高一精选题库习题 数学8-3

合集下载

北京市第八中学2023-2024学年高一下学期期末练习数学试卷(含部分答案)

北京市第八中学2023-2024学年高一下学期期末练习数学试卷(含部分答案)

北京市第八中学2023-2024学年高一下学期期末练习数学试卷考试时间120分钟,满分150分一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知为虚数单位,复数为的共轭复数,则( )A.B. 5C. D. 42. 下列函数中,最小正周期为的偶函数是( )A.B. C.D. 3. 已知函数,满足,且在内恰有一个最大值点和一个最小值点,则的值为( )A. B. C. D. 4. 已知两条不同的直线,两个不同的平面,则下列说法正确的是( )A. 若,则 B. 若,则C. 若,则 D. 若,则5. 在中,角对边分别为,若,且,则( )A.B.C.D.6. 关于,对于甲、乙、丙、丁四人有不同判断,甲: 是第三象限角,乙:.丙: ,丁:不小于2,若这人只有一人判断错误,则此人是( )A. 甲B. 乙C. 丙D. 丁7. 已知,则“函数的图象关于轴对称”是“”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 若单位向量,,满足,( )的的i 2(2i),z =+z z 2i z +=πcos y x =2sin y x =sin 2y x =cos y x=()sin (0)f x x ωω=>3()(44f f ππ=3[]44ππ,ω1234,m n ,αβ//,,m n αβαβ⊂⊂//m n ,m n m α⊥⊥//n α,,n n m αβαβ⊥⋂=⊥m β⊥,,//n m m αβαβ⋂=⊂//m nABC V ,,A B C ,,a b c sin cos 2Bb Cc =||||CA CB CA CB +=- A =π6π3π4π2θθ1tan 2θ=tan 21θ>()tan θπ-()tan()f x x ϕ=+()f x y ()k k ϕπ=∈Z a b c 12a b ⋅=- b c ⋅= a c ⋅=A. 0B.C. 0或D. 0或9. 已知函数的部分图象如图所示,,则( )A. B. C. D. 10. 在棱长为1的正方体中,,E 是线段(含端点)上的一动点,①;②平面;③三棱锥的体积为定值;④与所成的最大角为.上述命题中正确的个数是( )A. 4B. 3C. 2D. 1二、填空题共5小题,每小题5分,共25分.11. 已知向量,若向量与垂直,则________.1212-()()πsin (002f x A x A ωϕωϕ=+>><,,()()5,02,D B A ,,0BC CD ⋅=()ππ66f x x ⎛⎫=+⎪⎝⎭()ππ36f x x ⎛⎫=+⎪⎝⎭()ππ66f x x ⎛⎫=-⎪⎝⎭()ππ63f x x ⎛⎫=+⎪⎝⎭1111ABCD A B C D -AC BD O = 1B C 1OE BD ⊥//OE 11AC D 1A BDE -OE 11A C 90︒(1,2),(,1)a b m =-= a b + am =12. 复数与复数在复平面内对应的点分别为,若为坐标原点,则的大小为__________.13. 在△中,角的对边分别是,若,,,则△的面积是 ▲ .14. 写出一个同时满足下列两个条件的函数__________.①;②恒成立.15. 设函数,,有以下四个结论.①函数是周期函数:②函数的图像是轴对称图形:③函数的图像关于坐标原点对称:④函数存在最大值其中,所有正确结论的序号是___________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 已知.(1)若为锐角,求值;(2)求的值.17. 如图,在四棱锥中,是正方形,平面,分别是的中点.的12i -3i -,A B O AOB ∠ABC ,,A B C ,,a bc sin A C =30B = 2b =ABC ()f x =()π,2x f x f x ⎛⎫∀∈+=- ⎪⎝⎭R ()π,8x f x f ⎛⎫∀∈≥⎪⎝⎭R ()sin f x x π=()21gx x x =-+()()y f x g x =+()()y f x g x =-()()y f x g x =⋅()()f x yg x =sin(π)2cos αα-=απcos 3α⎛⎫+ ⎪⎝⎭πtan 24α⎛⎫-⎪⎝⎭P ABCD -ABCD PD ⊥,ABCD PD AB =,,E F G ,,PC PD BC(1)求证:;(2)求证:平面.18. 在中,.(1)求的大小;(2)再从下列三个条件中,选择两个作为已知,使得存在且唯一,求的面积.条件①:;条件②:③:.注:如果选择条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.19. 已知函数,且_____.从以下三个条件中任选一个,补充在上面条件中,并回答问题:过点函数图象与直线的两个相邻交点之间的距离为函数图象中相邻的两条对称轴之间的距离为.(1)求函数的单调递增区间;(2)设函数,则是否存在实数,使得对于任意,存在,成立若存在,求实数的取值范围若不存在,请说明理由.20. 如图,四棱锥中,平面∥是的中点.的PC AD ⊥PA P EFG ABC V ()sin cos 0b A a A C ++=B ∠ABC V ABC V b =AB 1cos 2A =-()22cos2sin cos sin (04)f x x x x x ωωωωω=+-<<①②③①;8π⎛⎝②()f x 0y +=;π③()f x 2π()f x ()2cos 23g x x π⎛⎫=-⎪⎝⎭m 1[0,]2x π∈2[0,]2x π∈()()21m g x f x =-m ;P ABCD -AD ⊥,ABP BC ,90,2,3,,AD PAB PA AB AD BC m E ∠===== PB(1)证明:平面;(2)若二面角的值;(3)若,在线段上是否存在一点,使得?若存在,求的值;若不存在,说明理由.21. 在由个实数组成的行列的数表中,表示第行第列的数(如图是一个3行3列的数表,),记.若满足,且两两不等,则称此表为“阶表”.记.032129341(1)请写出一个“2阶表”;(2)对任意一个“阶表”,若整数,且,求证:为偶数;(3)求证:不存“5阶表”.在⊥AE PBC C AE D --m 2m =ED F BF CE ⊥DF FE()2n n n ⨯≥n n ij a i j 11230,9a a ==()()12121,1i i in j j i j nj r a a a i n c a a a j n =+++≤≤=+++≤≤ {}()1,0,11,ij a i j n ∈-≤≤1212,,,,,,,n n r r r c c c n H {}1212,,,,,,,n n n H r r r c c c = H n H [],n n λ∈-n H λ∉λH北京市第八中学2023-2024学年高一下学期期末练习数学试卷 答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.【1题答案】【答案】A 【2题答案】【答案】A 【3题答案】【答案】D 【4题答案】【答案】D 【5题答案】【答案】A 【6题答案】【答案】D 【7题答案】【答案】B 【8题答案】【答案】D 【9题答案】【答案】A 【10题答案】【答案】A二、填空题共5小题,每小题5分,共25分.【11题答案】【答案】【12题答案】【答案】7π4【13题答案】【14题答案】【答案】(答案不唯一)【15题答案】【答案】②④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.【16题答案】【答案】(1(2)【17题答案】【答案】(1)证明略 (2)证明略【18题答案】【答案】(1) (2)略【19题答案】【答案】(1); (2)存在,.【20题答案】【答案】(1)证明略 (2) (3)存在,【21题答案】【答案】(1)略 (2)证明略(3)证明略3πsin(2)4x -7π4B ∠=3[,](Z)88k k k ππππ-+∈[0,21m =2DF FE=。

数学分析试题库-选择题

数学分析试题库-选择题

数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ).(A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0)()(x x x f x f -- ; (B)x x f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()x f x f x ∆-→∆0lim; (D)()()xx x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设xx x f 1sin1=⎪⎭⎫ ⎝⎛,则)(x f '等于 ( ) (A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点. 23.设x x f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。

高一数学练习题及答案

高一数学练习题及答案

高一数学练习题及答案高一数学集合练习题及答案(通用5篇)导读:数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。

下文应届毕业生店铺就为大家送上了高一数学集合练习题及答案,希望大家认真对待。

高一数学练习题及答案篇1一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |,3a2+4},A∩B={-1},则a的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,-1} 1或-1或016、x=-1 y=-117、解:A={0,-4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={-4}时,把x=-4代入得a=1或a=7.当a=1时,B={0,-4}≠{-4},∴a≠1.当a=7时,B={-4,-12}≠{-4},∴a≠7.(4)若B={0,-4},则a=1 ,当a=1时,B={0,-4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,-4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,得32-3a+a2-19=0,解得a=5或a=-2?当a=5时,A={x|x2-5x+6=0}={2,3},与2 A矛盾;当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.∴a=-2.19、解:A={x|x2-3x+2=0}={1,2},由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1-a+3a-5=0,得a=2,此时B={x|x2-2x+1=0}={1} A;若x=2,则4-2a+3a-5=0,得a=1,此时B={2,-1} A.综上所述,当2≤a<10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设矛盾.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x-1)(x+2)≤0}={x|-2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

8-3-1逻辑推理.题库教师版

8-3-1逻辑推理.题库教师版

1.掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2. 培养学生的逻辑推理能力,掌握解不同题型的突破口3. 能够利用所学的数论等知识解复杂的逻辑推理题逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。

对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。

本讲我们主要从各个角度总结逻辑推理的解题方法。

一列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.模块一、列表推理法 【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由例题精讲知识点拨教学目标8-3逻辑推理第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【巩固】 李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴ 顾锋最年轻;⑵ ⑵李波喜欢与体育老师、数学老师交谈;⑶ ⑶体育老师和图画老师都比政治老师年龄大;⑷ ⑷顾锋、音乐老师、语文老师经常一起去游泳;⑸ 刘英与语文老师是邻居.问:各人分别教哪两门课程?【解析】 李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;由⑵推知刘英教体育;由⑶⑸推知李波教图画、语文.【巩固】 王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【解析】 根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断定,王平不是中队长,宋丹也不是中队长,只有韩涛当中队长了.王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长的成绩好,中队长比宋丹的成绩差,可以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成绩好,韩涛的成绩比大队长的成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.【例 2】 张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【解析】 这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。

高中数学必修一同步练习题库:幂函数(填空题:较易)

高中数学必修一同步练习题库:幂函数(填空题:较易)

幂函数(填空题:较易)1、若幂函数的图像不过原点,则实数的值为_______.2、已知幂函数的图像关于轴对称,且在上是减函数,则________.3、幂函数在(0,+)上是增函数,则k=_________4、若一个幂函数图象过点,则.5、若一个幂函数图象过点,则.6、设,则使幂函数为偶函数,且在是减函数的值是____________.(写出所有符合条件的值)7、幂函数在区间上是增函数,则.8、设函数,则使得成立的的取值范围是_______________.9、若,则满足的取值范围是 .10、若函数是幂函数,且满足,则 __________,函数过定点__________.11、如果幂函数的图象过点,那么__________.12、已知幂函数的图象过点,则________________.13、已知关于的函数是幂函数,则__________.14、若幂函数y =的图象经过点(9,), 则f(25)的值是_________.15、幂函数经过,则__________.16、已知幂函数f(x)=xα的部分对应值如下表:则不等式f(|x|)≤2的解集是________.17、函数y=(m-1)x为幂函数,则该函数为________(填序号).①奇函数;②偶函数;③增函数;④减函数.18、已知幂函数的图象过点,则_________。

19、若幂函数的函数图象经过原点则__________.20、已知幂函数在上是减函数,则实数_______.21、幂函数的图像过点,那么的值为 ________.22、若幂函数为其定义域上的单调递增函数,则实数的值为________.23、幂函数经过点,则此幂函数的解析式为_______.24、幂函数的图像过点,则_________.25、已知幂函数的图像过点,则的值为________.26、函数是幂函数,且当时,是增函数,则__________.27、当时,幂函数为减函数,则实数的值为__________.28、若成立,则的取值范围是___________。

高一精选题库习题 数学8-9

高一精选题库习题 数学8-9

第8模块 第9节一、选择题1.若直线y =a 与椭圆x 23+y 24=1恒有两个不同的交点,则a 的取值范围是( )A .(-3,3)B .(-3,3)C .(-2,2)D .(-4,4) 解析:如右图,作出图形,即可求出结果. 答案:C2.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-12,12] B .[-2,2]C .[-1,1]D .[-4,4]解析:设直线方程为y =k (x +2),与抛物线联立方程组,整理得ky 2-8y +16k =0.当k =0时,直线与抛物线有一个交点.当k ≠0时,由Δ=64-64k 2≥0,解得-1≤k ≤1且k ≠0.所以-1≤k ≤1.答案:C3.已知点P (4,2)是直线l 被椭圆x 2+4y 2=λ所截得的线段AB 的中点,若AB =10,则λ等于( )A .4B .9C .16D .36 答案:D4.斜率为1的直线l 与椭圆x24+y 2=1相交于A 、B 两点,则|AB |的最大值为( )A .2 B.455C.4105D.8105解析:设直线l 的方程为y =x +t ,代入x 24y 2=1,消去y 得542+2tx +t 2-1=0,由题意得Δ=(2t )2-5(t 2-1)>0,即t 2<5.弦长|AB |=2·4·5-t 25≤4105.答案:C 二、填空题5.如果过两点A (a,0)和B (0,a )的直线与抛物线y =x 2-2x -3没有交点,那么实数a的取值范围是__________.解析:过A 、B 两点的直线为:x +y =a 与抛物线y =x 2-2x -3联立得:x 2-x -a -3=0,因为直线与抛物线没有交点,则方程无解.即Δ=1+4(a +3)<0,解之:a <-134.答案:(-∞,-1346.过椭圆x 25+y24=1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为__________.解析:易知直线AB 方程为y =2(x -1),与椭圆方程联立解得A (0,-2),B (53,43),故S △ABC =S △AOF +S △BOF =12×1×2+12×1×43=53答案:53三、解答题7.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1)、B (x 2,y 2)两点,求y 21+y 22的最小值.解:(1)当过P 点的直线垂直于x 轴,即x =4时易得y 21=16,y 22=16,此时y 21+y 22=32. (2)当过P 点的直线与x 轴不垂直时,设其斜率为k , 则直线方程为y =k (x -4),代入抛物线方程y 2=4x ,消去y 整理得k 2x 2-(8k 2+4)x +16k 2=0. 由题意知x 1,x 2就是该方程的两根,∴x 1+x 2=8k 2+4k 2,x 1·x 2=16.于是y 21+y 22=[k (x 1-4)]2+[k (x 2-4)]2. =k 2[(x 1+x 2)2-8(x 1+x 2)-2x 1x 2+32] =16k2+32>32,此时无最小值. 综上所述,y 21+y 22的最小值为32.8.抛物线的顶点在原点,以x 轴为对称轴.经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8,试求抛物线方程.解:如右图,依题意设抛物线方程为y 2=2px (p >0),则直线方程为y =-x +12.设直线交抛物线于A (x 1,y 1)、B (x 2,y 2),则由抛物线定义得 |AB |=|AF |+|FB |=|AC |+|BD |=x 1+p 2x 2+p 2,即x 1+x 2+p =8.①又A (x 1,y 1)、B (x 2,y 2)是抛物线和直线的交点,由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0,∴x 1+x 2=3p .将其代入①得p =2, ∴所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px 时,同理可求得抛物线方程为y 2=-4x . ∴抛物线方程为y 2=4x 或y 2=-4x .[高考·模拟·预测]1.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115 D.3716解析:∵直线l 2:x =-1恰为抛物线y 2=4x 的准线,∴P 到l 2的距离d 2=|PF |(F (1,0)为抛物线焦点),所以P 到l 1、l 2距离之和最小值为F 到l 1距离|4×1-3×0+6|32+42=2,故选A.答案:A2.点P 在直线l :y =x -1上,若存在过P 的直线交抛物线y =x 2于A 、B 两点,且|P A |=|AB |,则称点P 为“A 点”.那么下列结论中正确的是( )A .直线l 上的所有点都是“A 点”B .直线l 上仅有有限个点是“A 点”C .直线l 上的所有点都不是“A 点”D .直线l 上有无穷多个点(但不是所有的点)“A 点”解析:分别作出直线l :y =x -1及抛物线y =x 2.如右图,取直线l 上任一点P 都存在过点P 的直线(直线可绕P 点任意旋转)交抛物线y =x 2于A ,B 两点,则|AB |的取值范围是(0,+∞),那么一定存在一个值,使得|PA |=|AB |.故选A.答案:A3.设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCFS △ACF=( )A.45B.23C.47D.12解析:如右图过A 、B 作准线l :x =-12的垂线,垂足分别为A 1、B 1,由于F 到直线AB的距离为定值.∴S △BCF S △ACF =|BC ||CA |.又∵△B 1BC ~△A 1AC .∴|BC ||CA |=|BB 1||AA 1|,由抛物线定义|BB 1||AA 1|=|BF ||AF |=2|AF |. 由|BF |=|BB 1|=2知x B =32,y B =-3,∴l AB :y -0=33-32(x -3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF |=|AA 1|=52.故S △BCF S △ACF =|BF ||AF |=252=45故选A. 答案:A4.已知,椭圆C 经过点A (1,32),两个焦点为(-1,0),(1,0).(1)求椭圆C 的方程;(2)E 、F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解:(1)由题意,c =1,可设椭圆方程为x 21+b 2+y2b2 1.因为A 在椭圆上,所以11+b 2+94b 2=1,解得b 2=3,b 2=-34(舍去).所以椭圆方程为x 24+y23=1.(2)设直线AE 方程为y =k (x -1)+32代入x 24+y23=1得(3+4k 2)x 2+4k (3-2k )x +4(32-k )2-12=0.设E (x E ,y E ),F (x F ,y F ).因为点A (1,32)在椭圆上,所以x E =4(32-k )2-123+4k 2y E =kx E +32-k .又直线AF 的斜率与AE 的斜率互为相反数,在上式中以-k 代k ,可得x F =4(32+k )2-123+4k 2,y F =-kx F +32+k . 所以直线EF 的斜率k EF =y F -y Ex F -x E=-k (x E +x F )+2k x F -x E =12.即直线EF 的斜率为定值,其值为12.[备选精题]5.已知动圆C 过点A (-2,0),且与圆M :(x -2)2+y 2=64相内切. (1)求动圆C 的圆心的轨迹方程.(2)设直线l :y =kx +m (其中k ,m ∈Z )与(1)所求轨迹交于不同两点B 、D ,与双曲线x 24-y 212=1交于不同两点E ,F ,问是否存在直线l ,使得向量DF →+BE →=0?若存在,指出这样的直线有多少条;若不存在,请说明理由.解:(1)圆M :(x -2)2+y 2=64,圆心M 的坐标为(2,0),半径R =8. ∵|AM |=4<R ,∴点A (-2,0)在圆M 内.设动圆C 的半径为r ,圆心为C ,依题意得r =|CA |,且 |CM |=R -r ,即|CM |+|CA |=8>|AM |,∴圆心C 的轨迹是中心在原点,以A ,M 两点为焦点,长轴长为8的椭圆,设其方程为x 2a 2+y 2b2=1(a >b >0),则a =4,c =2, ∴b 2=a 2-c 2=12.∴所求动圆C 的圆心的轨迹方程为x 216+y 212=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 216+y212=1消去y 化简整理得: (3+4k 2)x 2+8kmx +4m 2-48=0,设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=-8km3+4k2.Δ1=(8km )2-4(3+4k 2)(4m 2-48)>0.①由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 212=1消去y 化简整理得:(3-k 2)x 2-2kmx -m 2-12=0, 设E (x 3,y 3),F (x 4,y 4),则x 3+x 4=2km3-k2Δ2=(-2km )2+4(3-k )2(m 2+12)>0.② ∵DF →+BE →=0,∴(x 4-x 2)+(x 3-x 1)=0,即x 1+x 2=x 3+x 4,∴-8km 3+4k 2=2km 3-k 2. ∴2km =0或-43+4k 2=13-k 2, 解得k =0或m =0.当k =0时,由①②得-23<m <23, ∵m ∈Z ,∴m 的值为-3,-2,-1,0,1,2,3; 当m =0时,由①②得-3<k <3,∵k ∈Z ,∴k =-1,0,1.∴满足条件的直线共有9条.。

精选题库高一习题 数学8-8

精选题库高一习题 数学8-8

第8模块 第8节[知能演练]一、选择题1.若点P 到点F (0,2)的距离比它到直线y +4=0的距离小2,则P 的轨迹方程为( ) A .y 2=8x B .y 2=-8x C .x 2=8y D .x 2=-8y解析:由题意知P 到F (0,2)的距离比它到y +4=0的距离小2,因此P 到F (0,2)的距离与到直线y +2=0的距离相等,故P 的轨迹是以F 为焦点,y =-2为准线的抛物线,∴P 的轨迹方程为x 2=8y . 答案:C2.设F 为抛物线y 2=ax (a >0)的焦点,点P 在抛物线上,且其到y 轴的距离与到点F 的距离之比为1∶2,则|PF |等于( )A.a4 B .a C.a 8 D.a 2解析:设P (x 0,y 0),则y 20=ax 0,由抛物线定义知|PF |=x 0+a4,由已知得x 0x 0+a 4=12x 0=a4,∴|PF |=a 4+a 4=a2.答案:D3.已知抛物线y 2=4x ,过焦点的弦AB 被焦点分成长为m 、n (m ≠n )的两段,那么( ) A .m +n =mn B .m -n =mn C .m 2+n 2=mn D .m 2-n 2=mn 解析:由题意设直线AB 的方程为y =k (x -1), 由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1, mn =(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1 =x 1+x 2+2=m +n . 答案:A4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点.若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|等于( )A .9B .6C .4D .3解析:焦点F 坐标为(1,0),准线方程x =-1,设A 、B 、C 坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),A 、B 、C 在准线上的射影分别为A ′,B ′,C ′.∴FA →=(x 1-1,y 1),FB →=(x 2-1,y 2),FC →=(x 3-1,y 3) ∵FA →+FB →+FC →=0,∴x 1-1+x 2-1+x 3-1=0,∴x 1+x 2+x 3=3 ∴|FA →|+|FB →|+|FC →|=|AA ′|+|BB ′|+|CC ′| =(x 1+1)+(x 2+1)+(x 3+1)=6. 答案:B 二、填空题5.已知抛物线y =ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________.解析:由抛物线y =ax 2-1的焦点坐标为(0,14a -1)为坐标原点,得a =14,则y =14x 2-1与坐标轴的交点为(0,-1),(-2,0),(2,0),则以这三点围成的三角形的面积为12×4×1=2.答案:26.点P 到A (1,0)和直线x =-1的距离相等,且点P 到直线l :y =x 的距离等于22,则这样的点P 的个数为__________.解析:由抛物线定义,知点P 的轨迹为抛物线,其方程为y 2=4x ,设点P 的坐标为(y 204,y 0),由点到直线的距离公式,知|y204-y 0|2=22,即y 20-4y 0±4=0,易知y 0有三个解,故点P 个数有三个.答案:3 三、解答题7.已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,斜边长为213,一直角边的方程是y =2x ,求抛物线的方程.解:因为一直角边的方程是y =2x ,所以另一直角边的方程是y =-12x .由⎩⎪⎨⎪⎧y =2x y 2=2px ,解得⎩⎪⎨⎪⎧x =p 2y =p,或⎩⎪⎨⎪⎧x =0y =0(舍去),由⎩⎪⎨⎪⎧y =-12x y 2=2px,解得⎩⎪⎨⎪⎧ x =8p y =-4p ,或⎩⎪⎨⎪⎧x =0y =0(舍去),∴三角形的另两个顶点为(p2,p )和(8p ,-4p ).∴(p 2-8p )2+(p +4p )2=213.解得p =45,故所求抛物线的方程为y 2=85x .8.抛物线顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(32,6),求抛物线与双曲线方程.解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p =2c .抛物线方程为y 2=4cx .∵抛物线过点(32,6),∴6=4c ·32.∴c =1,故抛物线方程为y 2=4x .又双曲线x 2a 2-y 2b 2=1过点(32,6),∴94a 2-6b 2=1.又a 2+b 2=c 2=1. ∴94a 2-61-a 2=1.∴a 2=14或a 2=9(舍). ∴b 2=34,故双曲线方程为4x 2-4y 23=1.[高考·模拟·预测]1.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且|NF |=32|MN |,则∠NMF =( )A.π6B.π4C.π3D.5π12解析:如右图,过点N 向准线引垂线,垂足为P ,由抛物线的定义知|NF |=|NP |,又|NF |=32|MN |,即|NP |=32|MN |,所以,在Rt △NMP 中, sin ∠NMP =|NP ||NM |=32,即∠NMP =π3,故∠NMF =π6,答案为A.答案:A2.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A .若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:不论a 值正负,抛物线的焦点坐标都是(a 4,0),故直线l 的方程为y =2(x -a4),令x =0得y =-a 2,故△OAF 的面积为12×|a 4|×|-a 2|=a216=4,故a =±8.答案:B3.已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为__________.解析:设抛物线的方程为y 2=ax (a ≠0),由方程组⎩⎪⎨⎪⎧y 2=ax y =x 得交点坐标为A (0,0),B (a ,a ),而点P (2,2)是AB 的中点,从而有a =4,故所求抛物线的方程为y 2=4x .答案:y 2=4x4.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =__________.解析:设点A 、B 的坐标分别为(x 1,y 1),(x 2,y 2),过抛物线y 2=2px (p >0)的焦点F 且倾斜角为45°的直线方程为y =x -p 2,把x =y +p 2代入y 2=2px ,得y 2-2py -p 2=0,∴|AB |=8,∴|y 1-y 2|=42,∴(y 1+y 2)2-4y 1y 2=(42)2,∴(2p )2-4×(-p 2)=32,又p >0,∴p =2.答案:25.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切.(1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1和F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.解:(1)由e =c a =1-b 2a 2=33,得b a =63又由原点到直线y =x +2的距离等于圆的半径,得b =2,a = 3. (2)解法一:由c =a 2-b 2=1得F 1(-1,0),F 2(1,0). 设M (x ,y ),则P (1,y ).由|MF 1|=|MP |,得(x +1)2+y 2=(x -1)2,y 2= -4x ,此轨迹是抛物线.解法二:因为点M 在线段PF 1的垂直平分线上,所以 |MF 1|=|MP |,即M 到F 1的距离等于M 到l 1的距离.此轨迹是以F 1(-1,0)为焦点、l 1:x =1为准线的抛物线,轨迹方程为y 2=-4x .[备选精题]6.抛物线y 2=4x 的焦点为F ,A (x 1,y 1),B (x 2,y 2)(x 1>x 2,y 1>0,y 2<0)在抛物线上,且存在实数λ,使AF →+λBF →=0,|AB →|=254.(1)求直线AB 的方程;(2)求△AOB 的外接圆的方程.解:(1)抛物线y 2=4x 的准线方程为x =-1,F (1,0). ∵AF →+λBF →=0,∴A ,B ,F 三点共线.由抛物线的定义,得|AB →|=x 1+x 2+2.由题知,直线AB 的斜率存在且不为0,设直线AB :y =k (x -1),而k =y 1-y 2x 1-x 2,x 1>x 2,y 1>0,y 2<0,∴k >0.由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,得k 2x 2-2(k 2+2)x +k 2=0. ∴⎩⎪⎨⎪⎧x 1+x 2=2(k 2+2)k 2x 1x 2=1,|AB →|=x 1+x 2+2=2(k 2+2)k 2+2=254,∴k 2=169. 从而k =43,故直线AB 的方程为y =43(x -1),即4x -3y -4=0.(2)由⎩⎪⎨⎪⎧4x -3y -4=0y 2=4x,求得A (4,4),B (141).设△AOB 的外接圆方程为x 2+y 2+Dx +Ey +H =0,则⎩⎪⎨⎪⎧H =016+16+4D +4E +H =0116+1+14D +(-E )+H =0,解得⎩⎪⎨⎪⎧D =-294E =-34,H =0故△AOB 的外接圆的方程为x 2+y 2-294x -34y =0.。

新教材苏教版高中数学必修第一册第八章函数应用 课时分层练习题 精选最新配套习题,含解析

新教材苏教版高中数学必修第一册第八章函数应用 课时分层练习题 精选最新配套习题,含解析

第八章函数应用1函数的零点 .................................................................................................................. - 1 - 2用二分法求方程的近似解......................................................................................... - 11 - 3几个函数模型的比较................................................................................................. - 16 - 4函数的实际应用......................................................................................................... - 21 -1函数的零点基础练习1.若函数f(x)的图象是一条连续不断的曲线,且f(0)>0,f(1)>0,f(2)<0,则y=f(x)有唯一零点需满足的条件是( )A.f(3)<0B.函数f(x)在定义域内是增函数C.f(3)>0D.函数f(x)在定义域内是减函数【解析】选D.因为f(1)>0,f(2)<0,所以函数f(x)在区间(1,2)上一定有零点.若要保证只有一个零点,则函数f(x)在定义域内必须是减函数.2.已知函数f(x)=mx+1的零点在区间(1,2)内,则m的取值范围是( )A. B.C. D.∪【解析】选B.根据题意,函数f(x)=mx+1,当m=0时,f(x)=1,没有零点,当m≠0时,f(x)为单调函数,若其在区间(1,2)内存在零点,必有f(1)f(2)<0,即(m+1)(2m+1)<0,解可得:-1<m<-,即m的取值范围为.3.(2020·张家界高一检测)函数f(x)=ln(x+1)-的零点所在的区间是( )A.(0,1)B.(1,2)C.(2,e)D.(3,4)【解析】选B.因为f(1)=ln 2-2<0,f(2)=ln 3-1>ln e-1=0,即f(1)·f(2)<0,所以函数f(x)=ln(x+1)-的零点所在区间是(1,2).【补偿训练】方程ln x+x-4=0的实根所在的区间为( )A.(1,2)B.(2,3)C.(3,4)D.(4,5)【解析】选B.令f(x)=ln x+x-4,在定义域上连续且单调递增,f(3)=ln 3+3-4=ln 3-1>0,f(2)=ln 2+2-4=ln 2-2<0,故f(2)f(3)<0,故实根所在区间是(2,3).4.(2020·徐州高一检测)已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=x3+x的零点分别为a,b,c,则a,b,c的大小顺序为( )A.a>b>cB.b>c>aC.c>a>bD.b>a>c【解析】选B.令f(x)=3x+x=0,则x=-3x,令g(x)=log3x+x=0,则x=-log3x,令h(x)=x3+x=0,则x=-x3,设函数f(x),g(x),h(x)的零点分别为a,b,c,作出函数y=-3x,y=-log3x,y=-x3,y=x的图象如图,由图可知:b>c>a.5.若函数f(x)=x2-ax+b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是________.【解析】因为函数f(x)=x2-ax+b的两个零点是2和3,所以即所以g(x)=6x2-5x-1,所以g(x)的零点为1和-.答案:1和-6.已知函数f(x)=(1)在如图所示的坐标系中,作出函数f(x)的图象并写出单调区间.(2)若f(a)=2,求实数a的值.(3)当m为何值时,f(x)+m=0有三个不同的零点.【解析】(1)函数图象如图,由图可知,函数的减区间为;增区间为,(1,+∞).(a-1)=2(a>1).解得a=-1或a=5.(2)由f(a)=2,得a2-a=2(a≤1)或log2(3)由图可知要使f(x)+m=0有三个不同的零点,则-<-m≤0,解得0≤m<.【补偿训练】(2020·普宁高一检测)已知a>0,函数f(x)=,(x∈R).(1)证明:f(x)是奇函数.(2)如果方程f(x)=1只有一个实数解,求a的值.【解析】(1)由函数f(x)=(x∈R),可得定义域为R,且f(-x)=-=-f(x), 所以f(x)为奇函数.(2)方程f(x)=1只有一个实数解,即为x2-ax+1=0,即Δ=a2-4=0,解得a=2(-2舍去),所以a的值为2.提升训练一、单选题(每小题5分,共20分)1.(2020·十堰高一检测)若点(log147,log1456)在函数f(x)=kx+3的图象上,则f(x)的零点为( )A.1B.C.2D.【解析】选D.根据题意,点(log147,log1456)在函数f(x)=kx+3的图象上,则log1456=k×log147+3,解得k=-2,则f(x)=-2x+3,若f(x)=0,则x=,即f(x)的零点为.2.(2020·烟台高一检测)已知f(x)=(x-a)(x-b)-2,并且α,β是函数f(x)的两个零点,则实数a,b,α,β的大小关系可能是( )A.a<α<b<βB.a<α<β<bC.α<a<b<βD.α<a<β<b【解析】选C.因为α,β是函数f(x)的两个零点,所以f(α)=f(β)=0.又f(a)=f(b)=-2<0,结合二次函数的图象(如图所示)可知a,b必在α,β之间.3.(2020·常州高一检测)已知函数f(x)=(a>0且a≠1),若函数图象上关于原点对称的点至少有3对,则实数a的取值范围是( )A. B.C. D.(-x),【解析】选A.当x<0时,f(x)=-logax的图象与函数f(x)的图象关于原点对称;则x>0时,函数g(x)=loga又x≥0时,f(x)=cos-1,x的图象,画出函数f(x)=cos-1(x≥0)和函数g(x)=loga如图所示:要使f(x)=cos-1(x≥0)与g(x)=x(x>0)的图象至少有3个交点,loga需使0<a<1,且f(6)<g(6);即所以解得即0<a<,所以a的取值范围是.4.已知函数f(x)=则函数y=f(f(x))-1的零点个数为( )A.2B.3C.4D.5【解析】选B.由题意,令f(f(x))-1=0,得f(f(x))=1,令f(x)=t,由f(t)=1,得t=-1或t=,作出函数f(x)的图象,如图所示,结合函数f(x)的图象可知,f(x)=-1有1个解,f(x)=有2个解,故y=f(f(x))-1的零点个数为3.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.若函数f(x)=x+(a∈R)在区间(1,2)上有零点,则a的值可能是( )A.-2B.-1C.-4D.-3【解析】选AD.f(x)=x+(a∈R)的图象在(1,2)上是连续不断的,则<0,解得-4<a<-1,所以a的值可能是-2,-3.6.函数f(x)=|x2-4x|-m恰好有两个不同零点,则m的值可以是( )A.m>4B.4C.0<m<4D.0【解析】选AD.由f(x)=0可得m=|x2-4x|,作出y=|x2-4x|的函数图象如图所示:因为f(x)恰好有两个不同的零点,所以直线y=m与y=|x2-4x|的图象有两个不同的交点,所以m=0或m>4.【光速解题】选取特殊值通过求零点判断.三、填空题(每小题5分,共10分)7.(2020·抚州高一检测)函数f(x)=(2x-3)·ln(x-2)的零点个数为________.【解析】函数的定义域为{x|x>2},令(2x-3)·ln(x-2)=0,因为2x-3>0,可得ln (x-2)=0,解得x=3.所以函数的零点只有1个.答案:1【误区警示】本题容易出现忽视定义域的错误,误认为零点个数为2.(x-1)(a>1).8.(2020·徐州高一检测)设函数f(x)=g(x)=loga(1)f(2 019)的值为______;(2)若函数h(x)=f(x)-g(x)恰有3个零点,则实数a的取值范围是______.【解析】(1)f(2 019)=f(2 017)=…=f(-1)=-1=1;(2)当0<x≤2时,-2<x-2≤0,所以f(x)=f(x-2)=-1;当2<x≤4时,0<x-2≤2,所以f(x)=f(x-2)=-1;当4<x≤6时,2<x-2≤4,所以f(x)=f(x-2)=-1;当6<x≤8时,4<x≤6,所以f(x)=f(x-2)=-1;(4-1)=3,得a=,画出f(x)和g(x)两个函数的图象如图所示,由loga由log(6-1)=3,得a=,a由图可知,当两个函数的图象有3个交点时,即函数h(x)=f(x)-g(x)恰有3个零点时,实数a的取值范围是(,].答案:(1)1 (2)(,]四、解答题(每小题10分,共20分)9.(2020·常州高一检测)已知f(x)是定义在R上的奇函数,且f(x+6)=f(x),当x(x2-x+1).∈(0,3)时,f(x)=loga(1)当x∈(-3,0)时,求f(x)的解析式;(2)求函数f(x)在[-3,3]上的零点构成的集合.【解析】(1)当x∈(-3,0)时,-x∈(0,3),[(-x)2-(-x)+1]所以f(-x)=loga(x2+x+1).=loga因为f(x)是定义在R上的奇函数,所以f(x)=-f(-x)=-log(x2+x+1),a(x2+x+1).即当x∈(-3,0)时,f(x)=-loga(2)因为f(x)是定义在R上的奇函数,所以f(0)=0,且f(-3)=-f(3),因为f(x+6)=f(x),所以f(-3)=f(3),所以f(-3)=f(3)=0,当x∈(0,3)时,令f(x)=log(x2-x+1)=0,a得x2-x+1=1,解得x=0(舍去),或x=1,即f(1)=0,又因为f(x)是奇函数,所以f(-1)=-f(1)=0,所以函数f(x)在[-3,3]上的零点构成的集合为{-3,-1,0,1,3}.10.已知函数f(x)=(c为常数),若1为函数f(x)的零点.(1)求c的值.(2)证明函数f(x)在[0,2]上是单调增函数.(3)已知函数g(x)=f(e x)-,求函数g(x)的零点.【解析】(1)因为1为函数f(x)的零点,所以f(1)=0,即c=1.(2)设0≤x1<x2≤2,则f(x2)-f(x1)=-=,因为0≤x1<x2≤2,所以x2-x1>0,x2+1>0,x1+1>0,所以f(x2)>f(x1),即函数f(x)在[0,2]上是单调增函数.(3)令g(x)=f(e x)-=-=0,所以e x=2,即x=ln 2,所以函数g(x)的零点是ln 2.创新练习1.(2020·南通高一检测)已知函数f(x)=函数g(x)=f(1-x)-m,则当<m<1时,函数y=f(x)+g(x)的零点个数为________.【解析】因为f(x)=所以f(1-x)=令y=f(x)+f(1-x)-m=0得m=f(x)+f(1-x),令h(x)=f(x)+f(1-x)=作出h(x)的函数图象如图所示:所以当<m<1时,y=f(x)+f(1-x)-m恰有4个零点,即函数y=f(x)+g(x)的零点个数为4.答案:42.(2019·泰州高一检测)已知函数f(x)为定义在R上的奇函数,且x>0时,f(x)=x2-2x+2.若对任意x1∈[-1,0),都存在唯一的x2∈[0,+∞),使得f(x1)+f(x2)=a成立,则实数a的取值范围是 ( )A.(-2,-1]∪[0,+∞)B.(-2,-1)∪[0,+∞)C.(-2,-1]D.[1,+∞)【解析】选A.由函数为定义在R上的奇函数及x>0时,f(x)=x2-2x+2,得x<0时, f(x)=-x2-2x-2,作出f(0)=0,f(x)的图象如图所示.若对任意x1∈[-1,0),即f(x1)∈(-2,-1],都存在唯一的x2∈[0,+∞),使得f(x1)+f(x2)=a成立,①当x2=0时,f(0)=0,这时f(x1)+f(x2)=f(x1)∈(-2,-1],所以a∈(-2,-1];②当x2>0时,由f(x1)+f(x2)=a,可得a-f(x2)=f(x1)∈(-2,-1],即f(x2)∈[a+1,a+2),由题意可得a+1≥1,即有a≥0,综上可得,a的取值范围是(-2,-1]∪[0,+∞).2用二分法求方程的近似解基础练习1.在用二分法求方程3x+3x-8=0在(1,2)内近似根的过程中,已经得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定【解析】选B.因为f(1)<0,f(1.5)>0,所以在区间(1,1.5)内函数f(x)=3x+3x-8存在一个零点,又因为f(1.5)>0,f(1.25)<0,所以在区间(1.25,1.5)内函数f(x)=3x+3x-8存在一个零点,由此可得方程3x+3x-8=0的根落在区间(1.25,1.5)内.2.(2020·盐城高一检测)下列函数中,不能用二分法求函数零点的是( )A.f(x)=2x-1B.f(x)=x2-2x+1xC.f(x)=log2D.f(x)=e x-2【解析】选B.A.函数的值域为R,可以使用二分法.B.函数的值域为[0,+∞),不能使用二分法.C.f(x)=logx∈R,可以使用二分法求函数的零点.2D.f(x)=e x-2的值域为(-2,+∞),可以使用二分法求函数的零点.3.(2020·锦州高一检测)函数f(x)=ax2-2x+1在区间(-1,1)和区间(1,2)上分别存在一个零点,则实数a的取值范围是( )A.-3<a<1B.<a<1C.-3<a<D.a<-3或a>【解析】选B.因为函数f(x)=ax2-2x+1在区间(-1,1)和区间(1,2)上分别存在一个零点,所以即,解得<a<1.4.(2020·重庆高一检测)关于x的方程2 020x=有实数根,则实数a的取值范围为______.【解析】设y=2 020x,则y的值域为(0,+∞),所以2 020x=有实数根⇔>0,即<0,所以(3a+2)(a-5)<0.解得,a∈.答案:5.已知方程2x+2x=5.(1)判断该方程解的个数以及所在区间;(2)用二分法求出方程的近似解(精确到0.1).参考数值:x 1.25 1.281 25 1.312 5 1.375 1.52x 2.378 2.430 2.484 2.594 2.828【解析】(1)令f(x)=2+2x-5.因为函数f(x)=2x+2x-5在R上是增函数,所以函数f(x)=2x+2x-5至多有一个零点.因为f(1)=21+2×1-5=-1<0,f(2)=22+2×2-5=3>0,所以方程2x+2x=5有一解在(1,2)内.(2)用二分法逐次计算,列表如下:区间中点的值中点函数值符号(1,2) 1.5 f(1.5)>0(1,1.5) 1.25 f(1.25)<0(1.25,1.5) 1.375 f(1.375)>0(1.25,1.375) 1.312 5 f(1.312 5)>0(1.25,1.312 5) 1.281 25 f(1.281 25)<0所以方程的近似解在区间(1.25,1.312 5)上,因为1.25和1.312 5精确到0.1的近似值都是1.3.即方程2x+2x=5的近似解可取为x≈1.3.提升训练一、选择题(每小题5分,共20分)1.设关于x的方程4x--b=0(b∈R),若该方程有两个不相等的实数解,则b的取值范围是( )A.[-1,0]B.[-1,0)C.(-1,0)D.(0,1)【解析】选C.令t=2x(t>0),则原方程可化为:t2-2t-b=0(t>0),关于x的方程4x--b=0(b∈R),若有两个不相等的实数解,即方程t2-2t-b=0有两个不相等的正根.因为t1+t2=2>0,所以解得-1<b<0,所以b的取值范围是(-1,0).2.根据下表,能够判断f(x)=g(x)在下列区间中有实数解的是( )x -1 0 1 2 3f(x) -0.677 3.011 5.432 5.980 7.651g(x) -0.530 3.451 4.890 5.241 6.892A.(-1,0)B.(0,1)C.(1,2)D.(2,3)【解析】选B.设函数h(x)=f(x)-g(x),则h(-1)=f(-1)-g(-1)=-0.677-(-0.530)=-0.147<0,h(0)=f(0)-g(0)=3.011-3.451=-0.440<0,h(1)=f(1)-g(1)=5.432-4.890=0.542>0,h(2)=f(2)-g(2)=5.980-5.241=0.739>0,h(3)=f(3)-g(3)=7.651-6.892=0.759>0,所以h(0)·h(1)<0,得函数h(x)=f(x)-g(x)的零点存在区间为(0,1).3.某方程在区间(2,4)内有一个实根,若用二分法求此根的精确度为0.1的近似值,则应将此区间二等分的次数为( )A.2B.3C.4D.5【解析】选D.等分1次,区间长度为1;等分2次,区间长度变为0.5;…;等分4次,区间长度变为0.125;等分5次,区间长度为0.062 5<0.1,符合题意.4.(多选题)定义域和值域均为[-a,a](常数a>0)的函数y=f(x)和y=g(x)的图象如图所示,下列四个命题中正确的结论是( )A.方程f[g(x)]=0有且仅有三个解B.方程g[f(x)]=0有且仅有三个解C.方程f[f(x)]=0有且仅有九个解D.方程g[g(x)]=0有且仅有一个解【解析】选AD.根据函数的图象,函数f(x)的图象与x轴有3个交点,所以方程f[g(x)]=0有且仅有三个解;函数g(x)在区间上单调递减,所以方程g[g(x)]=0有且仅有一个解.二、填空题(每小题5分,共10分)5.(2020·苏州高一检测)已知函数f(x)=若方程f(x)=ax恰有三个不等的实数根,则实数a的取值范围是________.【解析】若x<0,可得x-2=ax,即x=<0,解得a>1;由x>0,可得-x3+4x2=ax,可得x2-4x+a=0,有两个不等的正根,可得Δ=16-4a>0,a>0,解得0<a<4,方程f(x)=ax恰有三个不等的实数根,可得1<a<4.答案:1<a<46.已知函数f(x)=-2x,则f________f(1)(填“>”或“<”);f(x)在区间上存在零点,则正整数n=________.【解析】易知函数f(x)=-2x为减函数,则f>f(1),因为f(1)=1-2=-1,f=2->0,所以f(1)f<0,所以函数f(x)的零点所在的区间为,因为f(x)在区间上存在零点,所以=,解得n=2.答案:> 2【补偿训练】若方程lg x=2-x的根x∈(k-1,k),其中k∈Z,则实数k=________.【解析】因为lg x=2-x,所以lg x+x-2=0,令g(x)=lg x+x-2,则g(x)在(0,+∞)上单调递增,因为g(1)=-1<0,g(2)=lg 2>0.由零点存在定理可知,x∈(1,2),因为x∈(k-1,k),其中k∈Z,则k=2.答案:2三、解答题7.(10分)用二分法求函数y=2x3-3x2-5x+3在区间(-2,-1)内的零点.(精确到0.1) 【解析】y=2x3-3x2-5x+3,因为f(-2)<0,f(-1)>0,所以函数在(-2,-1)内存在零点,取(-2,-1)的中点-1.5,经计算f(-1.5)<0,又f(-1)>0,所以函数在(-1.5,-1)内存在零点,如此继续下去,得到方程的一个实数根所在的区间,如表:(a,b) (a,b)的中点f(a) f(b) f(-2,-1) -1.5 f(-2)<0 f(-1)>0 f(-1.5)<0 (-1.5,-1) -1.25 f(-1.5)<0 f(-1)>0 f(-1.25)>0(-1.5, -1.25) -1.375f(-1.5)<0f(-1.25)>0f(-1.375)<0(-1.375, -1.25) -1.312 5f(-1.375)<0f(-1.25)>0f(-1.312 5)<0所以函数的零点在区间(-1.312 5,-1.25),因为-1.25与-1.312 5精确到0.1的近似值都是-1.3,所以函数的零点的近似解是x≈-1.3.3几个函数模型的比较基础练习1.以下四种说法中,正确的是( )A.幂函数增长的速度比一次函数增长的速度快B.对任意的x>0,x n>logaxC.对任意的x>0,a x>logaxD.不一定存在x0,当x>x时,总有a x>x n>logax【解析】选D.对于A,幂函数的增长速度受幂指数的影响,幂指数不确定,而一次函数的增长速度受一次项系数的影响,增长速度不能比较;对于B、C,当0<a<1时,显然不成立;对于D,当a>1,n>0时,一定存在x0,使得当x>x时,总有a x>x n>logax,但若去掉限制条件“a>1,n>0”,则结论不成立.2.向杯中匀速注水时,如果杯中水面的高度h随时间t变化的图象如图所示,则杯子的形状为( )【解析】选B.因为杯中水面的高度先经过两次直线增长,后不变,符合B中容器的形状.【补偿训练】某林区的森林蓄积量平均每年比上一年增长8.6%,若经过x年可以增长到原来的y倍,则函数y=f(x)的大致图象是图中的 ( )【解析】选D.设某林区的森林蓄积量原有1个单位,则经过1年森林的蓄积量为1+8.6%;经过2年森林的蓄积量为(1+8.6%)2;…;经过x年的森林蓄积量为(1+8.6%)x(x≥0),即y=(108.6%)x(x≥0).因为底数108.6%大于1,根据指数函数的图象,可知D选项正确.3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:万元)对年销售量y(单位:t)的影响,对近6年的年宣传费xi 和年销售量yi(i=1,2, (6)进行整理,得数据如表所示:x 1.00 2.00 3.00 4.00 5.00 6.00y 1.65 2.20 2.60 2.76 2.90 3.10根据表中数据,下列函数中,适合作为年销售量y关于年宣传费x的拟合函数的是( )x+1.5A.y=0.5(x+1)B.y=log3C.y=2x-1D.y=2【解析】选B.将题干表格中的数值描到坐标系内(图略),观察可得这些点的拟合函数类似于对数函数,代入数值验证,也较为符合.4.某学校开展研究性学习活动,一组同学得到表中的实验数据:x 1.99 3 4 5.1 8y 0.99 1.58 2.01 2.35 3.00现有如下4个模拟函数:①y=0.58x-0.16;②y=2x-3.02;③y=x2-5.5x+8;④y=logx.2请从中选择一个模拟函数,使它能近似地反映这些数据的规律,应选________. 【解析】画出散点图,由图分析增长速度的变化,可知符合对数函数模型,故选④.答案:④5.画出函数f(x)=与函数g(x)=x-2的图象,并比较两者在[0,+∞)上的大小关系.【解析】函数f(x)与g(x)的图象如图.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).提升训练一、选择题(每小题5分,共20分)1.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是( )x 4 5 6 7 8 9 10y 15 17 19 21 23 25 27A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型【解析】选A.随着自变量每增加1函数值增加2,函数值的增量是均匀的,故为线性函数即一次函数模型.2.某同学最近5年内的学习费用y(千元)与时间x(年)的关系如图所示,则可选择的模拟函数模型是( )A.y=ax+bB.y=ax2+bx+cC.y=a·e x+bD.y=aln x+b【解析】选 B.由散点图和四个函数的特征可知,可选择的模拟函数模型是y=ax2+bx+c.3.下面对函数f(x)=lo x,g(x)=与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是( )A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快【解析】选C.观察函数f(x)=lo x,g(x)=与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢;函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.4.(多选题)某地一年内的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]内的平均气温,不能正确反映C(t)与t之间的函数关系的图象有( )【解析】选BCD.由题图知,当t=6时,C(t)=0,故C不正确;当t=12时,C(t)=10,故D不正确;在大于6的某一段时间平均气温大于10 ℃,故B不正确.二、填空题(每小题5分,共10分)5.如图所示是某受污染的湖泊在自然净化过程中某种有害物质的残留量y与净化时间t(月)的近似函数关系:y=a t(t≥0,a>0且a≠1)的图象.有以下说法:①第4个月时,残留量就会低于;②每月减少的有害物质质量都相等;③当残留量为,,时,所经过的时间分别是t1,t2,t3,则t1+t2=t3.其中所有正确说法的序号是________.【解析】由于函数的图象经过点,故函数的解析式为y=.当t=4时,y=<,故①正确;当t=1时,y=,减少,当t=2时,y=,减少,故每月减少有害物质质量不相等,故②不正确;分别令y=,,,解得t1=,t 2=,t3=,t1+t2=t3,故③正确.答案:①③6.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=loga(t+1)来刻画h与t的关系,你认为符合的函数模型是________,根据你选择的函数模型预测第8年的松树高度为______米.t(年) 1 2 3 4 5 6h(米) 0.6 1 1.3 1.5 1.6 1.7【解析】据表中数据作出散点图如图:由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.将(2,1)代入到h=loga (t+1)中,得1=loga3,解得a=3,即h=log3(t+1).当t=8时,h=log3(8+1)=2,故可预测第8年松树的高度为2米.答案:h=loga(t+1) 2三、解答题7.(10分)若不等式3x2<logax在x∈内恒成立,求实数a的取值范围.【解题指南】原不等式等价于3x2<logax,将不等式两边分别看成两个函数,作出它们的图象,研究a的取值范围.【解析】由题意,知3x2<logax在x∈内恒成立,当x∈时,若a>1,则函数y=logax的图象显然在函数y=3x2图象的下方,所以a>1不成立;当0<a<1时,y=loga x的图象必过点A或在这个点的上方,则loga≥,所以a≥,所以≤a<1.综上,a的取值范围是.4函数的实际应用基础练习1.随着社会发展对环保的要求,越来越多的燃油汽车被电动汽车取代,为了了解某品牌的电动汽车的节能情况,对某一辆电动汽车“行车数据”的两次记录如表:记录时间累计里程(单位:公里)平均耗电量(单位:kW·h/公里)剩余续航里程(单位:公里)2020年1月1日5 000 0.125 3802020年1月2日5 100 0.126 246(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量=,剩余续航里程=)下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是( )A.等于12.5 kW·hB.12.5 kW·h到12.6 kW·h之间C.等于12.6 kW·hD.大于12.6 kW·h【解析】选D.由题意可得:5 100×0.126-5 000×0.125=642.6-625=17.6,所以对该车在两次记录时间段内行驶100公里的耗电量估计为17.6 kW·h.2.某网站开展了以核心价值观为主题的系列宣传活动,并将“社会主义核心价值观”作为关键词便于网民搜索.此后,该网站的点击量每月都比上月增长50%,那么4个月后,该网站的点击量和原来相比,增长为原来的( )A.2倍以上,但不超过3倍B.3倍以上,但不超过4倍C.4倍以上,但不超过5倍D.5倍以上,但不超过6倍【解析】选D.4个月后网站点击量变为原来的=,所以是5倍以上,但不超过6倍.3.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(单位:只)与引入时间x(单位:年)的关系为y=alog2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到( )A.300只B.400只C.600只D.700只【解析】选A.将x=1,y=100代入y=alog2(x+1)得,100=alog2(1+1),解得a=100,所以当x=7时,y=100log2(7+1)=300.4.甲打算从A地出发至B地,现有两种方案:第一种:在前一半路程用速度v1,在后一半路程用速度v2(v1≠v2),平均速度为;第二种:在前一半时间用速度v1,在后一半时间用速度v2(v1≠v2),平均速度为v';则,v'的大小关系为( ) A.>v' B.<v'C.=v'D.无法确定【解析】选B.第一种:设总路程为2s, 则==,第二种:设时间为2t,则v'==,,v'-=-==>0,所以v'>.5.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为________万件.【解析】利润L(x)=20x-C(x)=-(x-18)2+142,当x=18时,L(x)有最大值.答案:186.李庄村某社区电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度,每度0.4元,超过30度时,超过部分按每度0.5元.方案二:不收管理费,每度0.48元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)小李家九月份按方案一交费34元,问小李家该月用电多少度?(3)小李家月用电量在什么范围时,选择方案一比选择方案二更好?【解析】(1)当0≤x≤30时,L(x)=2+0.4x;当x>30时,L(x)=2+30×0.4+(x-30)×0.5=0.5x-1,所以L(x)=(2)当0≤x≤30时,由L(x)=2+0.4x=34,解得x=80,舍去;当x>30时,由L(x)=0.5x-1=34,解得x=70,所以小李家该月用电70度.(3)设按第二方案收费为F(x)元,则F(x)=0.48x,当0≤x≤30时,由L(x)<F(x),解得2+0.4x<0.48x,解得x>25,所以25<x≤30;当x>30时,由L(x)<F(x),得0.5x-1<0.48x,解得x<50,所以30<x<50,综上25<x<50.故小李家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.提升训练一、单选题(每小题5分,共20分)1.2019年8月到11月这四个月的某产品价格的市场平均价f(x)(单位:元/千克)与时间x(单位:月份)的数据如表x 8 9 10 11f(x) 28.00 33.99 36.00 34.02现有三种函数模型:①f(x)=bx+a;②f(x)=ax2+bx+c;③f(x)=+a,找出你认为最适合的函数模型,并估计2019年12月份的该产品市场平均价( )A.②,28元/千克B.①,25元/千克C.②,23元/千克D.③,21元/千克【解析】选A.因为f(x)的值随x的值先增后减,所以选f(x)=ax2+bx+c最合适.第二组数据近似为(9,34),第四组近似为(11,34),得f(x)图象的对称轴为x=10, 故f(12)=f(8)=28.2.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D. a(1-10%+15%)万元【解析】选B.由题意,5月份的产值为a(1-10%)(1+15%)万元.3.某人若以每股17.25元的价格购进股票一万股,可以预知一年后以每股18.96元的价格销售.已知该年银行利率为0.8%,按月计复利,为获取最大利润,某人应将钱[注:(1+0.8%)12≈1.100 339] ( )A.全部购买股票B.全部存入银行C.部分购买股票,部分存银行D.购买股票或存银行均一样【解析】选B.买股票利润:x=(18.96-17.25)×10 000,存银行利润:y=17.25×10 000×(1+0.8%)12-17.25×10 000,计算得x<y.4.衣柜里的樟脑丸随着时间挥发而体积缩小,刚放进的新丸的体积为a,经过t天后体积V与天数t的关系式为V=a·e-kt.已知新丸经过50天后,体积变为 a.若一个新丸体积变为a,则需经过的天数为( )A.125B.100C.75D.50【解析】选C.由已知得a=a·e-50k,即e-50k==,所以a=·a=(e-50k·a=e-k·75·a,所以t=75.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg3≈0.477) ( )A.6B.9C.8D.7【解析】选BC.设经过n次过滤,产品达到市场要求,则×≤,即≤,由 nlg≤-lg20,即n(lg2-lg3)≤-(1+lg2),得 n≥≈7.4.6.如图,摩天轮的半径为40米,摩天轮的轴O点距离地面的高度为45米,摩天轮匀速逆时针旋转,每6分钟转一圈,摩天轮上的点P的起始位置在最高点处,下面的有关结论正确的有( )A.经过3分钟,点P首次到达最低点B.第4分钟和第8分钟点P距离地面一样高C.从第7分钟至第10分钟摩天轮上的点P距离地面的高度一直在降低D.摩天轮在旋转一周的过程中点有2分钟距离地面不低于65米【解析】选ABD.可以以点O在地面上的垂足为原点,OP所在直线为y轴,与OP垂直的向右的方向为x轴正方向建立坐标系,设y=Asin(ωx+φ)+k,x表示时间.由题意可得A=40,k=45,P,T=6,可得ω==,故有点P离地面的高度y=40sin+45=40cos x+45.A.经过3分钟,y=40cos+45=5.点P首次到达最低点,正确;B.第4分钟和第8分钟点P距离地面的高度分别为f(4)=40cos+45=25, f(8)=40cos+45=25.所以第4分钟和第8分钟点P距离地面一样高,正确;C.从第7分钟至第9分钟摩天轮上的点P距离地面的高度一直在降低,而从第9分钟至第10分钟摩天轮上的点P距离地面的高度开始上升.C项不正确.D.由40cos x+45=65,化为:cos x=,取x=,可得x=1.结合图形可得:摩天轮在旋转一周的过程中点P有2分钟距离地面不低于65米.因此正确.三、填空题(每小题5分,共10分)7.要制作一个容积为4 m3,高为1 m的无盖长方体容器,已知该容器的底面造价为20元/m2,侧面造价为10元/m2,则该容器的最低造价是______元.【解析】设容器底的长和宽分别为a m,b m,成本为y元,所以S底=ab=4,y=20S底+10[2(a+b)]=20(a+b)+80≥20×2+80=160,当且仅当a=b=2时,y取最小值160,则该容器的最低造价为160元.答案:1608.(2020·菏泽高一检测)某制造商制造并出售圆柱形瓶装的某种饮料,瓶子的底面半径是r,高h=r(单位:cm),一个瓶子的制造成本是0.8πr2分,已知每出售 1mL(注:1 mL=1 cm3)的饮料,制造商可获利0.2分,且制造商能制造的瓶子底面的最大半径为 6 cm.记每瓶饮料的利润为f(r),则f(3)=________,其实际意义是________.【解析】f(r)=0.2·πr2·r-0.8πr2=-0.8πr2(0<r≤6),故f(3)=7.2 π-7.2 π=0.表示当瓶子底面半径为3 cm时,利润为0.答案:0 当瓶子底面半径为3 cm时,利润为0四、解答题(每小题10分,共20分)9.(2020·上海高一检测)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8000,已知此生产线年产量最大为230吨.(1)求年产量为多少吨时,生产每吨产品的平均成本P(年总成本除以年产量)最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,且生产的产品全部售完,那么当年产量为多少吨时,年总利润可以获得最大?最大利润是多少?【解析】(1)y=-48x+8 000,0<x≤230.所以P==+-48≥2-48=32,当且仅当x=200时取等号.所以年产量为200吨时,生产每吨产品的平均成本P最低,最低成本为32万元. (2)设利润为z万元,则z=40x-y=40x-+48x-8 000=-x2+88x-8 000=-(x-220)2+1 680,即年产量为220吨时,利润最大为1 680万元.10.为净化新安江水域的水质,市环保局于2017年年底在新安江水域投入一些蒲草,这些蒲草在水中的蔓延速度越来越快,2018年二月底测得蒲草覆盖面积为24 m2,2018年三月底测得覆盖面积为36 m2,蒲草覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与y=mx2+n(m>0)可供选择.(1)分别求出两个函数模型的解析式;(2)若市环保局在2017年年底投放了11 m2的蒲草,试判断哪个函数模型更合适?并说明理由;(3)利用(2)的结论,求蒲草覆盖面积达到320 m2的最小月份.(参考数据:lg2=0.301 0,lg3=0.477 1)【解析】(1)由已知⇒所以y=.由已知⇒所以 y=x2+.(2)若用模型y=,则当x=0时,y1=,若用模型y=x2+,则当x=0时y2=,易知使用模型y=更为合适.(3)由≥320⇒x≥30,故x≥30===≈8.39,故蒲草覆盖面积达到320 m2的最小月份是9月.创新练习1.某商贸公司售卖某种水果.经市场调研可知:在未来20天内,这种水果每箱的销售利润r(单位:元)与时间t(1≤t≤20,t∈N,单位:天)之间的函数关系式为r=t+10,且日销售量y(单位:箱)与时间t之间的函数关系式为y=120-2t,(1)第4天的销售利润为________元;(2)在未来的这20天中,公司决定每销售1箱该水果就捐赠m(m∈N*)元给“精准扶贫”对象.为保证销售积极性,要求捐赠之后每天的利润随时间t的增大而增大,则m的最小值是________.【解析】(1)因为t=4时,r=×4+10=11,y=120-2×4=112,所以该天的销售利润为11×112=1 232(元);(2)设捐赠后的利润为W元,则W=y(r-m)=(120-2t),化简可得W=-t2+(2m+10)t+1 200-120m.令W=f(t),因为二次函数的开口向下,对称轴为t=2m+10,由题意,得2m+10≥20,m∈N*,解得m≥5,m∈N*.答案:(1)1 232 (2)52.铅酸电池是一种蓄电池,电极主要由铅及其氧化物制成,电解液是硫酸溶液,这种电池具有电压稳定、价格便宜等优点,在交通、通信、电力、军事、航海、航空等领域有着广泛应用.但是由于在实际生活中使用方法不当,电池能量未被完全使用,导致了能源的浪费,因此准确预测铅酸电池剩余放电时间是使用中急需解决的问题.研究发现,当电池以某恒定电流放电时,电压U关于放电时间t的变化率y满足y=a+(其中a,b为常数,无理数e=2.718 28…)实验数据显示,当时间t的值为0和5时,电压U关于放电时间t的变化率y分别为-2和-752,求a,b的值.【解析】电压U关于放电时间t的变化率y满足y=a+(其中a,b为常数,无理数e=2.718 28…)且当时间t的值为0和5时,电压U关于放电时间t的变化率y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8模块 第3节
[知能演练]
一、选择题
1.圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)的面积被直线y =-x 平分,则
( )
A .D +E =0
B .D -E =0
C .
D 2+
E 2=0
D .D +4
E =0
解析:圆心(-D 2,-E
2)在直线x +y =0上.
答案:A
2.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过点C ,则以C 为圆心,半径为5的圆的方程为
( )
A .x 2
+y 2
-2x +4y =0 B .x 2
+y 2
+2x +4y =0 C .x 2+y 2+2x -4y =0
D .x 2+y 2-2x -4y =0
解析:将已知直线化为y -2=(a -1)(x +1),可知直线恒过定点(-1,2),故所求圆的方程为x 2+y 2+2x -4y =0.
答案:C
3.方程|x |-1=1-(y -1)2所表示的曲线是
( )
A .一个圆
B .两个圆
C .半个圆
D .两个半圆
解析:原方程即⎩
⎪⎨⎪⎧
(|x |-1)2
+(y -1)2
=1.
|x |-1≥0.
即⎩⎪⎨⎪⎧ (x -1)2+(y -1)2=1x ≥1或⎩⎪⎨⎪⎧
(x +1)2+(y -1)2
=1x ≤-1.
故原方程表示两个半圆. 答案:D
4.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB =60°,则动点P 的轨迹方程为
( )
A .x 2+y 2=4
B .x 2+y 2=3
C .x 2+y 2=2
D .x 2+y 2=1
解析:由题设知,在直角△OP A 中,OP 为圆的半径OA 的2倍,即OP =2,∴点P 的轨迹方程为x 2
+y 2
=4.选A.
答案:A 二、填空题
5.过点O (0,0)及P (0,4)且在x 轴上截得的弦长为6的圆的方程是__________. 解析:由题意知所求圆的圆心为(3,2)或(-3,2),半径为13.故圆的方程为(x -3)2
+(y -2)2
=13或(x +3)2
+(y -2)2
=13.
答案:(x -3)2+(y -2)2=13或(x +3)2+(y -2)2=13
6.过点(1,2)的直线l 将圆(x -2)2
+y 2
=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =__________.
解析:∵点(1,2)在圆内,故当劣弧所对的圆心角最小时,直线垂直于过圆心与点(1,2)的直线,因此可知直线l 的斜率为22
. 答案:
22
三、解答题
7.已知直线l 1:4x +y =0,直线l 2:x +y -1=0以及l 2上一点P (3,-2).求圆心C 在l 1上且与直线l 2相切于点P 的圆的方程.
解:设圆心为C (a ,b ),半径为r ,依题意得,b =-4a .
PC ⊥l 2,而直线l 2的斜率k 2=-1,∴过P ,C 两点的直线的斜率k PC =-2-(-4a )
3-a
=1,
解得a =1,b =-4,r =|PC |=2 2. 故所求圆的方程为(x -1)2+(y +4)2=8.
8.已知矩形ABCD 中,C (4,4),点A 在x 2+y 2=9(x >0,y >0)上运动,AB 、AD 分别平行于x 轴、y 轴,求当矩形ABCD 的面积最小时A 点的坐标.
解:本题的实质是:A 在x 2
+y 2
=9(x >0,y >0)上何处时,矩形ABCD 的面积最小,即(4-x )(4-y )的值最小,进而利用换元法转化成二次函数的最值问题.
设A (x ,y ),则矩形ABCD 的面积为S =(4-x )(4-y )=16-4(x +y )+xy ,① 令t =x +y ,则t >0且t 2=x 2+y 2+2xy =9+2xy .
所以①式化为S =16-4t +12(t 2-9)=12t -4)2+72,当且仅当t =4时,S min =7
2.
此时⎩⎪⎨⎪

x +y =4xy =7
2,解得⎩
⎨⎧
x =2-2
2y =2+22
或⎩⎨

x =2+22y =2-2
2
.
即A 点的坐标为(2-
22,2+22)或(2+22,2-2
2
)时,矩形ABCD 的面积最小. [高考·模拟·预测]
1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是
( )
A .x 2+(y -2)2=1
B .x 2+(y +2)2=1
C .(x -1)2
+(y -3)2
=1
D .x 2
+(y -3)2
=1
解析:由题意知圆心坐标为(0,2),故选A. 答案:A
2.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为
( )
A .(x +1)2+(y -1)2=2
B .(x -1)2+(y +1)2=2
C .(x -1)2
+(y -1)2
=2 D .(x +1)2+(y +1)2=2
解析:∵圆C 与两条直线x -y =0和x -y -4=0都相切,∴圆心C 在直线x -y -2=0上,又圆心在直线x +y =0上,∴圆心坐标为(1,-1).故选B.
答案:B
3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2
的方程为
( )
A .(x +2)2+(y -2)2=1
B .(x -2)2+(y +2)2=1
C .(x +2)2+(y +2)2=1
D .(x -2)2
+(y -2)2
=1
解析:圆心C 1(-1,1)关于直线x -y -1=0的对称点为(2,-2),故选B. 答案:B
4.直线ax +by =1过点A (b ,a ),则以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是__________.
解析:直线过点A (b ,a ),∴ab =12,圆面积S =πr 2=π(a 2+b 2
)≥2πab =π.
答案:π
5.定义:若平面点集A 中的任一个点(x 0,y 0),总存在正实数r ,使得集合{(x ,y )|(x -x 0)2+(y -y 0)2<r }⊆A ,则称A 为一个开集.给出下列集合:
①{(x ,y )|x 2+y 2=1}; ②{(x ,y )|x +y +2>0}; ③{(x ,y )||x +y |≤6}; ④{(x ,y )|0<x 2+(y -2)2<1}.
其中是开集的是________.(请写出所有符合条件的序号)
解析:集合{(x ,y )|(x -x 0)2
+(y -y 0)2
<r }表示以(x 0,y 0)为圆心,以r 为半径的圆面(不包括圆周.)
由开集的定义知,集合A 应该无边界,故由①②③④表示的图形知,只有②④符合题意.
答案:②④
6.已知以点C (t ,2
t )(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,
其中O 为原点.
(1)求证:△OAB 的面积为定值;
(2)设直线y =-2x +4与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程. (1)证明:∵圆C 过原点O ,∴OC 2=t 2
+4t 2.
设圆C 的方程是(x -t )2+(y -2t )2=t 2+4
t 2,
令x =0,得y 1=0,y 2=4
t ;
令y =0,得x 1=0,x 2=2t ,
∴S △OAB =12OA ×OB =12×|4
t |×|2t |=4,
即△OAB 的面积为定值. (2)解:∵OM =ON ,CM =CN , ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =1
2.
∴直线OC 的方程是y =1
2x .
∴2t =1
2
t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =
15<5,
圆C 与直线y =-2x +4相交于两点.
当t =-2时,圆心C 的坐标为(-2,-1),OC =5,
此时C到直线y=-2x+4的距离d=9
5
> 5.
圆C与直线y=-2x+4不相交,
∴t=-2不符合题意,舍去.
∴圆C的方程为(x-2)2+(y-1)2=5.。

相关文档
最新文档