高等有机化学
《高等有机化学—反应和机理》(Bernard Miller)笔记

●Woodward-Hoffmann规则一:4n电子的热电环化反应,如果按照顺旋方式进行是允许的;4n+2电子的热电环化反应,如果按照对旋的方式进行时允许的。
●顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子,以相同方向(同为顺时针或同为逆时针)旋转成键或断键,这种方式称为顺旋。
顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子,以不相同方向旋转成键或断键,这种方式称为对旋。
●最高已占分子轨道(HOMO)在4n+2的体系中是对称的;最低未占分子轨道(LUMO)在4n+2的体系中是反对称的。
●前线轨道理论:忽略较低的能级轨道,只考虑HOMO。
前线轨道理论能简单、形象化,但是理论上不完善,在理论上应该有更精确的处理方法。
在电环化反应中,对旋是允许的,顺旋是禁阻的。
●轨道对称性守恒:反应物中的每个轨道的对称性,在反应后对称性保持不变。
●用相关图法处理电环化反应遵循轨道对称性守恒。
●相关图法处理4n+2体系的热环化反应(对旋):以1,3,5-己三烯为例:(1)形成6个分子轨道(2)用能量最低的形成键,和的对称性相同,都是镜面对称的。
(3)是由6个原子轨道组成,键是2个原子轨道组成,故转化为时,可以想象其中有4个原子轨道的系数降低为0。
(4) 1,3,5-己三烯的,不能转化为1,3环己二烯的,因为前者的的对称性是镜面反对称,后者的的对称性是镜面对称,对称性不匹配。
故1,3,5-己三烯的事转化为1,3环己二烯的,同理1,3,5-己三烯的事转化为1,3环己二烯的(5)能量分配很合理,故反应是允许的。
用相关图法处理4n体系的热环化反应(对旋):以1,3-丁二烯为例:(1)用能量最低的形成键(2)用1,3-丁二烯的形成环丁烯的;用1,3-丁二烯的形成环丁烯的。
理由同4n+2体系,因为对称性不守恒。
(3) 1,3-丁二烯的上有2个电子,而要形成的环丁烯的电子在上。
但是1,3-丁二烯要转化为环丁烯的,如果发生这样的转化,就会形成能量很高的环丁烯的激发态。
高等有机化学消除反应

消除反应在有机合成中应用
形成碳碳双键或三键
立体选择性合成
通过消除反应可以方便地构建碳碳双 键或三键,这是有机合成中常用的手 段之一。
一些消除反应具有立体选择性,可以 用于合成具有特定立体结构的化合物。
构建复杂分子骨架
消除反应还可以用于构建复杂分子的 骨架,例如通过分子内的消除反应可 以形成环状化合物。
影响因素及改进方法
01
底物结构
底物结构对消除反应有很大影响,如卤代烃中卤素原子的种类和位置、
醇类化合物中羟基的位置等都会影响反应速率和产物分布。
02
反应条件
反应温度、溶剂种类、碱性强度等反应条件也会影响消除反应的进行。
03
改进方法
针对底物结构和反应条件的影响,可以采取相应的改进方法,如优化底
物结构、调整反应条件、使用催化剂等,以提高消除反应的效率和选择
A
B
C
D
催化剂种类和用量
对于使用过渡金属催化剂的烯烃消除反应, 催化剂种类和用量也是影响反应效率和选 择性的重要因素之一。
反应温度和溶剂
反应温度和溶剂对烯烃消除反应也有重要 影响,需要根据实际情况进行优化选择。
03 炔烃和芳香族化合物消除 反应
炔烃和芳香族化合物消除特点
高选择性
炔烃和芳香族化合物的消除反应 通常具有高度的选择性,能够生 成特定的产物。
消除反应特点
反应后生成物分子中的化学键总数减少,多数消除反应为可逆反应,甚至完全 可逆。
消除反应分类及机理
分类
根据反应物和产物的结构以及反应机 理的不同,消除反应可分为E1、E2 、E1cb三种类型。
机理
消除反应的发生往往伴随着碳正离子 、碳负离子、自由基等中间体的生成 ,这些中间体的稳定性和反应活性决 定了消除反应的速率和选择性。
化学-高等有机化学-教学大纲

《高等有机化学》课程大纲Advanced Organic Chemistry(40学时)一、课程目标1. 教学目标本课程是面向化学专业(包括有机化学、无机化学、分析化学、物理化学、高分子化学及材料化学)的硕士研究生开设的一门基础课程。
高等有机化学是一门论述有机化合物的结构、反应、机理及它们之间关系的科学,对更深层次地理解和掌握有机化学起着理论指导作用。
通过本课程的学习使学生在“基础有机化学”的基础上,对一些在本科阶段教学中未能深入或来不及介绍的重要内容做专题讨论,进一步深化学生对有机化学理论的理解,对有机反应机理的认识,对立体化学知识的巩固,同时还针对有机化学领域的最新研究进展进行拓展介绍。
总之,通过比较系统、深入地介绍现代有机分子结构理论,有机化合物结构和性能之间的关系,有机反应机理及中间体结构与性质,从总体上巩固和加强学生对有机化学的认识和理解。
2. 学习目标掌握有机分子结构和反应性能的关系;掌握立体化学的基本原理,了解反应过程中的立体化学;初步掌握有机反应机理及研究方法,掌握取代基效应和线性自由能关系;掌握典型的有机反应类型和反应中间体的结构、产生和稳定性;掌握周环反应的基本类型和基本原理。
二、课程内容专题1:有机化合物的分子结构理论(12学时)第一章:共价键理论:定域键和离域键第二章:取代基效应第三章:芳香性理论第四章:比共价键弱的相互作用专题2:立体化学(10学时)第一章:分子的不对称性和旋光性第二章:外消旋体的拆分第三章:动态立体化学及不对称合成第四章:构象与构象分析专题3:有机反应机理基础知识(12学时)第一章:研究有机反应机理的方法第二章:动力学控制与热力学控制第三章:取代基效应和线性自由能关系第四章:有机酸碱第五章:有机反应中的溶剂效应第六章:碳正离子、碳负离子和自由基第七章:卡宾和苯炔专题4:周环反应(6学时)第一章:电环化反应及其理论解释第二章:σ- 键迁移反应及其理论解释第三章:环加成反应及其理论解释三、教学方式本门课程以教师讲授为主,学生课后自主讨论为辅,课堂教学采用多媒体授课形式。
《高等有机化学》PPT课件

h
15
有机化合物的去除研究方法
去除水环境中有机化合物一般采用的方法有
➢ 化学氧化 ➢ 生物降解
饮用水深度处理考虑上述两种方法
北方水厂更适合采用化学氧化,可供选择的 氧化剂有ClO2、KMnO4、H2O2等。如何定量 研究去除规律考察氧化剂与有机化合物的反 应历程,是我们这门课关心的重点。
h
17
谢谢
离解能 键长 键强 ➢酸和碱
➢键的极性
➢电子效应和空间效应
➢分子的极性 ➢同分异构体
➢熔点和沸点 ➢蒸气压
可分为易挥发和不 易挥发有机化合物
可描述有机物从溶液中挥 发出的程度,但水环境下 h 需考虑其他因素。 3
电子效应和空间效应
电子效应
➢ 诱导效应 静态诱导效应 动态诱导效应
➢ 共轭效应 ➢ 苯环上的电子效应
当诱导效应和共轭效应一致时,如酚盐负离子 当两种效应相反时,取决于-I与+C的大小
空间效应
h
5
表征有机污染物主要参数
➢S:水中溶解度(ppm)
➢ Koc 沉淀物水分配系数
➢ Kow辛醇水分配系数
➢生物富集系数BCFs
它表示有机化合物在生物体内或生物组织内浓 度与水中浓度之比
➢另外还有Herry常数、再曝气速率比、光解 K、生物转化K等
高等有机化学ห้องสมุดไป่ตู้
主讲人:崔崇威
h
1
引言
❖饮用水源中有机污染物的去除已经成为饮 用水深度处理的一个研究课题。
❖研究有机化合物的去除规律,首先要认识 它的物理化学性质,水污染物动力学参数, 并根据其来源性质进行简单的分类 。
h
2
有机化合物的性质
❖有机化合物的性质要关心的主要有:
高等有机化学(书籍)

引言概述:《高等有机化学》是一本经典的有机化学教材,深入浅出地介绍了有机化学的基本原理、反应机制和合成方法。
本文将对该书的内容进行详细阐述,涵盖化学键的构成、有机反应的类型、手性化学、杂环化合物以及天然产物的合成等五个大点。
正文内容:一、化学键的构成1. 共价键的形成: 介绍原子之间共享电子对的过程,包括共价键的形成原理和优势。
2. 极性键的特点: 讨论共价键中电子云的不均匀分布引起的分子极性,以及极性键在化学反应中的作用。
3. 多重键的构成: 解释在化学键中存在的双键和三键,以及它们与单键在反应活性和空间结构上的差异。
4. 氢键的重要性: 介绍氢键在有机分子间相互作用中的关键角色,以及它们对化学反应速率和产物稳定性的影响。
二、有机反应的类型1. 取代反应: 阐述有机分子中取代基的进攻性和离去基的活性,以及它们在取代反应中的作用机制。
2. 加成反应: 讨论有机分子中π键的活性以及它们与电子云的相互作用,解释加成反应的机理和条件选择。
3. 消失反应: 介绍一些特殊条件下的消失反应,如弱酸、弱碱环境下的甲酸脱水和光化学反应等。
4. 消除反应: 详细论述消除反应的机制和条件,包括Beta消除和酯醇消除反应。
5. 重排反应: 解释重排反应的原理和分类,涵盖环状重排、离子重排和分子重排等。
三、手性化学1. 手性物质的定义: 介绍手性分子的结构和性质,以及手性物质在自然界和实验室中的重要性。
2. 手性中心的概念: 讨论手性分子中手性中心的定义和分类,并解释手性中心对分子结构和性质的影响。
3. 手性分离技术: 详细阐述手性分离的原理和应用,包括手性层析、手性色谱和手性合成等。
4. 对映体的描述: 探讨对映体的概念和性质,以及对映体间的对称性和非对称性。
5. 映像异构体: 解释芳香化合物中手性构象的特点和性质,并阐述双键对芳香环产物手性的影响。
四、杂环化合物1. 杂环化合物的分类: 介绍杂环化合物的命名规则和结构多样性,包括融合环、连接环和阶梯环等。
高等有机化学汪秋安课后习题答案

高等有机化学汪秋安课后习题答案1. 答案题目题目:将如下反应列出一次反应的化学平衡式,并指出每个反应物和生成物的类别。
反应: (a) 羰基化合物的还原 (b) 羧酸的酯化反应 (c) 核磁共振谱峰的解释 (d) 溴代烷的亲核取代反应 (e) 钯催化的Suzuki偶联反应1.1 答案解析(a)羰基化合物的还原还原的化学平衡式:R-C=O +2H2 → R-CH2OH 反应物:羰基化合物(R-C=O)生成物:醇(R-CH2OH)类别:有机化合物(b)羧酸的酯化反应酯化反应的化学平衡式:R-COOH+ R’-OH → R-COOR’ + H2O 反应物:羧酸(R-COOH)、醇(R’-OH)生成物:酯(R-COOR’)、水(H2O)类别:有机化合物(c)核磁共振谱峰的解释核磁共振谱峰的解释涉及到不同核磁共振峰对应的化学位移和峰积分的解释。
化学位移表示吸收峰在谱图中的位置,峰积分表示峰的强度或峰下面的面积。
每个峰的化学位移和峰积分可以提供有关分子结构和化学环境的信息,如化学官能团、取代基等。
(d)溴代烷的亲核取代反应亲核取代反应的化学平衡式:R-X + Nu^- → R-Nu + X- 反应物:溴代烷(R-X)、亲核试剂(Nu-)生成物:取代产物(R-Nu)、溴离子(X^-)类别:有机化合物(e)钯催化的Suzuki偶联反应 Suzuki偶联反应的化学平衡式:Ar(X)-B(OH)2 + R’-X → Ar(X)-R’ + B(OH)2-X 反应物:芳香化合物(Ar(X)-B(OH)2)、取代化合物(R’-X)生成物:偶联产物(Ar(X)-R’)、剩余反应底物(B(OH)2-X)类别:有机化合物2. 答案题目题目:简要描述一下以下有机化合物的结构和性质:(a)苯(b)乙酸乙酯(c)2-丙酮醛(d)正丁醇(e)反式-2-戊烯醇2.1 答案解析(a)苯:结构:苯是由6个碳原子(C)和6个氢原子(H)组成的环状芳香化合物,化学式为C6H6。
高等有机化学课件

3. 对反应活性的影响 伯卤代烷的乙醇解的相对速度是与中心碳原子 连接的烷基大小相关的:
R EtOH + H C Br H
R 相对速度 1.0 0.28 0.03 4.2× 10
-5
H3CCH3CH2(CH3)2CH(Isopropyl)
R EtO C H + HBr H SN2 反应
乙氧基从背后进攻
四. 场效应
五. 空间效应 ( )
1. 对化合物稳定性的影响 2. 对化合物酸性的影响 3. 对反应活性的影响 4. 张力:F-张力,B-张力,角张力
第一章 取代基效应 (Substituent Effects)
H H C Br + OH H H H H C OH + Br
反应的本质: 旧键的断裂,新键的生成 共价键的极性取决于取代基的效应
C2H5 CH3 N Ph O
不同取代开链叔胺分子不具有旋光活性:
R R' R" N
R N R' R"
两种对映体因快速翻转 相互转化,导致消旋。
手性中心 - 其它杂原子:
O
S
CH2Ph
H2C CHCH2 CH3
[α] D = +16.8°
P
[α]27 = +92.4° D
三. 含两个(或多个)手性中心的分子
空间传递
空间效应 (位阻效应) 物理的相互作用
电子效应 (Electronic effect):
由于取代基的作用而导致的共有电子对 沿共价键转移的结果。
O O2N CH2 C O H > CH3
O C O H
一. 诱导效应 (Inductive effect)
高等有机化学

• 目前对于反应历程的研究,虽然发展很快, 但绝大部分是属于均相反应,而非均相反应 历程的研究,无论是从广度或深度看,其理 论远远落后于实际的需要。因此,这方面的 研究是目前极待加强的工作。
杂化
2s2 2px12py12pz0
2s1 2px12py12pz1
sp3
基态
激发态
109.5o
H
H CH H
碳原子的sp2杂化轨道
乙烯 CH2=CH2 的结构
激发
杂化
2s2 2px12py12pz0 基态
2s1 2px12py12pz1 激发态
sp2
2pz1
sp2
p
HC H
CH H
HC H
CH H
HC H
CH H
碳原子的sp杂化轨道
激发
杂化
2s2 2px12py12pz0
2s1 2px12py12pz1
sp
基态
激发态
2py12pz1
sp
HCCH
苯的结构:
杂化轨道理论的解释:
苯分子中12个原子共面,其中六个碳原子均采取sp2 杂化,每个碳原子上还剩下一个与σ平面⊥的p轨道, 相互之间以肩并肩重叠形成π66大π键。
• 元素的电负性在同周期中随族数的增大而 递增,在同族中随周期数增大而递减,即愈 是周期表右上角的元素电负性愈大,-I效 应也愈强。
例如: -I效应:-F>-OH>-NH2>-CH3 -F>-Cl>-Br>-I -I效应: -N+R3>-NR2 +I效应: -O->-OR