控制系统时域与频域性能指标的联系

合集下载

控制系统时域及频域性能指标的联系

控制系统时域及频域性能指标的联系

控制系统时域与频域性能指标的联系经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。

时域响应法是一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具,直接可以求出变量的解析解。

这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。

如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。

频域分析法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学模型未知时,还可以通过实验的方法建立。

此外,大量丰富的图形方法使得频域分析法分析高阶系统时,分析的复杂性并不随阶次的增加而显著增加。

在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适的方法,从而使用相应的分析方法,达到预期的实验目的。

系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着很大的意义。

一、系统的时域性能指标延迟时间t d阶跃响应第一次达到终值h(∞)的50%所需的时间上升时间t r阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系统,也可定义为从0到第一次达到终值所需的时间峰值时间tp阶跃响应越过终值h(∞)达到第一个峰值所需的时间调节时间ts阶跃响应到达并保持在终值h(∞)的±5%误差带内所需的最短时间超调量%σ 峰值h(tp)超出终值h(∞)的百分比,即%σ=()()()∞∞-h h h t p ⨯100%二、系统频率特性的性能指标采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系统性能的指标不能直接使用,需要在频域内定义频域性能指标。

1、零频振幅比M(0):即ω为0时闭环幅频特性值。

它反映了系统 的稳态精度, M(0)越接近于1,系统的精度越高。

M(0)≠1时,表明系统有稳态误差。

2、谐振峰值Mr :为幅频特性曲线的A(ω)的最大值。

时域与频域方法的控制系统性能比较研究

时域与频域方法的控制系统性能比较研究

时域与频域方法的控制系统性能比较研究控制系统是用来管理、指导和调节物理或工程系统的设备或系统。

在控制系统的设计和分析过程中,时域与频域方法被广泛应用于系统性能的评估和比较。

本文将对时域与频域方法在控制系统性能比较方面的研究进行探讨,并对两种方法的优点和不足进行比较分析。

时域方法是指通过对系统的输入和输出信号在时间域上的分析和处理,来研究系统的动态特性和性能。

时域方法的主要优点是直观易懂,能够直接观察系统的时间响应和稳态特性。

常用的时域方法包括时域响应、步跃响应、阶跃响应以及脉冲响应等。

在控制系统性能比较研究中,时域方法可以通过观察系统的超调量、上升时间、调节时间、稳态误差等指标来评估系统的性能。

频域方法是指通过对系统的输入和输出信号在频率域上的分析和处理,来研究系统的频率响应和性能。

频域方法的主要优点是能够直观地观察系统的频率特性,可以通过频率相应曲线来评估系统的稳定性和抗干扰能力。

常用的频域方法包括频率响应曲线、伯德图、尼奎斯特图以及波特图等。

在控制系统性能比较研究中,频域方法可以通过观察系统的增益裕度、相位裕度、带宽、稳定裕度等指标来评估系统的性能。

时域方法和频域方法在控制系统性能比较研究中各有其优点和不足。

时域方法可以直接观察系统的时间响应,对于分析系统的动态特性非常有帮助。

它能够通过观察超调量、上升时间、调节时间等指标来评估系统的性能,并对系统的快速性和稳定性进行分析。

然而,时域方法依赖于实际系统的输入和输出信号,在实际系统中可能存在噪声和干扰,这会对时域方法的分析结果产生一定程度的影响。

频域方法可以通过观察系统的频率响应曲线来评估系统的稳定性和抗干扰能力。

它能够通过观察增益裕度、相位裕度等指标来分析系统的频率特性,并对系统的抗干扰能力进行评估。

频域方法对于分析系统的稳定性具有一定的优势,特别适用于带有传递函数表示的线性系统。

然而,频域方法无法直接观察系统的时间响应,对于非线性系统和时变系统的分析比较困难。

论ts和ωc的关系

论ts和ωc的关系

论自动控制系统中频域和时域快速性的关系通常我们都用截止频率c ω作为开环频域指标来分析系统的快速性,而在时域中我们通常用调节时间s t 来分析系统的快速性,但是对于他们之间的关系我们却没有一个明确的说法。

下面我们来讨论s t 和ωc 之间的关系。

通常人们都简单的认为:在控制系统中,系统的调节时间s t 和截止频率c ω之间是成反比的关系,即随着ωc 的增大s t 减小,但事实并非如此。

下面我们分别从二阶系统和高阶系统来反正这个结论的错误性。

一,对于二阶系统如图1-1是一个典型二阶系统的结构图,我们可以得出它的传递函数为 G(S) =(2)n K s s +ζω (0 < ζ < 1)相应的闭环传递函数为 Φ(s) =22n KS S K+ζω+若改变开环增益K 的大小,截止频率ωc 和调整时间s t 会怎么变化呢?是否截止频率增大,调整时间一定减小呢?下面我们来证明。

由图1-1我们可得系统的开环频率特性为 G(j ω) =)2(n j j K ζωωω+ (1-1)由式(1-1)可得开环幅频和相频特性分别为 )(ωA(1-2))(ωϕ=90arctan 2nω--ζω (1-3)在ω=ωc 处,)(c ωA =1,即 )(c ωA= 2K=1得42222cn c 40K ω+ζωω-= 对于典型二阶系统来说K=2nω所以上式可化简为 图1-1 二阶系统结构图图1-2 二阶系统的根轨迹图c n ω=ω (1-4)所以当开环增益K 增大时,n ω在增大,故截止频率c ω增大!若以系统调节时间s t 随着c ω的增大而减小的常规说法来看,此时系统的调节时间s t 应该是减小的,事情真的是这样吗?下面我们来看看随着K 的变化s t 是怎么变化的。

从根轨迹方面来说:我们可以由系统的结构图(图1-1)作出如右图1-2所示的系统根轨迹图。

从右图中,我们可以明显的看出,两条渐近线到虚轴的距离始终不会改变,都是n ζω。

自控理论 4-6频域指标与时域指标的关系

自控理论 4-6频域指标与时域指标的关系

2 −40
ω
作业
4 - A -14、 4 -B - 4 、
K s(Ts + 1)
c(t)
例:已知最小相位系统的开环对数幅频特 性曲线,试求: 性曲线,试求:
L(ω)
(1) 开环传递函数 开环传递函数G(s); ; (2) 剪切频率 ωc ; (3) 相角裕量 γ(ωc); (4) r(t)=(1/4)t2 时的 ess 。
6 0
−40 −20 0.5
ωc
令 G ( jω c ) = 1,
解得
ω c = ω n − 2ζ 2 + 4ζ 4 + 1
γ = 180 + ϕ (ω c ) = tg
0 −1
(4 − 30)
(4 − 31)
求γ
2ζω n
ωc
将式(4-30)代入式 代入式(4-31)得 将式 代入式 得
求γ
γ = 180 + ϕ (ω c ) = tg
2.
r(t)
25 s( s + 6)
c(t)
ωn2 =25 得 ζ =0.6 ωn=5
2ζ = 59.2 0
γ = tg
−1
− 2ζ 2 + 4ζ 4 + 1
ω c = ω n − 2ζ 2 + 4ζ 4 + 1 = 3.58
3.
Mr =
1 2ζ 1 − ζ
2
= 1.04
ω r = ω n 1 − 2ζ 2 = 2.65
结论
8 t sω c = tgγ
(4 − 36)
( 2) ω c与ζ、ω n 都有关,当ζ 一定,ω c ↑→ ω n ↑→ t s ↓ 一定,

时域与频域综合分析在控制理论工程中的应用

时域与频域综合分析在控制理论工程中的应用

时域与频域综合分析在控制理论工程中的应用在控制理论工程中,时域与频域综合分析是一种常用的方法,用于分析和设计控制系统。

时域分析关注系统的时间响应,而频域分析则关注系统在不同频率下的行为。

本文将介绍时域与频域综合分析在控制理论工程中的应用。

时域分析是通过研究系统的时间响应来了解系统的行为,包括系统的稳定性、阻尼特性、超调量等。

通过时域分析,可以获取系统的时域响应曲线,并进行性能指标的评估。

时域分析中常用的方法包括单位阶跃响应、单位脉冲响应和频率响应等。

单位阶跃响应是指在系统输入为单位阶跃函数时,系统输出的响应。

通过分析单位阶跃响应可以得到系统的过渡过程、稳态误差和稳定性等信息。

单位脉冲响应是指在系统输入为单位脉冲函数时,系统输出的响应。

通过分析单位脉冲响应可以了解系统的动态响应和频率特性。

频域分析是通过研究系统在频率域下的特性来了解系统的行为,包括系统的频率响应、频率特性和滤波特性等。

频域分析常用的方法包括傅里叶变换、频率响应曲线和波特图等。

傅里叶变换是将信号从时域转换到频域的一种数学方法。

通过傅里叶变换,可以将信号分解成不同频率的成分,进而分析系统对不同频率的响应。

频率响应曲线是描述系统在不同频率下的增益和相位特性的曲线。

波特图是一种用于展示系统频率响应曲线的图形,它将频率和增益同时表示在一个图中,直观地反映了系统的频率特性。

时域与频域综合分析在控制理论工程中的应用举足轻重。

通过时域分析,可以分析系统的稳定性、误差及动态特性等,从而为系统设计和性能评估提供重要依据。

通过频域分析,可以分析系统的频率特性和频率响应,为系统设计和滤波设计提供有力支持。

在控制理论工程中,时域与频域综合分析常常结合使用。

通过时域分析可以先确定系统的动态性能和稳定性,然后通过频域分析进一步研究系统的频率特性和滤波特性。

通过综合时域和频域的分析结果,可以得到更全面的系统性能评估和设计方案。

总之,时域与频域综合分析在控制理论工程中是一种非常重要的方法。

论ts和ωc的关系

论ts和ωc的关系

论自动控制系统中频域和时域快速性的关系通常我们都用截止频率c ω作为开环频域指标来分析系统的快速性,而在时域中我们通常用调节时间s t 来分析系统的快速性,但是对于他们之间的关系我们却没有一个明确的说法。

下面我们来讨论s t 和ωc 之间的关系。

通常人们都简单的认为:在控制系统中,系统的调节时间s t 和截止频率c ω之间是成反比的关系,即随着ωc 的增大s t 减小,但事实并非如此。

下面我们分别从二阶系统和高阶系统来反正这个结论的错误性。

一,对于二阶系统如图1-1是一个典型二阶系统的结构图,我们可以得出它的传递函数为 G(S) =(2)n Ks s +ζω (0 < ζ < 1)相应的闭环传递函数为 Φ(s) =22n KS S K+ζω+若改变开环增益K 的大小,截止频率ωc 和调整时间s t 会怎么变化呢?是否截止频率增大,调整时间一定减小呢?下面我们来证明。

由图1-1我们可得系统的开环频率特性为 G(j ω) =)2(n j j Kζωωω+ (1-1)由式(1-1)可得开环幅频和相频特性分别为 )(ωA(1-2))(ωϕ=90arctan 2nω--ζω (1-3) 在ω=ωc 处,)(c ωA =1,即 )(c ωA= 2=1得42222c n c40K ω+ζωω-= 对于典型二阶系统来说K=2n ω所以上式可化简为图1-1 二阶系统结构图图1-2 二阶系统的根轨迹图c n ω=(1-4)所以当开环增益K 增大时,n ω在增大,故截止频率c ω增大!若以系统调节时间s t 随着c ω的增大而减小的常规说法来看,此时系统的调节时间s t 应该是减小的,事情真的是这样吗?下面我们来看看随着K 的变化s t 是怎么变化的。

从根轨迹方面来说:我们可以由系统的结构图(图1-1)作出如右图1-2所示的系统根轨迹图。

从右图中,我们可以明显的看出,两条渐近线到虚轴的距离始终不会改变,都是n ζω。

频域响应和时域响应之间的关系

频域响应和时域响应之间的关系
*
5.8 MATLAB在频域分析中的运用
5.8.1 用MATLAB绘制频率响应图
本节介绍如何用MATLAB来绘制Bode图,再次讨论频率性能指标与时域性能的联系,并举例说明频域内的控制系统设计。 本节介绍的MATLAB函数有bode函数和 logspace函数。其中,bode函数用于绘制Bode图, logspace函数用于生成频率点数据是按照数的相等间隔生成的。在这些频率点上,计算机将根据 Bode图的需要,进行相应的计算。
*
当系统无差度 时,由式(5—140)得 (5-141) 综上分析,对于无差度 的无差度系统,闭环幅频特性的零频值 ;而对于无差度 的有差系统,闭环幅频率特性的零频值 。式(5—141)说明, 系统开环放大系数K越大, 闭环幅频特性的零频值 愈接近于1,有差系统的稳态误差将愈小。
上式表明,选择300~600 的相角裕度时,对应的系统阻 尼比约为0.3~0.6。
图5-72 相角裕度和阻尼比的关系
*
式中 为系统的被控信号, 分别是系统的闭环频率特性和 控制信号的频率特性。一般情况下,直接应用式(5—159)求解高阶系统的 时域响应是很困难的。在第三章和第四章我们介绍了主导极点的概念,对于 具有一对主导极点的高阶系统,可用等效的二阶系统来表示,在这种情况下, 可以利用前面介绍的方法对高阶系统进行分析。实践证明,只要满足主导极 点的条件,分析的结果是令人满意的。对于不具有一对主导极点的高阶系统, 除了利用式(5—159)的傅立叶变换外,尚无简便的方法可循。
(3)谐振频率 和截止频率 的大小反映了系统的响应速度。 与 的值愈大,系统响应速度愈快,反之愈慢。但频带太宽( 的值大),系统对高频噪声的滤波性能差,因此在系统设计中,必须兼顾系统的快速性和抗干扰能力,妥善处理好这一对矛盾。

控制系统的时域与频域分析及应用研究

控制系统的时域与频域分析及应用研究

控制系统的时域与频域分析及应用研究控制系统的时域与频域分析是控制工程中的两个重要方面,它们为我们研究和设计控制系统提供了强大的工具。

本文将探讨控制系统的时域与频域分析的基本概念、方法和应用,并讨论它们在实际工程中的重要性。

控制系统的时域分析是对系统在时间域内的行为进行分析和研究。

时域分析的主要目标是研究系统的稳定性、响应速度和稳态误差等特性。

在时域分析中,我们通常关注系统的脉冲响应、阶跃响应和频率响应等。

通过对这些响应的分析,我们可以了解系统对输入信号的处理方式和输出响应的特点。

时域分析的基本方法包括传递函数法、状态空间法和信号流图法等。

其中,传递函数法是最常用的方法之一。

它通过求解系统的传递函数,将输入信号和输出响应之间的关系用数学表达式表示出来。

传递函数法可以帮助我们分析系统的稳定性、零极点分布和频率响应等重要特性。

另外,状态空间法可以帮助我们直观地理解系统的动态特性,以及对多输入多输出系统进行分析和设计。

信号流图法则可以帮助我们将系统的结构图形象地表示出来,从而更好地理解和分析系统的性能。

除了时域分析,控制系统的频域分析也是十分重要的。

频域分析是通过将系统的输入和输出信号转换为频率域内的频谱图来研究系统的动态特性。

频域分析的主要目标是研究系统的频率响应、幅频特性和相频特性等。

在频域分析中,我们可以使用频率响应法、傅里叶变换法和拉普拉斯变换法等方法来分析系统。

其中,频率响应法是最常用的分析方法之一。

它通过将系统的输入和输出信号的频谱进行比较,得出系统的幅度响应和相位响应。

频率响应法可以帮助我们分析系统的频率特性,如共振频率、带宽和滤波特性等,从而指导系统的设计和优化。

控制系统的时域与频域分析在实际工程中具有广泛的应用。

首先,时域分析可以通过对系统的阶跃响应进行研究,帮助我们评估系统的稳态误差和响应速度,从而指导系统的控制策略和参数调节。

其次,频域分析可以通过对系统的幅度响应和相位响应进行研究,帮助我们评估系统的稳定性和抑制高频噪声的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制系统时域与频域性能指标的联系经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。

时域响应法是一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具,直接可以求出变量的解析解。

这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。

如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。

频域分析法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学模型未知时,还可以通过实验的方法建立。

此外,大量丰富的图形方法使得频域分析法分析高阶系统时,分析的复杂性并不随阶次的增加而显著增加。

在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适的方法,从而使用相应的分析方法,达到预期的实验目的。

系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着很大的意义。

一、系统的时域性能指标延迟时间td阶跃响应第一次达到终值h(∞)的50%所需的时间上升时间t r阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系统,也可定义为从0到第一次达到终值所需的时间峰值时间tp阶跃响应越过终值h(∞)达到第一个峰值所需的时间调节时间ts阶跃响应到达并保持在终值h(∞)的±5%误差带内所需的最短时间超调量%σ 峰值h(tp)超出终值h(∞)的百分比,即%σ=()()()∞∞-h h h t p ⨯100%二、系统频率特性的性能指标采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系统性能的指标不能直接使用,需要在频域内定义频域性能指标。

1、零频振幅比M(0):即ω为0时闭环幅频特性值。

它反映了系统 的稳态精度, M(0)越接近于1,系统的精度越高。

M(0)≠1时,表明系统有稳态误差。

2、谐振峰值Mr :为幅频特性曲线的A(ω)的最大值。

一般说来,Mr 的大小表明闭环控制系统相对稳定性的好坏。

Mr 越大,表明系统对某个频率的正弦信号反映强烈,有共振倾向,系统的平稳性较差,相应阶跃响应的超调量越大。

对应的ωr为谐振频率。

3、谐振频率ωr:出现最大值Mmax 时对应的频率。

4、带宽bω幅频特性下降至零频幅比的70.7﹪,或下降3dB 时对应的频率称为带宽(也成为闭环截止频率)。

带宽用于衡量控制系统的快速性,带宽越宽,表明系统复现快速变化信号的能力越强,阶跃响应的上升时间和调节时间就越短。

带宽是控制系统及控制元件的重要性能指标。

三、闭环频域性能指标与时域性能指标的关系1、二阶系统的相互联系对于二阶系统,其频域性能指标和时域性能指标之间有着严格的数学关系 (1)、谐振峰值Mr 和时域超调量δ之间的关系幅频特性的谐振峰值Mr在二阶系统Φ(s)=ωωωξn2n222s ++s n中,2(nωM令()=0dM d ωω,得谐振频率=r ωω。

求得幅频特性峰值r M 二阶系统的超调量-%=100%e ξπδ⨯由此可看出,谐振峰值Mr 仅与阻尼比ξ有关,超调量%σ也仅取决于阻尼比ξ。

ξ越小,Mr 增加的越快,这时超调量%σ也很大,超过40%,一般这样的系统不符和瞬态响应指标的要求。

当0.4< ξ<0.707时,Mr 与δ%的变化趋势基本一致,此时谐振峰值Mr=1.2 ~ 1.5,超调量%σ=20% ~30%,系统响应结果较满意。

当ξ>0.707时,无谐振峰值,Mr 与%σ的对应关系不再存在,通常设计时,ξ取在0.4至0.7之间(2)、谐振频率rω与峰值时间p t的关系=rωωt =p πωp t 与rω之积为=prt ω由此可看出,当ξ为常数时,谐振频率 r ω与峰值时间 p t 成反比, r ω值愈大,pt 愈小,表示系统时间响应愈快 (3)、闭环谐振峰值Mr 和相角裕度γ的关系()()=M()j j eαωφωω ()()=()j G j A eϕωωω0()(180-)()=()=()=()(-cos -sin )j c j c c c c G j A eA eA j ϕωγωωωωγγ0=180+()cγϕω 0()=180-c ϕωγ()()M()==1+()1-()cos -()sin c c c c G j A G j A jA ωωωωωγωγ一般Mr 极大值发生在c ω附近。

()11=0()()sin sin dM A Mr dA ωωωγγ⇒≈⇒≈故1sin Mr γ≈在开环截止频率c ω附近,上述近似程度就越高。

(4)、γ和ξ的关系2()==1()(+2)n c cc c nG j G j j j ωωωωωξω∠2n)1/22=c nωξω2=180+(-90-arctg)=90-arctg =arctg 22ccnnncωωξωγξωξωω得出1/2=arctg 2γξ⎡⎤⎛⎫⎢⎥⎢⎥⎣⎦对于二阶系统,一般要求:0030<<700.27<<0.8γξ⇔2、带宽b ω与时域性能的关系(1)、一阶系统一阶系统的闭环传递函数为1()=1+s TSφ 系统的闭环频率特性为1()=1+j Tj φωω系统的闭环幅频特性为()=()M j ωφω可知,ω=0时幅值为1,即零频振幅比M(0)=1, 则L(0)= 20LgM(0) = 0 闭环截止频率b ω:由b ω的定义知 L(b ω)=L (0)-3=-320()=20b LgM Lgω(b M ω 可解得:=1/b T ω一阶系统中调节时间、上升时间与带宽的关系=2.2tr T =3ts T → =2.2/b tr ω,=3/b ts ω (2)、二阶系统 标准二阶系统的开环传递函数为 2()=(s+2)nn G s s ωξω二阶系统的闭环传递函数为222()=+2+nnns s s ωφξωω闭环频率特性为222222()==()+2++2-nnnnnnj j j j ωωφωωξωωωωξωωω系统的闭环幅频特性为2()=()nM j ωφω可知, ω=0时幅值为1,即零频振幅比M(0)=1,则L(0)= 20LgM(0) = 0闭环截止频率b ω由b ω的定义知 L(b ω)=L (0)-3=-3 可解得:2(nb M ω=bωω阻尼比不变,自然振荡频率越大,带宽越大;自然振荡频率不变,阻尼比越小,带宽越大;可知带宽与系统响应速度成正比!(3)、带宽b ω与调节时间ts 的关系调整时间 3.5=nts ξω=bωωb ω与ts 之积为 bts ω由此可看出,当阻尼比ξ给定后,闭环截止频率b ω与过渡过程时间s t 成反比关系。

换言之,b ω愈大(频带宽度0 -b ω愈宽),系统的响应速度愈快。

(4)、系统带宽的选择带宽频率是一项重要指标。

其选择要求要既能以所需精度跟踪输入信号,又能拟制噪声扰动信号。

在控制系统实际运行中,输入信号一般是低频信号,而噪声信号是高频信号。

(5)、带宽指标取决于下列因素:a) 对输入信号的再现能力。

大的带宽相应于小的上升时间,即相应于快速特性。

粗略地说,带宽与响应速度成正比。

b) 对高频噪声必要的滤波特性。

为了使系统能够精确地跟踪任意输入信号,系统必须具有大的带宽。

但是,从噪声的观点来看,带宽不应当太大。

因此,对带宽的要求是矛盾的,好的设计通常需要折衷考虑。

具有大带宽的系统需要高性能的元件,因此,元件的成本通常随着带宽的增加而增大。

3、典型二阶系统频域指标与时域指标的关系闭环频域指标:Mr=r ω=b ω=arctgγ)1/22=cωξω闭环阶跃响应时域指标:-%=100%eξπσ⨯tp=/=/(d πωπω=(-)/=(-)/(d tr πβωπβω3.5=(=0.05,0<<0.9)nts ξξω∆因此,若知道频域指标中的任两个,就可解算出ξ,n ω,从而求出时域指标。

反之,给出时域指标的任两个,就可确定闭环频域指标。

ξ-%=100%eσ⨯ξ↑,,,,Mr ts γσ↓↑↓↓,相对稳定性好,超调小,振荡次数少。

,nξω↑不变时,c,,,,nbtr tp ωωω↓↓↓↑↑,系统灵敏度下降。

,nωξ↑不变时,c,,rbωωω↑↑↑,系统灵敏,速度快。

4、高阶系统频域指标与时域指标 谐振峰值 1=sin Mr γ超调量 =0.16+0.4(-1)Mr σ 1 1.8Mr ≤≤调节时间 c=K ts πω2=2+1.5(-1)+2.5(-1)K Mr Mr 1 1.8Mr ≤≤欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

相关文档
最新文档