江西省永修县外国语学校2013-2014学年八年级数学上学期第一次月考试题

合集下载

2013-2014学年度第一学期12月月考八年级数学试卷及答案

2013-2014学年度第一学期12月月考八年级数学试卷及答案

∥AC.
(1)试判定△ODE 的形状。并说明你的理由.
A
(2)线段 BD、DE、EC 三者有什么关系?写出你理由.
解:(1)△ODE 是等边三角形,
O
其理由是:∵△ABC 是等边三角形,
B
DE
C
∴∠ABC=∠ACB=60°,(2 分)
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°(1 分)
一、精心选一选(本大题共 10 小题。每小题 2 分,共 20 分) 1. 下列运算中,计算结果正确的是(★★★★★).
A. a2 a3 a6
B. (a2 )3 a5
C. (a2b)2 a2b2
D. a3 a3 2a3
答案:D 2. 2 表示(★★★★★).
A.3 2×2×2
∴△ODE 是等边三角形;(4 分)
(2)答:BD=DE=EC, 其理由是:∵OB 平分∠ABC,且∠ABC=60°, ∴∠ABO=∠OBC=30°,(6 分) ∵OD∥AB, ∴∠BOD=∠ABO=30°, ∴∠DBO=∠DOB, ∴DB=DO,(7 分) 同理,EC=EO, ∵DE=OD=OE, ∴BD=DE=EC.(1 分)
20. (8 分)如图,△ABC 是格点三角形。且 A(-3,-2),B(-2,-3),C(1,-1). (1)请在图中画出△ABC 关于 y 轴的对称△A’B’C’. (2)写出△A’B’C’各点坐标。并计算△A’B’C’的面积.
Y
O
X
A
C
B
21. (8 分)如图。在等边△ABC 中,∠ABC 与∠ACB 的平分线相交于点 O,且 OD∥AB,OE
解:原式= xy(x y)2

八年级第一次月考试卷及答案 (526)

八年级第一次月考试卷及答案 (526)

频率 36% c d
C.a=12, b=24% D.a=12, b=40%
二、填空题:(每小题 4 分,共 16 分)
C. a=2, b=2, c=2 2 D. a=1, b=2, c= 3
8、如图 1,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中能和△ABC 完全重合的是
2 22
3、在实数 3 8, π, 27, ,0, 3 16, (5)2 ,1.414114111中,无理数的个数为
3 7
A.2 个 B.3 个 C.4 个 D.5 个
为 AB 边上一点,求证: △≌AC△先化简,再求值.
2 6
表中已知信息可得
上学方式 步行 骑车 乘车
A.a=18, d=24%, B.a=18, d=40%
频数 a b 20
三、解答题:(共 62 分)
19、(每小题 5 分,共 10 分)把下列多项式分解因式.
(1)(-2b) 3 +8a 2 b; (2)(x-2)(x-4)+1
20、(10 分)如图 6,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D
7、以下列线段 a、b、c 的长为边,不能构成直角三角形的是
A. a=4, b=5, c=6 B. a=10, b=8, c=6
: 座号 姓名: 班别: 学校: ………………………………………………………………装………………订………………线………………………………………………
图 4
A.30° B.45° C.60° D.120°
14、某校八年级 3 班有 50 位学生,他们来上学有的步行,有的骑车,还有的乘车,根据右

2013~2014上学期八年级数学第一次月考试卷

2013~2014上学期八年级数学第一次月考试卷

八年级数学第一次月考试卷一、选择题(每小题3分,共30分)1.已知三角形的三边长为3、8、x ,若x 的值为偶数,则x 的值有【 】 A .6个 B .5个 C .4个 D .3个2.如图所示,在△ABC 中,D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =4cm 2,则阴影部分 (△BEF )的面积等于【 】A .2cm 2B .1cm 2C .12cm 2D .32cm 23.若一个三角形的三条高的交点恰是三角形的一个顶点,则此三角形是【 】A .锐角三角形B .钝角三角形C .直角三角形D .无法确定4.下图中具有稳定性的是【 】5.下列说法错误的是【 】 A .一个三角形中,一定有一个外角大于其中的一个内角 B .在一个三角形中至少有一个角大于60°C .在锐角三角形中,任何两个角的和均大于90°D .在一个三角形中,至少有两个锐角6.如图,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②7.根据下列条件,能唯一画出△ABC 的是【 】A .AB=3,BC=4,CA=8B .AB=4,BC=3,∠A=30°C .∠A=60°,∠B=45°,AB =4D .∠C=45°,AB =68如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2,则PQ 的最小值为【 】 A .1 B .2 C .3 D .49.一个多边形截取一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是( )A .10B .11C .12D .以上都有可能 10.如图所示,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E 点,DF ⊥AC 于F 点,则图中共有全等三角形【 】 A . 5对 B .4对 C .3对 D.2对二、填空题(每小题3分,共30分)11.如果以5cm 为等腰三角形的一边,另一边为10cm ,则它的周长是 .12. 如图所示,小明从点A 出发前进5米,向右转15°,再前进5米,又向右转15°,…,这样一直走下去,当他第一次回到出发点A 时,一共走了 米.13.如图,四边形ABCD 中,若去掉一个60o 的角得到一个五边形,则∠1+∠2=_________度.14.已知△ABC ≌△DEF ,BC=EF =6cm ,△ABC 的面积为18cm 2,则EF 边上的高等于 . 15.如图所示,BE 、CF 分别平分∠ABC 、∠ACD ,已知∠A=50°,则∠E 的度数是 . 16. 如图4,已知直线AD 、BC 交于点E ,且AE =BE ,欲证明△AEC ≌△BED ,需增加的条件可以是__________________(只填一个即可).17.在平面直角坐标系中有两点A (4,0),B (0,2),如果点C 在坐标平面内,当点C 坐标为 时,由点B 、O 、C 组成的三角形与△AOB 全等. 18.如图,直线1l 、2l 、3l 表示三条互相交叉的公路,要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 个19.如图所示,已知EA ⊥AB ,BC ∥EA ,EA =AB =2BC ,D 为AB 的中点,那么下列结论中: ①DE =AC ;②DE ⊥AC ;③∠EAF =∠ADF ;④∠C =∠ADF ;⑤∠C =∠E 其中正确的有________(填序号) 20.王师傅常用角尺平分一个角,如图①所示,学生小明可用三角尺平分一个角,如图②所示,他们在∠AOB 两边上分别取OM 、ON 使OM =ON ,前者使角尺两边相同刻度分别与M 、N 重合,角尺顶点为P ;后者分别过M 、N 作OA 、OB 的垂线,交点为P ,则射线OP 平分∠AOB ,均可由△OMP ≌△ONP 得知,其依据分别是________、________. 三、解答题(共60分) 21.(8分)如图AD ⊥BD ,AE 平分∠BAC ,∠B =30°,∠ACD =70°,求∠AED 的度数.F E D CB A 第2题图 ③②①第6题图 第10题图 第8题图 第12题图 第13题图第16题图 15°15°AE D C B A C B A D E第15题图 第20题图第19题图 l 1l 2l 3第18题图22.(10分)如图,在△AEC 和△DFB 中,∠E =∠F ,点A ,B ,C ,D 在同一直线上,有如下三个关系式:①AE ∥DF ,②AB =CD ,③CE=BF 。

2013年上期八年级数学月考试卷

2013年上期八年级数学月考试卷

2013年上期八年级数学月考试题(3月份)班级: 姓名: 座号: 评分:一、填空选择题(每小题3分,共15分)1、用不等式表示右图中的解集,正确的是( )A 3x >B 3x <C 3x ≥D 3x ≤2、不等式组230812x x x +>⎧⎨-≤-⎩的最大整数解是( ) A 1- B 0 C 2 D 33、下列各式中,从左至右属于分解因式的是( ) A ()()21323x x x x -+=+- B ()222211a a a ++=++C ()233x x x x -+=--D ()()4221644m m m -=+-4、若225x kx ++是一个完全平方式,则k 的值是( )A 10±B 40±C 60±D 80±5、若()()2842x px x x +-=+-,则p 的值是( ) A 23- B 23C 2-D 2 二、填空题(每小题3分,共24分)6、一次函数()231y a x =-+的图象不经过第四象限,则a 的取值范围是7、不等式31x -<的解是8、分解因式21x -=9、已知不等式()11a x a ->-的解集为1,x >则a10、若()()m n x y x y x y -=+-,则m = ,n =11、多项式221,12,1x x x x -+++的公因式是12、如果关于x 的不等式组3x x m≥⎧⎨<⎩无解,那么m 的取值范围是13、若不等式30x a -≤的解是3x ≤,则a =三、解答题:14、解不等式,并用数轴表示其解集。

(7分231x +<-15、解不等式组5216x -<+<(7分)16、分解因式。

(14分)⑴2412m m -- (6分)⑵32242x x x-+-17、先分解因式,再计算求值(8分)229124x xy y ++,其中41,32x y ==-18、求证:若m 为正整数,则2(21)1m +-能被8整除。

2013至2014学年第一学期八年级数学上册第一次月考试题

2013至2014学年第一学期八年级数学上册第一次月考试题

2013至2014学年第一学期八年级数学第一次月考试题(150分 120分钟)选择题(每小题3分,共 30 分)1、下列长度的三条线段中,能组成三角形的是 ( )A 、3cm ,5cm ,8cmB 、8cm ,8cm ,18cmC 、0.1cm ,0.1cm ,0.1cmD 、3cm ,40cm ,8cm2、下列说法中,正确的有( )①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④大小相同的图形是全等形;⑤能够完全重合的图形是全等形。

A 、1个B 、2个C 、3个D 、4个3、一个多边形内角和是10800,则这个多边形的边数为 ( )A 、 6B 、 7C 、 8D 、 94、已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=( )A 、 55°B 、 70°C 、 40°D 、 110°5、如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A 、△ABD 和△CDB 的面积相等 B 、△ABD 和△CDB 的周长相等C 、∠A+∠ABD =∠C+∠CBD D 、AD ∥BC ,且AD =BC6、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带( )去配。

A. ①B. ②C. ③D. ①和②7、若一个三角形的三边长是三个连续的自然数,其周长m 满足10<<m ,则这样的三角形有( )A 、 2个B 、3个C 、4个D 、5个8、如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B 。

下列结论中不一定成立的是( )A 、PA PB =B 、PO 平分APB ∠C 、OA OB =D 、AB 垂直平分OP C D 第4题 D C B A B A 第5题F D E CA B 9、在△ABC 中,a=3x ,b=4x ,c=14 ,则 x 的取值范围是( )。

2013-2014学年上期八年级第一次月考数学试卷

2013-2014学年上期八年级第一次月考数学试卷

2013-2014学年上期八年级第一次月考数 学 试 卷(试卷满分100分;考试时间90分钟;)一、选择题:(本大题有10小题,每小题2分,共20分)1.下列运算正确的是( )A 、39±=B 、33-=-C 、39-=-D 、932=-2. 下列运算正确的是( )A 、623a a a =⋅B 、()3632b a ba = C 、428a a a =÷ D 、2a 2a a =+ 3. 在实数020.2020020043.14-3073,,,,,,π…中,无理数的个数是( ) A 、2 B 、3 C 、4 D 、54.若()(8)x m x +-中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-85.若m ab a ++1842是一个完全平方式,则m 等于( )(A )29b (B )218b (C )281b (D )2481b 6.已知22()11,()7a b a b +=-=,则ab 等于 ( )A .—2B .—1C .1 D. 2 7.已知:182052N ⨯=,则N 是( )位正整数A 、10B 、18C 、19D 、208、如图,以数轴的单位长为边作一个正方形,以数轴的原点为圆心,正方形的对角线长为半径画孤,交数轴于点A ,则点A 表示的数是( )A .1B .1.4CD 9、若一个正数的平方根是21a +和2a -+,则a = ( )A . 1B .3C .-3D .-110、我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图(3)可以用来解释(a+b )2-(a -b )2=4ab.那么通过图(4)面积的计算,验证了一个恒等式,此等式是( )A . a 2-b 2=(a+b )(a -b )B .(a -b )(a+2b )=a 2+ab -b 2C .(a -b )2=a 2-2ab +b 2D .(a+b )2=a 2 +2ab +b 2二、填空题(本大题有7小题,每小题3分,共 21 分.)11、①36的平方根是 , ②64的立方根是____;③若x x -+有意义,则=+1x _____. 12、计算:①()()=-∙-32a a ,②()32x 3-= , ③=÷-ab 3c b a 2132 ; 13、已知51=+x x ,那么221xx +=_______。

八年级上学期第一次月考数学试卷人教版

八年级上学期第一次月考数学试卷人教版

第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A.180°B.270°C.360°D.720°2.△ABC≌△DEF,且△ABC的周长为100cm,A、B分别与D、E对应,且AB=35cm,DF=30cm,则EF的长为( )A.35cmB.30cmC.45cmD.55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2B.4C.6D.84.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )A.1对B.2对C.3对D.4对5.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15°B.25°C.30°D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A.5B.6C.7D.87.如图,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDFB.∠B=∠EC.∠BCA=∠FD.BC∥EF8.具备下列条件的三角形ABC中,不为直角三角形的是( )A.∠A+∠B=∠CB.∠A=∠B=∠CC.∠A=90°﹣∠BD.∠A﹣∠B=90°9.如图,AM是△ABC的中线,若△ABM的面积为4,则△ABC的面积为( )A.2B.4C.6D.810.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cmB.6cmC.8cmD.9cm二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条__________的交点.12.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A的度数为__________.15.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).16.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).17.如图,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=__________.18.如图1是二环三角形,可得S=∠A1+∠A2+…+∠A=360°,图2是二环四边形,可得S=∠A1+∠A2+…+∠A7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n边形(n≥3的整数)中,S=__________.(用含n的代数式表示最后结果)三、解答题(本大题共8小题,共66分)19.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.20.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.22.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE 的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.2015-2016学年河南省周口市李埠口一中八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A.180°B.270°C.360°D.720°考点:三角形内角和定理.专题:计算题.分析:根据三角形内角和定理进行判断.解答:解:任意画一个三角形,它的三个内角之和为180°.故选A.点评:本题考查了三角形内角和定理:三角形内角和是180°.2.△ABC≌△DEF,且△ABC的周长为100cm,A、B分别与D、E对应,且AB=35cm,DF=30cm,则EF的长为( )A.35cmB.30cmC.45cmD.55cm考点:全等三角形的性质.分析:根据全等三角形的性质得出AC=DF=30cm,EF=BC,求出BC,即可得出答案.解答:解:∵△ABC≌△DEF,A、B分别与D、E对应,且AB=35cm,DF=30cm,∴AC=DF=30cm,EF=BC,∵△ABC的周长为100cm,∴EF=BC=100cm﹣35cm﹣30cm=35cm,故选A.点评:本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2B.4C.6D.8考点:三角形三边关系.分析:已知三角形的两边长分别为2和4,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.解答:解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选B.点评:本题考查了三角形三边关系,此题实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )A.1对B.2对C.3对D.4对考点:全等三角形的判定.分析:首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.解答:解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.点评:考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15°B.25°C.30°D.10°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠CDE=∠B+∠BFD,然后代入数据进行计算即可得解.解答:解:∵∠C=90°,∠E=30°,∴∠CDE=90°﹣30°=60°,由三角形的外角性质得,∠CDE=∠B+∠BFD,∴60°=45°+∠BFD,解得∠BFD=15°.故选A.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记性质并准确识图是解题的关键.6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A.5B.6C.7D.8考点:多边形内角与外角.分析:n边形中过一个顶点的所有对角线有n﹣3条,把这个多边形分成n﹣2个三角形,根据这一点即可解答.解答:解:这个多边形的边数是6+2=8.故选D.点评:正确理解多边形的对角线的条数,与所分成的三角形的个数的关系,是解决本题的关键.7.如图,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDFB.∠B=∠EC.∠BCA=∠FD.BC∥EF考点:全等三角形的判定.分析:根据“SAS”可添加∠B=∠E使△ABC≌△DEF.解答:解:A、已知AB=DE,BC=EF和∠A=∠EDF,SSA不能判定△ABC≌△DEF,故本选项错误;B、在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故本选项正确;C、已知AB=DE,BC=EF和∠BCA=∠F,SSA不能判定△ABC≌△DEF,故本选项错误;D、∵BC∥EF,∴∠BCA=∠F,已知AB=DE,BC=EF和∠BCA=∠F,SSA不能判定△ABC≌△DEF,故本选项错误.故选B.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等;若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8.具备下列条件的三角形ABC中,不为直角三角形的是( )A.∠A+∠B=∠CB.∠A=∠B=∠CC.∠A=90°﹣∠BD.∠A﹣∠B=90°考点:三角形内角和定理.专题:计算题.分析:根据三角形内角和为180°,直接进行解答.解答:解:根据三角形内角和定理,∠A+∠B+∠C=180°.A、∠A+∠B=∠C成立,则∠C=90°;B、∠A=∠B=∠C,则∠C=90°;C、∠A=90°﹣∠B,即∠A+∠B=90°所以∠C=90°;D、∠A﹣∠B=90°,那么∠A>90°,一定不是直角三角形.故选D.点评:本题考查三角形内角和定理以及直角的判定条件.9.如图,AM是△ABC的中线,若△ABM的面积为4,则△ABC的面积为( )A.2B.4C.6D.8考点:三角形的面积.分析:△ABM与△AMC是等底同高的两个三角形,它们的面积相等.解答:解:∵AM是△ABC的中线,∴BM=CM,∴S△ABM=S△AMC,∴S△ABC=2S△ABM.又∵S△ABM=4,∴S△ABC=2S△ABM=8,故选:D.点评:本题考查了三角形的面积.此题的解题技巧性在于找出△ABM与△AMC是等底同高的两个三角形.10.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cmB.6cmC.8cmD.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条中线的交点.考点:三角形的重心.分析:根据三角形的重心的定义解答.解答:解:三角形的重心是三角形的三条中线的交点.故答案为:中线.点评:本题考查了三角形的重心,是基础题,熟记概念是解题的关键.12.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是三角形的稳定性.考点:三角形的稳定性.专题:应用题.分析:根据三角形的稳定性进行解答.解答:解:给凳子加了两根木条,这样凳子就比较牢固了,应用的数学原理是三角形的稳定性,故答案为:三角形的稳定性.点评:此题主要考查了三角形的稳定性,是需要记忆的知识.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为20.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为4和8,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:∵4+4=8∴腰的长不能为4,只能为8∴等腰三角形的周长=2×8+4=20,故答案为:20.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A的度数为120°.考点:全等三角形的性质.分析:根据全等三角形的性质可得∠ADB=∠CBD=20°,再根据三角形内角和定理可得∠A=180°﹣40°﹣20°=120°.解答:解:∵△ABD≌△CDB,∴∠ADB=∠CBD=20°,∵∠ABD=40°,∴∠A=180°﹣40°﹣20°=120°,故答案为:120°.点评:此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.15.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).考点:全等三角形的判定.专题:开放型.分析:要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS 来判定其全等,或添加一个角从而利用AAS来判定其全等.解答:解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.16.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有①②(只填序号).考点:直角三角形全等的判定.分析:根据全等三角形的判定定理HL、AAS、AAS,SAS作出判定即可.解答:解:①一锐角和一边对应相等可利用AAS或ASA判定两个直角三角形全等,②两边对应相等可利用SAS或HL两个直角三角形全等,③两锐角对应相等不能证明两个直角三角形全等,故答案为:①②.点评:本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.17.如图,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=67°.考点:三角形内角和定理;三角形的外角性质.分析:根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2)=113°;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.解答:解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2),∵∠B=46°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=113°∴∠AEC=180°﹣(∠DAC+∠ACF)=67°.故答案是:67°.点评:本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.18.如图1是二环三角形,可得S=∠A1+∠A2+…+∠A=360°,图2是二环四边形,可得S=∠A1+∠A2+…+∠A7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n边形(n≥3的整数)中,S=360(n﹣2)度.(用含n的代数式表示最后结果)考点:多边形内角与外角;三角形内角和定理.专题:规律型.分析:本题只看图觉得很复杂,但从数据入手,就简单了,从图2开始,每个图都比前一个图多360度.抓住这点就很容易解决问题了.解答:解:依题意可知,二环三角形,S=360度;二环四边形,S=720=360×2=360×(4﹣2)度;二环五边形,S=1080=360×3=360×(5﹣2)度;…二环n边形(n≥3的整数)中,S=360(n﹣2)度.故答案为:360(n﹣2)度.点评:考查了多边形内角与外角,三角形内角和定理,本题可直接根据S的度数来找出规律,然后根据规律表示出二环n边形的度数.三、解答题(本大题共8小题,共66分)19.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.考点:全等三角形的判定与性质.专题:证明题.分析:由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.解答:证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.一个多边形的外角和是内角和的,求这个多边形的边数.考点:多边形内角与外角.分析:一个多边形的外角和是内角和的,任何多边形的外角和是360°,因而多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.考点:直角三角形的性质;翻折变换(折叠问题).分析:由图形翻折变换的性质得出∠CED=∠DEC',再解答即可.解答:解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.点评:本题考查的是角的计算,熟知矩形的性质及图形翻折不变性的性质是解答此题的关键.22.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.考点:三角形内角和定理;三角形的角平分线、中线和高.分析:(1)根据三角形的内角和定理及角平分线的性质求解即可;(2)以AD为高的所有三角形是在BC线段上任意两点和点A组成的所有三角形.解答:解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF和△ACD.点评:此题考查的是三角形的内角和定理及角平分线的性质,掌握三角形的内角和等于180°是解决问题的关键.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据Rt△ABC≌Rt△ADE,得出AC=AE,BC=DE,AB=AD,∠ACB=∠AED,∠BAC=∠DAE,从而推出∠CAD=∠EAB,△ACD≌△AEB,△CDF≌△EBF,(2)由△CDF≌△EBF,得到CF=EF.解答:(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AED.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.证法二:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB﹣∠DAB=∠EAD﹣∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB,∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.证法三:连接AF,∵Rt△ABC≌Rt△ADE,∴AB=AD.又∵AF=AF,∴Rt△ABF≌Rt△ADF(HL).∴BF=DF.又∵BC=DE,∴BC﹣BF=DE﹣DF.即CF=EF.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.考点:三角形三边关系;三角形的外角性质.分析:(1)延长BO交AC于点D,首先利用三角形的外角性质得到∠BOC>∠ODC,让根据∠ODC>∠A,证得∠BOC>∠A;(2)根据三角形的三边关系证得AB+AD>OB+OD,OD+CD>OC,从而得到AB+AD+CD >OB+OC,进而得到AB+AC>OB+OC.解答:解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC>OB+OC.点评:本题考出了三角形的三边关系及三角形的外角的性质,解题的关键是能够正确的构造三角形,难度不大.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?考点:多边形内角与外角.分析:(1)n边形的内角和是(n﹣2)•180°,因而内角和一定是180度的倍数,依此即可作出判断;(2)多边形的内角一定大于0,并且小于180度,因而内角和再加上一个内角的值,这个值除以180度,所得数值比边数n﹣2要大,大的值小于1.则用2014除以180所得值,加上2,比这个数小的最大的整数就是多边形的边数;(3)用2014°﹣1980°即可.解答:解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.点评:考查了多边形的内角与外角,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE 的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.考点:全等三角形的判定与性质;等腰直角三角形;旋转的性质.专题:几何综合题.分析:(1)根据AAS证明Rt△ABD≌Rt△ACE,得BD=AE;AD=CE.根据AE=AD+DE 代换即可;(2)显然关系不成立.同理证明Rt△ABD≌Rt△ACE,得BD=AE;AD=CE.此时DE=BD+CE;(3)同(2);(4)根据前面证明的结论分类归纳.解答:(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.点评:此题考查全等三角形的判定和性质,综合性较强.。

八年级上学期第一次月考数学试题.docx

八年级上学期第一次月考数学试题.docx

八年级上学期第一次月考数学试题姓名: 班级: 成绩:一、单选题1.下列各组数可能是一个三角形的边长的是()A. 4, 4, 9B. 2, 6, 8 c. 3, 4, 52.把一副三角板按下图方式放置,则两条斜边所形成的钝角a=(A. 120°B. 135 °C. 165°3.如图,的三条中线AD, BE, CF交于同一点G,若SAABC=12,4.十边形的内角和为()A. 180°B. 360°C. 1800°5.如图:^-DAE = ADAF = 15', DE .IB , DF _ AB ,若AE = 6BD. 1, 2, 3).D. 150°则图中阴影部分面积是(D. 6D. 1440°,则序■等于()6 .设 BF 交 AC 于点 P, AE 交 DF 于点 Q.若ZAPB=126° , ZAQF=100° ,则ZA-ZF=()7 .如图,在等边三角形ABC 中,AD=BE=CF, D 、E 、F 不是各边的中点,AE 、BF 、CD 分别交于P 、M 、H,如 果把三个三角形全等叫做一组全等三角形,那么图中全等三角形有()如图,已知 AABE m AACD ,若 3 = 50、^4£C = 120:,则 A DAC 的度数为()9 .下列各组数中,能作为一个三角形三边边长的是(10 .下列说法中,正确的是( )A. 5B. 4C. 3D. 2A. 60°B. 46°C. 26°D. 45°A. 6组C. 4组D. 3组A.120= B. 70s C. 60:D. 50’A. 1, 1,2B. 1,2,4C. 2, 3,4D. 2,4,6A. 垂线最短B. 两点之间直线最短B. 5组C.如果两个角互补,那么这两个角中一个是锐角,一个_n—么 D.同角的补角相等是钝角11.如图,ZA=ZD, Z1=Z2,添加下列条件,可使△ ABC^ADEF的是(A. AF=DFB. AB=DEC. AB=EFD. ZB=ZE12.如图,在RtAABC中,ZC=90° ,以顶点A为圆心,适当长为半径画弧,分别交AC, AB于点M、N,再分1_别以点M、N为圆心,大于2 MN的长为半径画弧,两孤交于点P,作射线AP交边BC于点D,若CD=4, AB=18,则AABD 的面积是()A. 18B. 36C. 54D. 72二、填空题13.如图,点B、F、C、E在一条直线上,已知BF=CE, AC〃DF,请你添加一个适当的条件,使得14,若等腰三角形的两条边长分别为4cm和9cm,则等腰三角形的周长为—.15.若一个多边形所有内角与其中一个外角的和是1000° ,这是边形.16.如图,正方形ABCD的对角线长为8, E为AB上一点,若EF±AC于点F, EG±BD于点G,则EF+EG=17 ,如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档