年级数学(下)第五章《相交线与平行线——同位角、内错角、同旁内角》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,以下说法正确的是A.∠1和∠2是内错角B.∠2和∠3是同位角C.∠1和∠3是内错角D.∠2和∠4是同旁内角【答案】C【解析】观察图形可得,∠1和∠2是同位角、∠2和∠3是对顶角、∠1和∠3是内错角、∠2和∠4是邻补角,所以正确的答案为C,故选C.2.如图,下列说法错误的是A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角【答案】D3.如图所示,∠1与∠2不是同位角的是A.B.C.D.【答案】B【解析】A中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B中,∠1与∠2的两条边都不在同一条直线上,不是同位角,符合题意;C中,∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意.故选B.4.如图,属于内错角的是A.∠1和∠2 B.∠2和∠3C.∠1和∠4 D.∠3和∠4【答案】D5.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定【答案】D【解析】因为不知道直线a、b之间的位置关系,所以∠1与∠2的大小关系无法确定.故选D.二、填空题:请将答案填在题中横线上.6.如图,如果∠2=100°,那么∠1的同位角等于__________,∠1的内错角等于__________,∠1的同旁内角等于__________.【答案】80°,80°,100°7.如图,∠ABC 与__________是同位角;∠ADB 与__________是内错角;∠ABC 与__________是同旁内角.【答案】∠EAD ,∠DBC 和∠EAD ,∠DAB 和∠BCD 【解析】根据同位角,内错角和同旁内角的概念进行判断, (1)ABC ∠与EAD ∠是同位角;(2)ADB ∠与DBC EAD ∠∠,是内错角; (3)ABC ∠与DAB BCD ∠∠,是同旁内角.故答案为:∠EAD ,∠DBC 和∠EAD ,∠DAB 和∠BCD . 三、解答题:解答应写出文字说明、证明过程或演算步骤.8.如图,∠A 与哪个角是内错角,与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截形成的?【解析】根据内错角的边构成“Z ”形,同旁内角的边构成“U ”形进行分析即可.A ∠与ACD ∠是内错角,它是直线AB ,DE 被直线AC 所截形成的; A ∠与ACB ∠是同旁内角,它是直线AB ,BC 被直线AC 所截形成的; A ∠与ACE ∠是同旁内角,它是直线AB ,CD 被直线AC 所截形成的;A∠是同旁内角,它是直线BC,AC被直线AB所截形成的.∠与B9.如图:(1)找出直线DC,AC被直线BE所截形成的同旁内角;(2)指出∠DEF与∠CFE是由哪两条直线被哪一条直线所截形成的什么角;(3)试找出图中与∠DAC是同位角的所有角.10.如图所示,如果内错角∠1与∠5相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由.【解析】∠1=∠2,与∠1互补的角有∠3和∠4.理由:因为∠1=∠5,∠5=∠2,所以∠1=∠2.因为∠1=∠5,且∠5与∠3和∠4互补,所以与∠1互补的角有∠3和∠4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第 7 题图) (第 8 题图)
8.(6分)如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,AB=6 cm,AD=5 cm,则点B到AC的 距离为____,点A到BC的距离为____. 9.如图,已知QA⊥l,QB⊥l,所以QA与QB重合,其理由是( A.过两点只有一条直线 B.经过一点有且只有一条直线垂直于已知直线 C.垂线段最短 D.过一点只能作一条垂线 )
(第 13 题图)
(第 14 题图)
14.如图所示,AD⊥BD,BC⊥CD,AB=2 cm,BC=1.5 cm,则BD的取值范围是__ 1.5_cm<BD<2_cm__. 15.(8分)如图,OM平分∠AOB,ON平分∠COD,OM⊥ON,∠BOC=26°,求∠AOD的度数. 解:解:因为OM平分∠AOB,ON平分∠COD, 所以∠AOB=2∠AOM=2∠BOM,∠COD=2∠CON=2∠DON.因为OM⊥ON, 所以∠MON=90°,所以∠CON+∠BOC+∠BOM=90°. 因为∠BOC=26°,所以∠CON+∠BOM=90°-26°=64°, 所以∠DON+∠AOM=64°. 所以∠AOD=∠DON+∠AOM+∠MON=64°+90°=154°
3.(4分)过线段外一点,画这条线段的垂线,垂足在( ) A.这条直线上 B.这条线段的端点 C.这条线段的延长线上 D.以上都有可能 4.(4分)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时 ,有一部分同学画出下列 四种图形,请你数一数,错误的个数为( ) A.1个 B.2个 C.3个 D.4个
第五章 相交线与平行线 5.1 相交线 5.1.2 垂线
16.(10分)如图所示,草原上有两条交叉的河流AB,CD,有一个牧民在点P处 放牧,且OP⊥AB于点O,理论上若他欲使羊群喝水的路程最短,他应做何选择? 请你画出图形说明. 解:过点P作PE⊥CD,垂足为E, 由垂线段最短可知, PE<PO,所以沿着PE的方向到CD 河流喝水的路程最短 17.(12分)如图所示,直线AB,CD相交于点O,作∠DOE=∠BOD,OF平分 ∠AOE. (1)判断OF与OD的位置关系; (2)若∠AOC∶∠AOD=1∶5,求∠EOF的度数.
点到直线的距离 6.(4分)下列说法正确的是( ) A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离 B.过直线外一点画已知直线的垂线,垂线的长度是这点到已知直线的距离 C.画直线外一点到已知直线的距离 D.连接直线外一点与直线上各点的所有线段中,垂线段最短
第五章 相交线与平行线 5.1 相交线 5.1.2 垂线
1.(4分)(2014· 上海)如图,已知直线a,b被直线c所截,那么 ∠1的同位角是( ) A.∠2 B.∠3 C.∠4 D.∠5
2.(4分)如图,∠1的内错角是( A.∠2 B.∠3 C.∠4 D.∠5
)
第五章 相交线与平行线 5.1 相交线 5.1.3 同位角、内错角、同旁内角
3.(4分)如图,直线AB,CD被直线EF所截,则∠3的同旁内角是( ) A.∠1 B.∠2 C.∠4 D.∠5 4.(4分)如图,以下说法错误的是( ) A.∠1,∠2是内错角 B.∠2,∠3是同位角 C.∠1,∠3是内错角 D.∠2,∠4是同旁内角 (第 3 题图) 5.(4分)如图,∠1和∠2是同位角的是( ) A.②③ B.①②③ C.①②④ D.①④
第五章 相交线与平行线 5.1 相交线 5.1.1 相交线
13.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,则∠2=____,∠3= . 三、解答题(共40分) 14.(8分)如图所示,直线AB,CD,EF相交于点O. (1)试写出∠AOC,∠AOE,∠EOC的对顶角; (2)试写出∠AOC,∠AOE,∠EOC的邻补角; (3)若∠AOC=40°,求∠BOD,∠BOC的度数. 解:(1)∠BOD,∠BOF,∠FOD (2)∠AOC的邻补角:∠AOD,∠BOC;∠AOE的邻补角:∠AOF,∠BOE; ∠EOC的邻补角:∠EOD,∠FOC (3)∠BOD=40°,∠BOC=140°
第五章 相交线与平行线 5.1 相交线 5.1.1 相交线
9.(8分)如图所示,直线AB与CD相交于点O,OE平分 ∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.
解:因为∠BOD 与∠BOC 是邻补角,∠BOC=80°, 所以∠BOD=180°-∠BOC=100°.又因为∠AOD 与∠BOC 是对顶角, 1 所以∠AOD=∠BOC=80°.又因为 OE 平分∠AOD,所以∠AOE= ∠BOC=40° 2
n(n-1) 个交点, (3)依次类推,n条直线相交,最少有__1__个交点,最多有____ _ 2 对顶角有__n(n-1)__对,邻补角有__2n(n-1)__对.
第五章 相交线与平行线 5.1 相交线 5.1.2 垂线
1. 当两条直线相交所成的四个角中, 有一个角是__直角__时, 就说这两条直线互相垂直, 其中一条直线叫做另一条直线的__垂线__, 它们的交点叫做__垂足__, 如图所示, CD⊥AB, 则点 D 是__垂足__,∠ADC=∠CDB=__90° __. 2.在同一平面内,过一点有__且只有__一条直线与已知直线垂直. 3. 连接直线外一点与直线上各点的所有线段中, __垂线段最短__, 简称__垂线段最短__. 4.直线外一点到这条直线的垂线段的__长度__,叫做点到直线的距离.
第五章 相交线与平行线 5.1 相交线 5.1.3 同位角、内错角、同旁内角
1 . 同位角的特征是在两条被截直线的 __ 同一方 __ , 并且在截线的 __ 同侧 __ , 如图中 __∠1__与__∠2__就是同位角. 2.内错角的特征是在两条被截直线__之间__,并且在截线的__两侧__,如图中__∠3__ 和__∠2__就是内错角. 3 . 同旁内角的特征是在两条被截直线 __ 之间 __ , 并且在截线的 __ 同一旁 __ , 如图中 __∠4__与__∠2__就是同旁内角.
10.如图,三条直线相交于点O, 则∠1+∠2+∠3等于( ) A.90° B.120° C.180° D.360°
,(第 10 题图))
,(第 11 题图))
11.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC等 于( ) A.30° B.20° C.15° D.10° 12.如图,AB和CD相交于点O. (1)若∠1+∠3=50°,则∠3=__25°__; (2)若∠1∶∠2=2∶3,则∠3=__72°__; (3)若∠2-∠3=70°,则∠3=__55°__.
1.(4分)(2014· 铜仁)下列图形中,∠1与∠2 是对顶角的是( ) 2.(4分)下列说法中,正确的是( ) A.相等的两个角是对顶角 B.有一条公共边的两个角是邻补角 C.有公共顶点的两个角是对顶角 D.一条直线与端点在这条直线上的一条射线组成的两个角是邻补角 3.(4分)如图所示,取两根木条a,b,将它们钉在一起, 就得到一个相交线的模型,其中∠1和∠2是____, 且∠1+∠2=____,同理∠2与____,∠3与____, ∠1与____都是邻补角.
第五章 相交线与平行线 5.1 相交线 5.1.1 相交线
1. 两个角有一条公共边, 它们的另一条边互为__反向延长线__, 具有这种关系的两个角, 互为邻补角. 2. 两个角有一个公共的__顶点__, 且一个角的两边分别是另一个角的两边的__反向延长 线__,具有这种位置关系的角,互为对顶角. 3.对顶角__相等__.
(第 9 题图)
(第 10 题图)
10.如图,AO⊥BO,CO⊥DO,∠AOC∶∠BOC=1∶5,则∠BOD的度数为( A.105° B.112.5° C.135° D.157.5°
)
第五章 相交线与平行线 5.1 相交线 5.1.2 垂线
11.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点, 则AP长不可能是( ) A.2.5 B.3 C.4 D.5 12.在直线AB上任取一点 O, 过点 O 作射线 OC, OD ,使 OC⊥OD,当∠AOC=30°时 , ∠BOD的 度数是( ) A.60° B.120° C.60°或90° D.60°或120° 13.如图所示,EO⊥CD,垂足为O,AB平分∠EOD,则∠BOD的度数为____.
【综合运用】 17.(12分)(1)三条直线相交,最少有__1__个交点,最多有__3__个交点,分别画出图形,并数出图 形中的对顶角和邻补角的对数; 解:图略,对顶角有6对,邻补角有12对 (2)四条直线相交,最少有__1__个交点,最多有__6__个交点,分别画出图形,并数出图形中的对顶 角和邻补角的对数; 解:图略,对顶角有12对,邻补角有24对
15.(10分)如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试 求∠BFC′的度数. 解:∵∠BFE+∠CFE=180°,∠BFE=50°,所以∠CFE=130°, 又∠CFE=∠EFC′,所以∠BFC′=130°-50°=80°
第五章 相交线与平行线 5.1 相交线 5.1.1 相交线
16 . (10 分 ) 如图所示 , 已知直线 AB , CD 相交于点 O , OE 平分 ∠BOD , 若∠3∶∠2 = 8∶1 ,求 ∠AOC的度数. 解:设∠1=∠2=x°,则∠3=8x°.由∠1+∠2+∠3=180°,得10x=180,解得x=18, 所以∠1=∠2=18°.所以∠AOC=∠1+∠2=36°
1.(4分)如图,直线AB与CD相交于点O,若∠AOC+∠BOD=180°,则∠AOC=____,AB与CD的位置关系是