Matlab curve fitting tool的用法
matlab拟合工具箱

Matlab的曲线拟合工具箱CFtool使用简介一、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。
下面结合我使用的Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];》y=[5 10 15 20 25 30 35 40 45 50];2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:∙Custom Equations:用户自定义的函数类型∙Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x)∙Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w)∙Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)∙Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving ∙Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~∙Power:幂逼近,有2种类型,a*x^b 、a*x^b + c∙Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型∙Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)∙Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)∙Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations 线性等式”和“General Equations构造等式”两种标签。
Matlabcurvefittingtool用法图文教程

Matlab curve fitting tool的用法MATLAB拟合工具箱可以方便地拟合一元函数。
我们先来构造一个带有误差的数据:其中噪声Noise服从4倍标准正态分布:然后利用MATLAB拟合工具箱进行拟合。
在命令窗拷入以下代码:% 产生模拟数据x=-6:0.2:6;y=7*sin(x)+x.^2-0.1*exp(x)+4*randn(size(x));% 画出模拟数据曲线,颜色:黑,线宽:2, 标记大小:8,形状:圆圈plot(x,y,'Color','k','LineW',2,'MarkerSize',8,'Marker','o')% 坐标字符大小16set(gca,'FontS',16)% 在规定坐标位置加文字说明text(-2,40,'y=7sin(x)+x^2-0.1e^x+Noise','FontS',16)% 坐标轴显示范围axis([-6 6 -15 50])运行结果:Fig-1拟合步骤如下:1)打开Curve fitting tool: 在命令窗中直接键入 cftool,这时显示出拟合工具窗的GUI:Fig-22)选择Data,在X Data 和 Y Data 中选择数据,必要的话加上权数据,在 D ata set name 框中给你拟合的数据起名(例如 xy),然后按Create data set,则数据在拟合工具窗显现。
Fig-33)按Fitting 键,显示拟合编辑器:Fig-4按Creat data set,我们从数据窗中看到了刚才保存的拟合数据xy。
Fig-5在拟合曲线类型框(Type of fit)中有很多类拟合函数形式,比如选中多项式后,下面的窗口会显示不同次数的多项式选项,比如选择3次多项式(Cubic Pl oynomial)Custom Equations 代表用户自定义函数。
matlab 曲线拟合色温

在MATLAB中进行曲线拟合时,可以使用多种方法来拟合数据并估计参数。
其中,多项式拟合是一种常用的方法,可以使用MATLAB中的polyfit和polyval函数进行多项式拟合和生成拟合后的数据点。
另外,MATLAB 还提供了其他一些曲线拟合函数,如cftool、lsqcurvefit等。
对于色温的拟合,可以使用MATLAB中的曲线拟合工具箱(Curve Fitting Toolbox)来进行。
具体步骤如下:
1. 准备数据:准备需要拟合的色温数据,包括原始色温值和对应的拟合参数。
2. 打开Curve Fitting Toolbox:在MATLAB命令窗口中输入“cftool”命令,打开Curve Fitting
Toolbox。
3. 导入数据:在Curve Fitting Toolbox中,选择“Data”选项卡,点击“Import Data”按钮,将数据
导入到工具箱中。
4. 选择拟合类型:根据实际情况选择拟合类型,可以是多项式拟合、指数拟合、对数拟合等。
5. 进行拟合:点击“Fit”按钮,进行曲线拟合。
拟合结果将显示在工具箱的“Current Fit”选项卡中。
6. 评估拟合结果:可以通过图形或数值方式评估拟合结果,包括残差图、拟合参数等。
7. 应用拟合结果:根据实际情况将拟合结果应用到色温计算中,例如使用拟合参数来计算色温值。
matlab拟合工具箱的使用

matlab拟合工具箱使用2011-06-17 12:531.打开CFTOOL工具箱。
在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。
也可以在命令窗口中直接输入”cftool”,打开工具箱。
2.输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。
输入以后假定叫x向量和y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278;0.041803; 0.038026; 0.038128; 0.088196];3.数据的选取。
打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data 选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。
关闭Data对话框。
此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.曲线拟合(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor 部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。
Matlab曲线拟合(cftool)分布拟合(dfittool)

、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱cftool,使用方便,能实现多种类型的线性、非线性曲线拟合。
下面结合我使用的Matlab R2009b来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是y=A*x*x + B*x,且A>0,B>0。
1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];》y=[5 10 15 20 25 30 35 40 45 50];2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:∙Custom Equations:用户自定义的函数类型∙Exponential:指数逼近,有2种类型,a*exp(b*x)、a*exp(b*x) + c*exp(d*x)∙Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w)∙Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)∙Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving∙Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~∙Power:幂逼近,有2种类型,a*x^b、a*x^b + c∙Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型∙Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)∙Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)∙Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。
matlab指数函数曲线拟合

matlab指数函数曲线拟合在MATLAB中,可以使用曲线拟合工具箱(Curve Fitting Toolbox)来进行指数函数曲线的拟合。
以下是一个简单的示例,演示如何使用MATLAB进行指数函数曲线的拟合。
假设我们有一组数据点(x,y),其中y是关于x的指数函数,即y=aexp(bx)。
首先,需要安装和配置MATLAB的Curve Fitting Toolbox。
然后,可以按照以下步骤进行指数函数曲线的拟合:1、导入数据假设数据存储在一个名为data.txt的文本文件中,每行包含一对x和y值。
在MATLAB中,可以使用以下命令将数据导入到工作区:data = importdata('data.txt');x = data(:,1);y = data(:,2);2、定义拟合函数在MATLAB中,可以使用fit函数来拟合数据。
首先,需要定义一个拟合函数,该函数将接受一个x值并返回一个y值。
在本例中,我们将使用一个指数函数作为拟合函数:expfun = @(b,x)(b(1)*exp(b(2)*x));3、拟合数据使用fit函数来拟合数据。
在本例中,我们需要指定拟合函数、x值和y值,以及初始参数估计值。
这里假设初始参数估计值为[1, 0.5]。
b0 = [1, 0.5];expfit = fit(x', y', expfun, b0);4、显示拟合结果使用plot函数来显示原始数据点和拟合曲线。
plot(x, y, 'o', x', expfit(x'), '-');legend('Data', 'Exponential fit');以上是一个简单的示例,演示如何使用MATLAB进行指数函数曲线的拟合。
在实际应用中,可能需要根据具体的数据和问题来调整参数估计值和拟合函数。
Matlab拟合工具箱CFtool使用指南

matlab拟合工具箱使用1.打开CFTOOL工具箱在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。
也可以在命令窗口中直接输入"cftool",打开工具箱。
2.输入两组向量x,y首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。
输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278; 0.041803; 0.038026; 0.038128; 0.088196];3.选取数据打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。
关闭Data对话框。
此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.拟合曲线(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。
Matlab拟合工具箱CFtool使用指南

matlab拟合工具箱使用1.打开CFTOOL工具箱在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。
也可以在命令窗口中直接输入"cftool",打开工具箱。
2.输入两组向量x,y首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。
输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353;0.019278; 0.041803; 0.038026; 0.038128; 0.088196];3.选取数据打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。
关闭Data对话框。
此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.拟合曲线(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits 上方的横条往下拉就可以看见Fit Editor。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab curve fitting tool的用法
(2010-09-06 10:54:03)
转载
标签:
杂谈
在Matlab 6.5以上的境况下,在左下方有一个"Start"按钮,好像Windows的最先菜单,点开它,在目次"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",显露数据拟合东西界面,根基上全体的数据拟合和回归认识都可以在这边进行。
底下给你粗略先容一下它的使用方法。
首先在Matlab的夂箢行输入两个向量,一个向量是你要的x坐目标各个数据,其它一个是你要的y坐标的各个数据。
输入今后假如叫x向量与y向量,可以在workspace内里瞥见这两个向量,要保障这两个向量的元素数类似,借使纷歧致的话是不行在工具箱里面进行拟合的。
比方在命令行里输入下列数据: x=(0:0.02:0.98)';
y=sin(4*pi*x+rand(size(x))); 此时x-y之间的函数相似的为正弦干系,频率为2,但是生活一个偏差项。
可以通过作图看出它们的大致分布: plot(x,y,'*','markersize',2); 掀开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets 页面里,在X Data选项入选取x向量,Y Data选项中抉择y向量,如果两个向量的元素数相通,那么Create data set按钮就激活了,此时点击它,天生一个数据组,映现鄙人方Data Sets列表框中。
紧闭Data对话框。
此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部门,上头为Fit Editor,下面为Table of Fits,有时刻窗口界面对比小,Fit Editor部分会被收起来,只消把Table of Fits上方的横条往下拉就可以看见Fit Editor。
在Fit Editor 里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中方才创办的x-y数据组,然后在Type of fit选框中选取拟合或回归规范,各个类型的拟合或回归呼应的分别是: Custom Equations 用户自界说函数 Expotential e指数函数 Fourier 傅立叶函数,含有三角函数 Gaussian 正态分布函数,高斯函数 Interpolant 插值函数,含有线性函数,搬动均匀等类型的拟合 Polynomial 多项式函数 Power 幂函数 Rational 有理函数(不太了了,没有若何用过) Smooth Spline ??(润滑插值大概光滑拟合,不太清楚) Sum of sin functions正弦函数类 Weibull 威布尔函数(没用过)欠好兴趣,没有学过数理统计,以是许多器具都是用了才清楚,翻译也就不太正确。
不外在Type of fit
选框下方有一个列表框,基本上各个函数类里的函数都写成领会式列在下方以供选择,所以找符合的函数仍旧比较简单的。
在这个Type of fit选框中选择好合适的类型,并选好合适的函数形式。
因而点击Apply按钮,就开始进行拟合或者回归了。
此时在Curve Fitting Tool 窗口上就会出现一个拟合的曲线。
这即是所要的效率。
在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply按钮,就可以看见拟合取得的正弦曲线。
在Fitting对话框中的Results文本框中显示有这回拟合的首要统计音信,主要有 General
model of sin1: ....... (函数形式) Coefficients (with 95% conffidence range) (95%致信区间内的拟合常数) a1=... ( ... ...) (等号后头是平均值,括号里是范畴) .... Godness of fit: (统计结果) SSE: ... (方差) R-squared: ... (决计系数,不知道做什么的) Adjusted R-squared: ... (改良后的决定系数,如何校正的不得而知) RMSE: ... (模范差)上面的例子中颠末拟合得到的函数最终为 y=0.9354*sin(12.36x+6.886) 频率为1.98加减0.03,和向来创立的频率为2符合,相对误差为1.5%。
这曲直线拟合工具箱的一个最简单的使用方法,上面尚有很多效力,写是写不完的,本身参照这个基本的思绪,翻着英汉辞书,看着资助,然后一个按钮一个按钮的试吧。
另外要说的是,如果想把这个拟合的图像导出的话,在Curve Fitting Tool窗口的File菜单下选Print to Figure,此时弹出一个新的图像窗口,里面是你要导出的图像,在这个figure窗口的File菜单里再选Export,选择好合适的形式,寻常是jpeg,选择好途径,点击OK就可以了。
出来的图像可以在Word 等编纂环境中使用,就未几说了。
要窜改图像的性子,如数据点的巨细、颜料等等的,只需求在东西上点右键,就差不多可以找到了。
” 上面所说的X,Y向量就是样本点。
下面是转载的网址,期望有用途
/viewthread.php?tid=28854&extra=&page=1 ilovematlab是个不错的论坛,我也是刚察觉,不过帮助很大,基本的题目在那城市有谜底。
,谢谢了,我仍旧知道啦,通过图取样本点,X=[......],Y=[......] polyfit(X,Y,3)可以得到拟合函数进而得到概率分布函数 ,可以用newrb()或其他函数!不久前我做过一个尝试,是y=√x的拟合,可以稍稍修改下即可以下为我的源代码,希望有所帮助 %已知y=x^(-1/2),x分别取1:9 通过磨练拟合,猜想x=10和11时的y值 clear all; P=1:1:9; T=P.^(1/2); P2=1:1:11; T2=P2.^(1/2); % 神经元数逐渐加添,最多就是训练样本个数 goal = 1e-10; % 训练误差的平方和(默以为0) spread = 10; % 此值越大,需要的神经元就越少(默许为1) MN =
size(P,2); % 最大神经元数(默认为训练样本个数) DF = 1; % 显示隔断(默认为25)
t1=clock; % 计时开始 net = newrb(P,T,goal,spread,MN,DF);%training
datat=etime(clock,t1) %算计安排汇集所用的时候 %----------------
plot(P2,T2,'ro'); %red 'o'号显露确凿值 hold on Y=sim(net,P2); %mse =
mean((T2-Y).^2) %均方误差 plot(P2,Y); plot(P2,Y,'b*'); %blue '*'号表示真实值
x=10:1:11 y=sim(net,x) hold off。