2008年全国中考数学压轴题精选精析(一)

合集下载

2008年中考数学压轴题精选(二次函数)(16题)_附详细解答和评分标准2008年中考数学压轴题精选

2008年中考数学压轴题精选(二次函数)(16题)_附详细解答和评分标准2008年中考数学压轴题精选

1.如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且1AB=,OB=ABOC绕点O按顺时针方向旋转60后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线2y ax bx c=++过点A E D,,.(1)判断点E是否在y轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x轴的上方是否存在点P,点Q,使以点O B P Q,,,为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.(3)存在符合条件的点P,点Q.理由如下:矩形ABOC的面积3AB BO==∴以O B P Q,,,为顶点的平行四边形面积为OB为此平行四边形一边,又3OB=OB∴边上的高为2,依题意设点P的坐标为(2)m,点P在抛物线2829y x x=--+上28229m∴-+=解得,1m=,28m=-1(02)P∴,,228P⎛⎫- ⎪⎪⎝⎭以O B P Q,,,为顶点的四边形是平行四边形,PQ OB∴∥,PQ OB==∴当点1P的坐标为(02),时,点Q的坐标分别为1(Q,22)Q;x第26题图当点2P 的坐标为5328⎛⎫-⎪ ⎪⎝⎭,时,点Q 的坐标分别为313328Q ⎛⎫- ⎪ ⎪⎝⎭,,43328Q ⎛⎫⎪ ⎪⎝⎭,. 14分5、如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.7、(12分)30.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(3)过点N 作NP MB ⊥于点P EO MB ⊥ NP EO ∴∥ BNP BEO ∴△∽△ 7分BN NPBE EO∴= 8分 图14yxOA B MO 1由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP∴=,65NP t ∴= 9分 16(4)25S t t ∴=-2312(04)55S t t t =-+<< 10分2312(2)55S t =--+ 11分此抛物线开口向下,∴当2t =时,125S =最大 ∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. 12分 11、抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 解:⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB .由⑵知,AB =4,∴|x|=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分②当以AB 为对角线时,点M 在x 轴下方. 过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO.∵OB =3,∴0N =3-1=2.∴点M的坐标为(2,M . ……………………………12分综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.12、(08四川达州23题)如图,将AOB △置于平面直角坐标系中,其中点O 为坐标原点,点A 的坐标为(30),,60ABO ∠=.(1)若AOB △的外接圆与y 轴交于点D ,求D 点坐标.(2)若点C 的坐标为(10)-,,试猜想过D C ,的直线与AOB △的外接圆的位置关系,并加以说明.(3)二次函数的图象经过点O 和A 求此函数的解析式.(3)依题意可设二次函数的解析式为 : y=α(x -0)(x -3)由此得顶点坐标的横坐标为:x=a a 23-=23; 即顶点在OA 的垂直平分线上,作OA 的垂直平分线EF ,则得∠EFA =21∠B =300得到EF =3EA =323 可得一个顶点坐标为(23,323) 同理可得另一个顶点坐标为(23,321-) 分别将两顶点代入y=α(x -0)(x -3)可解得α的值分别为332-,932则得到二次函数的解析式是y=332-x(x -3)或y=932 x(x -3)14、(08甘肃兰州28题)(本题满分12分)如图19-1,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,5OA =,4OC =.(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D E,两点的坐标;(2)如图19-2,若AE 上有一动点P (不与A E ,重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒(05t <<),过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少?(3)在(2)的条件下,当t 为何值时,以A M E ,,为顶点的三角形为等腰三角形,并求出相应的时刻点M 的坐标.(08甘肃兰州28题解析)(本题满分12分) 解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴, ∴在Rt ABE △中,5AE AO ==,4AB =.3BE ∴=.2CE ∴=.E ∴点坐标为(2,4). 2分 在Rt DCE △中,222DC CE DE +=, 又DE OD =.222(4)2OD OD ∴-+= . 解得:52CD =. D ∴点坐标为502⎛⎫⎪⎝⎭, 3分(2)如图①PM ED ∥,APM AED ∴△∽△. PM AP ED AE ∴=,又知AP t =,52ED =,5AE = 5522t tPM ∴=⨯=, 又5PE t =-.而显然四边形PMNE 为矩形.215(5)222PMNE t S PM PE t t t ∴==⨯-=-+矩形 5分21525228PMNES t ⎛⎫∴=--+ ⎪⎝⎭四边形,又5052<<∴当52t =时,PMNE S 矩形有最大值258. 6分 (3)(i )若以AE 为等腰三角形的底,则ME MA =(如图①) 在Rt AED △中,ME MA =,PM AE ⊥,P ∴为AE 的中点,1522t AP AE ∴===.又PM ED ∥,M ∴为AD 的中点.过点M 作MF OA ⊥,垂足为F ,则MF 是OAD △的中位线,1524MF OD ∴==,1522OF OA ==,∴当52t =时,5052⎛⎫<< ⎪⎝⎭,AME △为等腰三角形.此时M 点坐标为5524⎛⎫ ⎪⎝⎭,. 8分(ii)若以AE 为等腰三角形的腰,则5AMAE ==(如图②)在Rt AOD △中,AD ===过点M 作MF OA ⊥,垂足为F .PM ED ∥,APM AED ∴△∽△.AP AMAE AD∴=. 555AMAE t AP AD ⨯∴====12PM t ∴==.MF MP ∴==5OF OA AF OA AP =-=-=-∴当t =(05<<),此时M 点坐标为(5-.11分综合(i )(ii )可知,52t =或t =A M E ,,为顶点的三角形为等腰三角形,相应M 点的坐标为5524⎛⎫ ⎪⎝⎭,或(5-.12分。

2008年全国中考数学压轴题精选1含答案(修)

2008年全国中考数学压轴题精选1含答案(修)

2008年全国中考数学压轴题精选(一)1(08福建莆田26题)(14分)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。

(注:抛物线2y ax bx c =++的对称轴为2b x a=-)(08福建莆田26题解析)(1)解法一:设抛物线的解析式为y = a (x +3 )(x - 4) 因为B (0,4)在抛物线上,所以4 = a ( 0 + 3 ) ( 0 - 4 )解得a= -1/3 所以抛物线解析式为2111(3)(4)4333y x x x x =-+-=-++ 解法二:设抛物线的解析式为2(0)y ax bx c a =++≠,依题意得:c=4且934016440a b a b -+=⎧⎨++=⎩ 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩所以 所求的抛物线的解析式为211433y x x =-++(2)连接DQ ,在Rt △AOB中,5AB ==所以AD=AB= 5,AC=AD+CD=3 + 4 = 7,CD = AC - AD = 7 – 5 = 2因为BD 垂直平分PQ ,所以PD=QD ,PQ ⊥BD ,所以∠PDB=∠QDB 因为AD=AB ,所以∠ABD=∠ADB ,∠ABD=∠QDB ,所以DQ ∥AB 所以∠CQD=∠CBA 。

∠CDQ=∠CAB ,所以△CDQ ∽ △CABDQ CD AB CA = 即210,577DQ DQ == 所以AP=AD – DP = AD – DQ=5 –107=257 ,2525177t =÷=所以t 的值是257(3)答对称轴上存在一点M ,使MQ+MC 的值最小 理由:因为抛物线的对称轴为122b x a =-= 所以A (- 3,0),C (4,0)两点关于直线12x =对称 连接AQ 交直线12x =于点M ,则MQ+MC 的值最小 过点Q 作QE ⊥x 轴,于E ,所以∠QED=∠BOA=900 DQ ∥AB ,∠ BAO=∠QDE , △DQE ∽△ABOQE DQ DE BO AB AO == 即 107453QE DE== 所以QE=87,DE=67,所以OE = OD + DE=2+67=207,所以Q (207,87)设直线AQ 的解析式为(0)y kx m k =+≠则2087730k m k m ⎧+=⎪⎨⎪-+=⎩ 由此得 8412441k m ⎧=⎪⎪⎨⎪=⎪⎩ 所以直线AQ 的解析式为8244141y x =+ 联立128244141x y x ⎧=⎪⎪⎨⎪=+⎪⎩由此得128244141x y x ⎧=⎪⎪⎨⎪=+⎪⎩ 所以M 128(,)241 则:在对称轴上存在点M 128(,)241,使MQ+MC 的值最小。

2008年全国中考数学压轴题精选(9)(含答案)

2008年全国中考数学压轴题精选(9)(含答案)

2008年全国中考数学压轴题精选(九)81.(08广东茂名25题)(本题满分10分)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5. (1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解:(08广东茂名25题解析)解:(1)解法一: ∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ·········································································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=49b 2-24 ∴49b 2-24=25 解得b =±314···················································································································· 3分当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b =-314. ··················································································································· 4分 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3bx +12=0的两个根.(第25题图)x∴x =4969b 32-±b , ·················································································· 2分∴x 2-x 1=2969b 2-=5,解得 b =±314 ········································································································ 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上,································································································································ 5分又∵y =-32x 2-314x -4=-32(x +27)2+625····································· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ·········································· 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ·································································· 8分 ∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ··················· 9分四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ·················································································· 10分82.(08广东肇庆25题)(本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.(08广东肇庆25题解析)(本小题满分10分)解:(1)由5x x 122+=0, ····················································································· (1分)得01=x ,5122-=x . ························································································· (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ·········································· (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ································· (4分)分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ························································ (5分) =22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ······································· (6分)=5(个单位面积) ·············································································· (7分)(3)如:)(3123y y y -=. ················································································ (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a . 3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ·············· (9分) ∴)(3123y y y -=. ··························································································· (10分)83.(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.(08辽宁沈阳26题解析)解:(1)点E 在y 轴上 ························································ 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠=由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ··············································································· 3分 (2)过点D 作DM x ⊥轴于点M第26题图1OD = ,30DOM ∠=∴在Rt DOM △中,12DM =,OM = 点D 在第一象限,∴点D的坐标为122⎛⎫ ⎪ ⎪⎝⎭, ·································································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ···································································································· 6分 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫⎪ ⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧-+=⎪⎨++=⎪⎩解得899a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:2829y x x =-+ ····························································· 9分 (3)存在符合条件的点P ,点Q . ················································································ 10分 理由如下: 矩形ABOC的面积AB BO == ∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边,又OB =OB ∴边上的高为2 ··········································································································· 11分依题意设点P 的坐标为(2)m ,点P在抛物线2829y x x =-+上282299m m ∴--+=解得,10m =,28m =-1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB ==∴当点1P 的坐标为(02),时, 点Q的坐标分别为1(Q,2Q ; 当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ···················································· 14分84.(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y =x 轴交于点A ,与y 轴交于点C,抛物线2(0)y ax x c a =+≠经过A B C ,,三点.(1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.(08辽宁12市26题解析)解:(1)直线y =x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C ································································································· 1分 点A C ,都在抛物线上,0a c c⎧=⎪∴⎨⎪=⎩a c ⎧=⎪∴⎨⎪=⎩xx∴抛物线的解析式为233y x x =-······························································ 3分 ∴顶点13F ⎛- ⎝⎭, ······································································································· 4分 (2)存在 ························································································································· 5分1(0P ······················································································································· 7分2(2P ······················································································································ 9分 (3)存在 ······················································································································· 10分理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ····························································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线2y x =(30)B ∴,在Rt BOC △中,tan 3OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12B H BB ''==6BH H '=,3OH ∴=,(3B '∴--, ···················································· 12分 设直线B F '的解析式为y kx b =+3k b k b ⎧-=-+⎪∴⎨=+⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y x ∴=········································································································ 13分y y x ⎧=⎪∴⎨=⎪⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩3177M ⎛∴- ⎝⎭,x∴在直线AC 上存在点M ,使得MBF △的周长最小,此时37M ⎛ ⎝⎭,. ··· 14分 解法二:过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. ························································ 11分过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.90BOC FGH ∴∠=∠= ,BCO FHG ∠=∠ HFG CBO ∴∠=∠同方法一可求得(30)B ,.在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,可求得GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,AC ∴垂直平分FH .即点H 为点F 关于AC的对称点.0H ⎛∴- ⎝⎭, ················································· 12分设直线BH 的解析式为y kx b =+,由题意得03k b b =+⎧⎪⎨=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y ∴=········································································································ 13分y y ⎧=⎪∴⎨⎪=⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴- ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛- ⎝⎭,. ··· 14分85.(08内蒙古赤峰25题)(本题满分14分)在平面直角坐标系中给定以下五个点17(30)(14)(03)(10)24A B C D E ⎛⎫-- ⎪⎝⎭,,,,,,,,,. (1)请从五点中任选三点,求一条以平行于y 轴的直线为对称轴的抛物线的解析式;x(2)求该抛物线的顶点坐标和对称轴,并画出草图;(3)已知点1514F ⎛⎫- ⎪⎝⎭,在抛物线的对称轴上,直线174y =过点1714G ⎛⎫- ⎪⎝⎭,且垂直于对称轴.验证:以(10)E ,为圆心,EF 为半径的圆与直线174y =相切.请你进一步验证,以抛物线上的点1724D ⎛⎫ ⎪⎝⎭,为圆心DF 为半径的圆也与直线174y =相切.由此你能猜想到怎样的结论. (08内蒙古赤峰25题解析)25.解:(1)设抛物线的解析式为2y ax bx c =++,且过点(30)(03)(10)A C E -,,,,,, 由(03),在2y ax bx c =++H . 则3c =. ················································································································· (2分)得方程组93300a b a b c -+=⎧⎨++=⎩,解得12a b =-=-,. ∴抛物线的解析式为223y x x =--+ ··················(4分) (2)由2223(1)4y x x x =--+=-++ ··············(6分)得顶点坐标为(14)-,,对称轴为1x =-.············(8分)(3)①连结EF ,过点E 作直线174y =的垂线,垂足为N , 则174EN HG ==. 在Rt FHE △中,2HE =,154HF =,174EF ∴==, EF EN ∴=,∴以E 点为圆心,EF 为半径的E 与直线174y =相切. ······························· (10分) ②连结DF 过点D 作直线174y =的垂线,垂足为M .过点D 作DQ GH ⊥垂足为Q , 则1771054442DM QG ==-==.xx在Rt FQD △中,32QD =,15782444QF =-==.52FD ==. ∴以D 点为圆心DF 为半径的D 与直线174y =相切. ·································· (12分) ③以抛物线上任意一点P 为圆心,以PF 为半径的圆与直线174y =相切. ····· (14分)86.(08青海西宁28题)如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点. (1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(08青海西宁28题解析)解:(1) 圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分 二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩······················································································· 2分 解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ················································· 3分 (2)过点M 作MF x ⊥轴,垂足为F . ····································································· 4分OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径).在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠ 为锐角,130OOM ∴∠= ······························ 5分1cos302OM OO ∴===在Rt MOF △中,3cos302OF OM ===. 图14。

2008年中考试题压轴题精选讲座一-几何与函数问题

2008年中考试题压轴题精选讲座一-几何与函数问题

2008年中考试题压轴题精选讲座一-几何与函数问题“他山之石可以攻玉”【编者的话】新课改后的中考数学压轴题已从传统的考察知识点多、难度大、复杂程度高的综合题型,逐步转向数形结合、动态几何、动手操作、实验探究等方向发展。

这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等。

从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等。

但纵观全国各省、市的中考数学试题,它的压轴题均是借鉴于上年各地的中考试题演变而来。

所以,研究上年各地的中考试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向。

只的这样,学生能力得以的培养,解题方法、技巧得以掌握,学生才能顺利地解答未来中考的压轴题。

2008年全国各地中考试题压轴题精选讲座一几何与函数问题【知识纵横】- 2 -- 3 -客观世界中事物总是相互关联、相互制约的。

几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。

函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。

【典型例题】【例1】(上海市)已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长;(3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求 线段BE 的长.【思路点拨】(1)取AB 中点H ,联结MH ;(2)先求出 DE; (3)分二种情况讨论。

2008年全国中考数学压轴题精选精析(一)

2008年全国中考数学压轴题精选精析(一)

2008年全国中考数学压轴题精选精析(一)1.(08广东中山22题)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD .(1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形). (3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.(08广东中山22题解析)解:(1)1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对)②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对) ③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对)所以,一共有9对相似三角形.…………………………………………5分(3)由题意知,FP ∥AE , ∴ ∠1=∠PFB , 又∵ ∠1=∠2=30°, ∴ ∠PFB =∠2=30°,∴ FP =BP (6)过点P 作PK ⊥FB 于点K ,则F K B K =∵ AF =t ,AB =8, ∴ FB =8-t ,1(8)2B K t =-.在Rt △BPK 中,1tan 2(8)tan 30)26PK BK t t =⋅∠=-︒=-. ……………………7分∴ △FBP 的面积11(8)(8)226S FB PK t t =⋅⋅=⋅-⋅-,∴ S 与t 之间的函数关系式为:DCBE图9图1028)12S t =-,或24123S t =-+…………………………………8分t 的取值范围为:08t ≤<. …………………………………………………………9分2.(08湖北十堰25题)已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.(08湖北十堰25题解析)解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC ,∵点A 、B 的坐标分别是A(-1,0)、B (3,0), ∴AB =4.∴.AB PC 242121=⨯==在Rt △POC 中,∵OP =PA -OA =2-1=1, ∴.POPCOC 3122222=-=-=∴b =.3 ………………………………3分 当01=-=,y x 时,,a a 032=+--∴.a 33= ………………………………4分∴.x x y 3332332++-= ………………5分⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB .由⑵知,AB =4,∴|x|=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分.②当以AB 为对角线时,点M 在x 轴下方. 过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°. ∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO . ∵OB =3,∴0N =3-1=2.∴点M 的坐标为(2,M . ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。

2008年数学中考试题分类汇编(压轴题)

2008年数学中考试题分类汇编(压轴题)

2008年数学中考试题分类汇编压轴题(2008年芜湖市)如图,已知 (4,0)A ,(0,4)B ,现以A 点为位似中心,相似比为9:4,将OB 向右侧放大,B 点的对应点为C . (1) 求C 点坐标及直线BC 的解析式;(2) 一抛物线经过B 、C 两点,且顶点落在x 轴正半轴上,求该抛物线的解析式并画出函数图象;(3) 现将直线BC 绕B 点旋转与抛物线相交与另一点P ,请找出抛物线上所有满足到直线AB距离为P .河北 周建杰 分类(2008年泰州市)29.已知二次函数y 1=ax 2+bx +c (a ≠0)的图像经过三点(1,0),(-3,0),(0,-23). (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分) (2)若反比例函数y 2=x2(x >0)的图像与二次函数y 1=ax 2+bx +c (a ≠0)的图像在第一象限内交于点A (x 0,y 0),x 0落在两个相邻的正整数之间,请你观察图像,写出这两个相邻的正整数;(4分) (3)若反比例函数y 2=xk(x >0,k >0)的图像与二次函数y 1=ax 2+bx +c (a ≠0)的图像在第一象限内的交点A ,点A 的横坐标x 0满足2<x 0<3,试求实数k 的取值范围.(5分)(2008年南京市)28.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(2008年巴中市)已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?第29题图(第28题)y(2008年自贡市)抛物线)0(2≠++=a c bx ax y 的顶点为M ,与x 轴的交点为A 、B (点B 在点A 的右侧),△ABM 的三个内角∠M 、∠A 、∠B 所对的边分别为m 、a 、b 。

2008年中考精品:数学压轴题汇编(含解题过程,共69页)

2008年中考精品:数学压轴题汇编(含解题过程,共69页)

如图,二次函数m x mx y +++=)14(412(m <4)的图象与x 轴相交于点A 、B 两点. (1)求点A 、B 的坐标(可用含字母m 的代数式表示); (2)如果这个二次函数的图象与反比例函数xy 9=的图象相交于点C ,且 ∠BAC 的余弦值为4,求这个二次函数的解析式.解:(1)当时0=y ,0)14(412=+++m x mx ,………………………………(1分) 04)4(2=+++m x m x ,m x x -=-=21,4.……………………………(2分)∵4<m ,∴A (–4,0),B (m -,0)………………………………(4分) (2) 过点C 作CD ⊥x 轴,垂足为D ,cos ∠BAC 54==AC AD ,设AD =4k ,AC =5k , 则CD =3k . ……………………(5分) ∵OA =4,∴OD =4k –4, 点C (4k –4,3k ) . …………………………………(6分)∵点C 在反比例函数x y 9=的图象上,∴4493-=k k . ………………(7分) ,03442=--k k 23),(2121=-=k k 舍去. ……………………………(8分)∴C (2,29).……………………(1分) ∵点C 在二次函数的图象上,∴m m+++⨯=)14(2241292,………(1分) ∴,1=m ………………(10分) ∴二次函数的解析式为145412++=x x y . ……………………………(12分)如图,直角梯形ABCD 中,AD ∥BC ,∠A =90o ,∠C =60°,AD =3cm ,BC =9cm .⊙O 1的圆心O 1从点A 开始沿折线A —D —C 以1cm/s 的速度向点C 运动,⊙O 2的圆心O 2从点B 开始沿BA 边以3cm/s 的速度向点A 运动,⊙O 1半径为2cm ,⊙O 2的半径为4cm ,若O 1、O 2分别从点A 、点B 同时出发,运动的时间为t s(1)请求出⊙O 2与腰CD 相切时t 的值;(2)在0s <t ≤3s 范围内,当t 为何值时,⊙O 1与⊙O 2外切?解:(1)如图所示,设点O 2运动到点E 处时,⊙O 2与腰CD 相切. 过点E 作EF ⊥DC ,垂足为F ,则EF =4cm .………………1分 方法一,作EG ∥BC ,交DC 于G ,作GH ⊥BC ,垂足为H . 通过解直角三角形,求得EB =GH =3)3389(⨯-cm .………………4分 所以t =(3389-)秒.………………6分 方法二,延长EA 、FD 交于点P .通过相似三角形,也可求出EB 长. 方法三,连结ED 、EC ,根据面积关系,列出含有t 的方程,直接求t . (2)由于0s<t ≤3s ,所以,点O 1在边AD 上.………………7分 如图所示,连结O 1O 2,则O 1O 2=6cm .………………8分由勾股定理得,2226)336(=-+t t ,即01892=+-t t .………………10分 解得t 1=3,t 2=6(不合题意,舍去).………………12分(第26题)所以,经过3秒,⊙O 1与⊙O 2外切.………………14分3.(本题满分12分)正方形ABCD 的边长为4,P 是BC 上一动点,QP ⊥AP 交DC 于Q ,设PB =x ,△ADQ 的面积为y .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积,若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标.(3)画出这个函数的图象.(4)点P 是否存在这样的位置,使△APB 的面积是△ADQ 的面积的32,若存在,求出BP 的长,若不存在,说明理由.解:(1)画出图形,设QC =z ,由Rt △ABP ~Rt △PCQ ,x -44=z x , z =4)4(x x -,①y =21×4×(4-z ),② 第25题图(1)把①代入② y=21x 2-2x +8(0<x <4). B B26(2)y=21x 2-2x +8=21(x -2)2+6. ∴对称轴为x =2,顶点坐标为(2,6).(3)如图所示 第25题图(2) (4)存在,由S △APB =32S △ADQ ,可得y =3x , ∴21x 2—2x +8=3x , ∴x =2,x =8(舍去),∴当P 为BC 的中点时,△P AB 的面积等于△ADQ 的面积的32.4.(14分)函数y =-43x -12的图象分别交x 轴,y 轴于A ,C 两点, (1)求出A 、C 两点的坐标.(2)在x 轴上找出点B ,使△ACB~△AOC ,若抛物线经过A 、B 、C 三点,求出抛物线的解析式.(3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同的速度沿AC 、BA 向C 、A 运动,连结PQ ,设AP=m ,是否存在m 值,使以A 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出所有的m 值;若不存在,请说明理由.解.(1)A (-16,0) C (0,-12) ··································································· 2分 (2)过C 作CB ⊥AC ,交x 轴于点B ,显然,点B 为所求, ······················ 3分 则OC2=OA ×OB 此时OB=9,可求得B (9,0) ·········································· 5分 此时经过A ,B ,C 三点的抛物线的解析式为:y=121x2+127x-12 ·································································································· 8分(3)当PQ ∥BC 时,△APQ ~△ACB ······························································· 9分得AC AP =AB AQ ········································································································ 10分 ∴20m =2525m 解得m=9100 ············································································ 11分当PQ ⊥AB 时,△APQ ~△ACB ········································································· 12分得:AC AQ =AB AP ···································································································· 13分 ∴2025m -=25m 解得m=9125 ········································································ 14分5.(本题满分10分)如图,在直角坐标系中,以点A(3,0)为圆心,以32为半径的圆与x 轴交于B 、C 两点,与y 轴交于D 、E 两点. (1)求D 点坐标.(2)若B 、C 、D 三点在抛物线c bx ax y ++=2上,求这个抛物线的解析式.(3)若⊙A 的切线交x 轴正半轴于点M ,交y 轴负半轴于点N ,切点为P ,∠OMN=30º,试判断直线MN 是否经过所求抛物线的顶点?说明理由.解:(1)连结AD ,得OA=3,AD=23 ……………………1分 ∴OD =3, D(0,-3) ………………………………………………2分(2)由B (-3,0),C (33,0),D (0,-3)三点在抛物线c bx ax y ++=2上,……3分得 ⎪⎩⎪⎨⎧=-++=+-=c c b a c b a 333270330 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==333231c b a ………………………………5分∴3332312--=x x y …………………………………………………………6分 (3)连结AP ,在Rt △APM 中,∠PMA==30º,AP=23 ∴AM =43, M (53,0) …………………………7分5333530tan =⋅=︒⋅=MO ONxx∴N (0,-5) ……………………………………………8分 直线MN 解析式为:533-=x y 抛物线顶点坐标为(3,-4) ………………………………9分∵45333533-=-⨯=-x ∴抛物线顶点在直线MN 上. ……………………………10分6、(12分)如图3.以A(0,3)为圆心的圆与x 轴相切于坐标点O,与y 轴相交于点B,弦BD 的延长线交x 轴的负半轴于点E, 且∠BEO = 600 , AD 的延长线交x 轴于点C. (1)分别求点E, C 的坐标.(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式.(3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心, ME 为半径的圆与☉A 的位置关系,并说明理由.7、一个圆柱的一条母线为AB,BC 是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的表面爬行到点C .⑴如图①,如果底面周长为24cm,高为4cm,那么蚂蚁的最短行程是多少cm?⑵如图②,如果底面半径为rcm,高为hcm,那么你认为蚂蚁可能有哪几种行程较短的路径?试画出平面展开图说明路径(至少画两种不同的路径),不必说明理由.⑶通过计算比较②中各种路径的长度,你能得到什么一般性的结论?或者说,蚂蚁选择哪条路径可使行程最短?BB8、(12分)某企业有员工300人,生产A 种产品,平均每人每年可创造利润m 万元(m 为大于零的常数)。

2008年江苏省中考数学压轴题精选(含答案)

2008年江苏省中考数学压轴题精选(含答案)

2008年江苏省中考数学压轴题精选精析1(08江苏常州28题)(答案暂缺)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O ,得到直线l ,设P 是直线l 上一动点。

(1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S ,点P 的横坐标为x,当462682S +≤≤+时,求x的取值范围.2(08江苏淮安28题)(答案暂缺)28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2—1图象的顶点为P ,与x 轴交点为 A 、B,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;(2)连结AP,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标;(3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.(第28题)ly x-1-2-4-3-1-2-4-312435123(第24题图)3(08江苏连云港24题)(本小题满分14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,.(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.(08江苏连云港24题解析)解:(1)由直角三角形纸板的两直角边的长为1和2, 知A C ,两点的坐标分别为(12)(21),,,.设直线AC 所对应的函数关系式为y kx b =+. ············ 2分有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,.所以,直线AC 所对应的函数关系式为3y x =-+. ·········· 4分 (2)①点M 到x 轴距离h 与线段BH 的长总相等. 因为点C 的坐标为(21),,所以,直线OC 所对应的函数关系式为12y x =. 又因为点P 在直线AC 上,所以可设点P 的坐标为(3)a a -,. 过点M 作x 轴的垂线,设垂足为点K ,则有MK h =因为点M 在直线OC 上,所以有(2)M h h ,. ··· 6分 因为纸板为平行移动,故有EF OB ∥,即EF GH ∥.又EF PF ⊥,所以PH GH ⊥.法一:故Rt Rt Rt MKG PHG PFE △∽△∽△,(第24题答图)从而有12GK GH EF MK PH PF ===. 得1122GK MK h ==,11(3)22GH PH a ==-.所以13222OG OK GK h h h =-=-=.又有13(3)(1)22OG OH GH a a a =-=--=-. ············ 8分所以33(1)22h a =-,得1h a =-,而1BH OH OB a =-=-,从而总有h BH =. ······················· 10分法二:故Rt Rt PHG PFE △∽△,可得12GH EF PH PF =-.故11(3)22GH PH a ==-.所以13(3)(1)22OG OH GH a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫- ⎪⎝⎭,. 设直线PG 所对应的函数关系式为y cx d =+,则有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩ 所以,直线PG 所对的函数关系式为2(33)y x a =+-. ········· 8分 将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-.而1BH OH OB a --=-,从而总有h BH =. ············ 10分②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫ ⎪⎝⎭,.ONH ONG S S S =-△△1111133(1)222222a NH OH OG h a a a -=⨯-⨯=⨯⨯-⨯⨯- 22133133224228a a a ⎛⎫=-+-=--+ ⎪⎝⎭. ··············· 12分当32a =时,S 有最大值,最大值为38. S 取最大值时点P 的坐标为3322⎛⎫⎪⎝⎭,. ··············· 14分4(08江苏南京28题)(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决 (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(08江苏南京28题解析)28.(本题10分) 解:(1)900; ··························· 1分 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. ··· 2分 (3)由图象可知,慢车12h 行驶的路程为900km,所以慢车的速度为90075(km /h)12=; ················3分 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . ·············4分 (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩,所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-. ·· 6分自变量x 的取值范围是46x ≤≤. ················· 7分(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . ·· 10分(第28题)y5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年全国中考数学压轴题精选精析(一)1.(08广东中山22题)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD . (1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形). (3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.(08广东中山22题解析)解:(1)1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对)②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对) ③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对)所以,一共有9对相似三角形.…………………………………………5分(3)由题意知,FP ∥AE , ∴ ∠1=∠PFB ,又∵ ∠1=∠2=30°,∴ ∠PFB =∠2=30°,∴ FP =BP (6)过点P 作PK ⊥FB 于点K ,则FK BK =∵ AF =t ,AB =8,∴ FB =8-t ,1(8)2BK t =-.在Rt △BPK 中,1tan 2(8)tan 30)2PK BK t t =⋅∠=-︒=-. ……………………7分 ∴ △FBP 的面积11(8))22S FB PK t t =⋅⋅=⋅--, ∴ S 与t 之间的函数关系式为:DCBE图9图1028)12S t =-,或24123S t =-+…………………………………8分 t 的取值范围为:08t ≤<. …………………………………………………………9分2.(08湖北十堰25题)已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.(08湖北十堰25题解析)解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC ,∵点A 、B 的坐标分别是A(-1,0)、B (3,0),∴AB =4.∴.AB PC 242121=⨯==在Rt △POC 中,∵OP =PA -OA =2-1=1, ∴.PO PC OC 3122222=-=-=∴b =.3 ………………………………3分 当01=-=,y x 时,,a a 032=+--∴.a 33=………………………………4分 ∴.x x y 3332332++-= ………………5分 ⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB .由⑵知,AB =4,∴|x|=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分.②当以AB 为对角线时,点M 在x 轴下方. 过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO ∵OB =3,∴0N =3-1=2.∴点M 的坐标为(2,M . ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。

3.(08江苏连云港)24.(本小题满分14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分(第24题图) 别交于点G H ,.(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究: ①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.(08江苏连云港24题解析)24.解:(1)由直角三角形纸板的两直角边的长为1和2,知A C ,两点的坐标分别为(12)(21),,,. 设直线AC 所对应的函数关系式为y kx b =+. ²²²²²²²²²²²²²²²²² 2分有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,.所以,直线AC 所对应的函数关系式为3y x =-+. ²²²²²²²²²²²²²²² 4分 (2)①点M 到x 轴距离h 与线段BH 的长总相等.因为点C 的坐标为(21),, 所以,直线OC 所对应的函数关系式为12y x =.又因为点P 在直线AC 上,所以可设点P 的坐标为(3)a a -,. 过点M 作x 轴的垂线,设垂足为点K ,则有MK h =.(第24题答图)因为点M 在直线OC 上,所以有(2)M h h ,. ²²²²²² 6分 因为纸板为平行移动,故有EF OB ∥,即EF GH ∥. 又EF PF ⊥,所以PH GH ⊥.法一:故Rt Rt Rt MKG PHG PFE △∽△∽△,从而有12GK GH EF MK PH PF ===. 得1122GK MK h ==,11(3)22GH PH a ==-.所以13222OG OK GK h h h=-=-=. 又有13(3)(1)22OG OH GH a a a =-=--=-. ²²²²²²²²²²²²²²² 8分 所以33(1)22h a =-,得1h a =-,而1BH OH OB a =-=-,从而总有h BH =. ²²²²²²²²²²²²²²²²²²²²²²²²²²²² 10分法二:故Rt Rt PHG PFE △∽△,可得12GH EF PH PF =-. 故11(3)22GH PH a ==-.所以13(3)(1)22OG OH GH a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫- ⎪⎝⎭,. 设直线PG 所对应的函数关系式为y cx d =+,则有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩所以,直线PG 所对的函数关系式为2(33)y x a =+-. ²²²²²²²²²²²²² 8分将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-.而1BH OH OB a --=-,从而总有h BH =. ²²²²²²²²²²²²²²² 10分②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫ ⎪⎝⎭,.ONH ONGS S S =-△△1111133(1)222222a NH OH OG h a a a -=⨯-⨯=⨯⨯-⨯⨯-22133133224228a a a ⎛⎫=-+-=--+⎪⎝⎭. ²²²²²²²²²²²²²²²²²²² 12分当32a =时,S 有最大值,最大值为38.S 取最大值时点P 的坐标为3322⎛⎫ ⎪⎝⎭,. ²²²²²²²²²²²²²²²²²²²² 14分4.(08江苏连云港)25.(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);(3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.(08江苏连云港25题解析)25.解:(1)如图所示: ²²²²²²²²²²²²² 4分A AB B CC 80 100 (第25题图1)E F(第25题图2)(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分)(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; ²²²²²²²²²²² 6分若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²² 8分 (3)此中转站应建在EFH △的外接圆圆心处(线段EF处).²²²²²²²²²²²²²²²²²²²² 10分理由如下: 由47.835.182.9HEF HEG GEF ∠=∠+∠=+=, 50.0EHF ∠= ,47.1EFH ∠=,故EFH △是锐角三角形,所以其最小覆盖圆为EFH △的外接圆,设此外接圆为O ,直线EG 与O 交于点E M ,,则50.053.8EMF EHF EGF ∠=∠=<=∠.故点G 在O 内,从而O 也是四边形EFGH 的最小覆盖圆. 所以中转站建在EFH △的外接圆圆心处,能够符合题中要求.²²²²²²²²²²²²²²²²²²²²²²²² 12分5.(08江苏南京)28.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(第25题答图1) EF(第25题答图2)(第28题)y(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(08江苏南京28题解析)28.(本题10分)解:(1)900; ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²² 1分 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. ²²²²²²² 2分 (3)由图象可知,慢车12h 行驶的路程为900km ,所以慢车的速度为90075(km /h)12=; ²²²²²²²²²²²²²²²²²²²² 3分当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . ²²²²²²²²²²²²²²² 4分(4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得 044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩,所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-. ²²²²²² 6分 自变量x 的取值范围是46x ≤≤. ²²²²²²²²²²²²²²²²²²²²²² 7分 (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . ²²²²²²² 10分6.(08江苏南通)(第28题14分)28.已知双曲线k y x =与直线14y x=相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线k y x =上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x =于点E ,交BD 于点C .(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.(08江苏南通28题解析)28.解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x=中,得y =-2.∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2).从而8216k =⨯=.……………………………………………………………………3分 (2)∵N (0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n ). ……………4分S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k=, ………………7分 ∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分由直线14y x =及双曲线4y x =,得A (4,1),B (-4,-1),∴C (-4,-2),M (2,2).………………………………………………………9分 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==.∴直线CM 的解析式是2233y x =+.………………………………………………11分(第28题)(3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1.设A 点的横坐标为a ,则B 点的横坐标为-a .于是111A M MA a m p MP M O m -===.同理MB m aq MQ m +==,……………………………13分∴2a m m ap q m m -+-=-=-.……………………14分7.(08江苏宿迁)27.(本题满分12分)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动. (1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切; (2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.(08江苏宿迁27题解析)27.解:(1) ∵四边形ABCD 为正方形 ∴CD AD ⊥∵A 、O 、D 在同一条直线上 ∴︒=∠90ODC ∴直线CD 与⊙O 相切;(2)直线CD 与⊙O 相切分两种情况:(第28题)第27题第27题图1①如图1, 设1D 点在第二象限时,过1D 作x E D ⊥11轴于点1E ,设此时的正方形的边长为a ,则2225)1(=+-a a ,解得4=a 或3-=a (舍去). 由BOA Rt ∆∽11OE D Rt ∆ 得OB OD BA E D OA OE 1111==∴54,53111==E D OE ∴)54,53(1-D ,故直线OD的函数关系式为xy 34-=; ②如图2, 设2D 点在第四象限时,过2D 作x E D ⊥22轴于点2E ,设此时的正方形的边长为b ,则2225)1(=++b b ,解得3=b 或4-=b (舍去). 由BOA Rt ∆∽22OE D Rt ∆ 得OB OD BA E D OA OE 2222== ∴53,54222==E D OE ∴)53,54(2-D ,故直线OD 的函数关系式为x y 43-=.(3)设),(0y x D ,则201x y -±=,由)0,5(B 得x x x DB 1026)1()5(22-=-+-=∴x x BD S 513)1026(21212-=-==∵11≤≤-x∴851318513=-==+=最小值最大值,SS .第27题图28.(08江苏泰州)29.已知二次函数)0(21≠++=a c bx ax y 的图象经过三点(1,0),(-3,0),(0,23-)。

相关文档
最新文档