第一课数值分析10迭代法的收敛性分析

合集下载

线性方程组迭代法收敛性分析

线性方程组迭代法收敛性分析
k
lim Ak 0 .
k
(2.27)
由定理 2.5 知,
( A k ) Ak ,

( A)
由(2.27) 和(2.28)可得
k
Ak .
(2.28)
lim ( A) 0
k k
再由矩阵谱半径的定义可知一定有 ( A) 1 . (必要性) 若 ( A) 1 ,则有定理 2.5 的推论可知至少存在一个 0 使得一种范数
若有
lim x ( k ) x* , 即 lim xi( k ) xi* ,
k k
则有 lim x ( k ) x*
k 2
0.
常见的向量范数有: ① 1-范数
x 1 xi ;
i 1
n
② ∞-范数
x

max xi ;
1 i n
③ 2-范数
x 2 ( x ) ;
lim x x* lim G k x x* 0 ,
k
0
k


k


再由向量范数的定义可知
lim x k x* 0 ,
k
即迭代过程收敛. (必要性) 若迭代公式(2.20)收敛,即满足
lim x x* 0
k k


由此推论可知当 ( A) 1 时,至少存在一种范数 A 1 .
定 理 2.6 设 A R nn , 则 lim Ak 0 的 充 要 条 件 为 ( A) 1 . ( 其 中
k
Ak AA A)
k
证明: (充分性) 若 lim Ak 0 ,则由矩阵范数的定义可知

数值分析10迭代法的收敛性分析

数值分析10迭代法的收敛性分析
例如,Jacobi迭代法和Gauss-Seidel迭代法是两种常见的求解线性方程组的迭代法。通过收敛性分析,可以发现Jacobi迭代 法在一般情况下是收敛的,但收敛速度较慢;而Gauss-Seidel迭代法在一般情况下也是收敛的,且收敛速度较快。因此,在 实际应用中,可以根据问题的具体情况选择合适的迭代方法。
研究方向
进一步深入研究迭代法的收敛性,探索更有 效的迭代公式和算法,以提高收敛速度和稳 定性。
展望
随着计算技术的发展,迭代法在数值分析中 的应用将更加广泛,其收敛性分析将为解决 实际问题提供更有力的支持。同时,随着数 学理论的发展,迭代法的收敛性分析将更加 深入和完善。
感谢您的观看
THANKS
例如,梯度下降法和牛顿法是两种常见的求解优化问 题的迭代法。通过收敛性分析,可以发现梯度下降法 在一般情况下是收敛的,但可能会遇到收敛速度较慢 或者不收敛的情况;而牛顿法在一般情况下也是收敛 的,且收敛速度可能比梯度下降法更快。因此,在实 际应用中,可以根据问题的具体情况选择合适的迭代 方法。
06
迭代法收敛的充要条件
迭代法收敛的充要条件是迭代矩阵的谱半径小于1。谱半径是迭代矩阵所有特征值的模的最大值。
收敛性的判定方法
可以通过计算迭代矩阵的特征值来判断迭代法的收敛性,也可以通过迭代矩阵的范数来近似判断。
收敛速度的度量
01
02
03
迭代次数
迭代次数是衡量收敛速度 的一个直观指标,迭代次 数越少,收敛速度越快。
在非线性方程求解中的应用
非线性方程的求解是数值分析中的另一个重 要问题,迭代法也是求解非线性方程的重要 方法之一。与线性方程组求解类似,收敛性 分析在非线性方程求解中也有着重要的作用 。通过收敛性分析,可以判断迭代法的收敛 速度和收敛性,从而选择合适的迭代方法和 参数,提高求解效率。

数值分析PPT教案

数值分析PPT教案
和收敛性。
遗传算法
模拟生物进化过程的优 化算法,适用于多变量、 非线性、离散的最优化
问题。
数值积分和微分的方法
01
02
03
04
矩形法
将积分区间划分为若干个小的 矩形区域,每个矩形区域上的 函数值乘以宽度然后相加。
梯形法
将积分区间划分为若干个小的 梯形区域,每个梯形区域上的 函数值乘以宽度然后相加。
理解和应用能力。
培养创新思维和解决问题的能力
03
学生应该培养创新思维和解决问题的能力,以便在未来的学习
和工作中更好地应对挑战。
THANK YOU
感谢聆听
误差累积效应
误差的来源和传播
初始误差放大 误差传递规律
误差的度量和控制
绝对误差和 相对误差
误差的估计 和容忍度
提高数据精 度
选择合适的 算法和数值 方法
控制误差的 方法
迭代收敛性 和稳定性分 析
方法的稳定性和收敛性
方法的稳定性 不受初始条件和舍入误差的影响
对输入数据的变化具有稳健性
方法的稳定性和收敛性
课程目标
02
01
03
掌握数值分析的基本概念、原理和方法。
能够运用数值分析方法解决实际问题,提高计算能力 和数学素养。
培养创新思维和实践能力,为后续学习和工作奠定基 础。
02
数值分析基础
数值分析的定义和重要性
数值分析的定义
数值分析是一门研究数值计算方法及其应用的学科,旨在解决各 种数学问题,如微积分、线性代数、微分方程等。
电子工程
在电子工程中,数值分析用于 模拟电路的行为和性能。通过 电磁场理论和数值方法,可以 优化电路设计和性能,提高电 子设备的效率和稳定性。

迭代法和其收敛性

迭代法和其收敛性

(1) xk1 xk2 xk 3, g(x) x2 x 3,
g(x) 2x 1, g(x*) g( 3) 2 3 1 1.
3
3
(2)
xk 1
xk
,
g(x)
, x
g( x)
3 x2
,
g( x*)
1.
(3)
xk 1
xk
1 4
( xk2
3),
g(x)
x
1 4
(x2
3),
g(x) 1 1 x, g(x*) 1 3 0.134 1.
上g存(x在) [a, b]
因 a g,(x)下列b设
及 g(a) ,a定 g(b) b
义函数
f (x) g (x) x.
显然 f (x) C,[a且, b满] 足
f (a) g (a) a 0, f (b)
g(b) b,由0 连续函数性质可知存在
x使* (a, b)
f (x*) , 0即
L xk1 x * Lk x0 x *.
因 0 L,故1 当 k时序列 收敛{到xk } .
x*
再证明估计式(2.5),由李普希兹条件有
xk1 xk g(xk ) g(xk1) L xk xk1 .
(2.6)
反复递推得
xk 1 xk Lk x1 x0 .
于是对任意正整数 p有
g在(x区) 间3x2 中
[1,2] g(x) 1
10.3 局部收敛性与收敛阶
上面给出了迭代序列 {在xk区} 间 上[旳a, b收]敛性, 一般称为全局收敛性. 定理旳条件有时不易检验,实际应 用时一般只在不动点 x *旳邻近考察其收敛性,即局部收 敛性.
定义7.2.1 设 有(x不) 动点 ,假x *如存在 旳某x个* 邻域 R : x x ,* 对任意 ,迭x0 代(R 2.2)产生旳序列 {xk },R且收敛到 ,x则*称迭代法(2.2)局部收敛.

数值分析课程教学大纲

数值分析课程教学大纲

数值分析课程教学大纲一、课程简介数值分析课程是计算机科学与工程领域的一门重要基础课程,旨在培养学生使用数值方法解决实际问题的能力。

本课程主要介绍数值计算的基本原理、常用数值方法以及其在实际应用中的使用。

二、教学目标1. 了解数值计算的基本概念与原理;2. 掌握常用数值方法的基本思想和实现过程;3. 能够独立选择和应用合适的数值方法解决实际问题;4. 具备编写简单数值计算程序的基本能力。

三、教学内容1. 数值计算基础1.1 数值误差与有效数字1.2 浮点运算与舍入误差1.3 计算机数制与机器精度2. 插值与逼近2.1 插值多项式的存在唯一性与插值误差2.2 多项式插值的Newton和Lagrange形式2.3 最小二乘逼近与曲线拟合2.4 样条插值与曲线光滑拟合3. 数值积分与数值微分3.1 数值积分的基本概念及Newton-Cotes公式 3.2 数值积分的复化方法3.3 高斯积分公式3.4 数值微分的中心差分与向前向后差分公式4. 解非线性方程4.1 迭代法与收敛性分析4.2 函数单调性与零点存在性4.3 牛顿迭代法及其变形法4.4 非线性方程求根方法的比较与选择5. 数值代数方程组的直接解法5.1 矩阵消元与高斯消元法5.2 LU分解方法5.3 矩阵的特征值与特征向量5.4 线性方程组迭代解法6. 数值优化方法6.1 优化问题的基本概念与分类6.2 单变量优化方法6.3 多变量优化方法6.4 无约束优化算法和约束优化算法四、教学方法1. 授课方式:理论讲解与实例演示相结合。

2. 实践环节:布置数值计算作业,让学生进行编程实现,并分析实验结果。

3. 课堂互动:鼓励学生积极提问,与教师及同学进行讨论与交流。

五、评分与考核1. 平时成绩占40%,包括平时作业和课堂表现。

2. 期中考试占30%。

3. 期末考试占30%。

六、参考教材1. 《数值分析(第3版)》,李庆扬,高等教育出版社。

2. 《数值分析(第6版)》,理查德 L.伯登,麦格劳-希尔教育出版公司。

数值分析中的迭代法收敛性分析

数值分析中的迭代法收敛性分析

数值分析中的迭代法收敛性分析迭代法是数值分析领域中常用的一种数值计算方法,通过迭代逼近的方式求解数值问题。

在使用迭代法时,我们需要关注其收敛性,即迭代过程是否能够逼近问题的解。

本文将探讨数值分析中的迭代法收敛性分析方法。

一、迭代法的基本概念迭代法是一种通过逐次逼近的方式求解数值问题的方法。

在求解问题时,我们通过不断使用公式迭代计算,直到满足某个特定的条件为止。

迭代法在实际应用中广泛使用,例如求解方程组、求解最优化问题等。

二、迭代法的数学模型我们可以用以下数学模型描述迭代法的过程:设迭代公式为:x_(n+1) = g(x_n),其中x_n表示第n次迭代的结果,g(x)为迭代函数。

三、迭代法的收敛性在使用迭代法时,我们希望迭代过程能够收敛到问题的解。

迭代法的收敛性分析是判断迭代过程是否能够收敛的关键。

1.线性收敛如果迭代法满足以下条件:1)对于任意的x_0,如果|x_n - x*| / |x_(n-1) - x*| ≤ C (0 < C < 1),其中x*为问题的解,那么称迭代法是线性收敛的。

2)线性收敛的迭代法需要满足条件|x_1 - x*| / |x_0 - x*| ≤ C (0 < C <1)。

2.超线性收敛如果迭代法满足以下条件:对于任意的x_0,如果|x_n - x*| / |x_(n-1) - x*|^p ≤ C (0 < C < 1, p > 1),那么称迭代法是超线性收敛的。

3.二次收敛如果迭代法满足以下条件:对于任意的x_0,如果|x_n - x*| / |x_(n-1) - x*|^2 ≤ C (0 < C < 1),那么称迭代法是二次收敛的。

四、判断迭代法的收敛性在实际应用中,判断迭代法的收敛性是非常重要的。

下面介绍几种常用的判断方法。

1.收敛准则根据数列极限的定义,如果一个数列{x_n}满足:对于任意ε > 0,存在正整数N,当n > N时,有|x_n - x*| < ε,则称{x_n}收敛于x*。

数值分析迭代法的基本原理

数值分析迭代法的基本原理

数值分析迭代法的基本原理
数值分析迭代法是在数值计算中常用的一种方法,它对于求解非线性方程组和
系统动力学方程组具有广泛的应用,常用来较准确地估算未知量。

迭代法的基本原理是把复杂的问题拆分为一系列实现以求测函数的小过程,将
求解过程的每一步都视为迭代操作。

为了使求解的精度提高,要求每步迭代都可以达到合理的精度,可以使用收敛率来反映求解的精度。

一般的,收敛率大于某一数值(比如0.001)时,认为迭代法已经可以得到较完美的解。

数值分析迭代法还使用了复杂的误差估计方法,通过它可以得到良好的估算未
知量。

为此,迭代模型要加入某种形式的误差估计方法,以衡量求解精度,优化迭代收敛性。

通常,它将利用同伴雅可比(Jocobian)行列式来预估函数的局部变化,从而获得准确的估算未知量。

总的来看,数值分析迭代法广泛应用于工程设计与实验诊断等领域,是计算技
术研究工作者必不可少的一种重要的方法手段,具有解决复杂的非线性方程组、系统动力学方程组的能力。

数值分析中的迭代方法与收敛性分析

数值分析中的迭代方法与收敛性分析

数值分析中的迭代方法与收敛性分析迭代方法是数值分析中一种重要的算法,用于求解数值问题。

迭代方法基于一个初始猜测解,并通过不断迭代逼近真实解。

本文将介绍迭代方法的基本原理以及如何进行收敛性分析。

一、迭代方法的原理迭代方法的基本原理是通过不断更新猜测解来逼近真实解。

假设我们要求解一个方程f(x)=0,其中f(x)表示一个函数。

我们可以通过选择一个初始猜测解x0,然后使用迭代公式x_{k+1}=g(x_k)来生成下一个近似解x_{k+1},其中g(x_k)是一个迭代函数。

通过不断迭代,我们希望逐渐接近真实解。

二、常见的迭代方法在数值分析中,有许多常见的迭代方法被广泛应用于求解不同类型的数值问题。

以下是几种常见的迭代方法:1. 不动点迭代法不动点迭代法通过将方程f(x)=0转化为等价的x=g(x)的形式来求解。

其中g(x)是一个迭代函数,可以通过不断迭代x_{k+1}=g(x_k)逼近真实解。

不动点迭代法的收敛性通常需要满足收敛性条件,如Lipschitz条件或收缩映射条件。

2. 牛顿迭代法牛顿迭代法通过利用函数的导数信息来加速收敛速度。

迭代公式为x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)},其中f'(x_k)表示函数f(x_k)的导数。

牛顿迭代法的收敛性通常需要满足局部收敛性条件,如满足Lipschitz条件和拟凸性条件。

3. 雅可比迭代法雅可比迭代法用于求解线性方程组Ax=b,其中A是系数矩阵,b是常数向量。

迭代公式为x_{k+1}=D^{-1}(b-(L+U)x_k),其中D、L和U分别是矩阵A的对角线、下三角和上三角部分。

雅可比迭代法的收敛性要求系数矩阵A满足严格对角占优条件。

三、迭代方法的收敛性分析在使用迭代方法求解数值问题时,我们需要进行收敛性分析,以确定迭代方法是否能够逼近真实解。

常用的迭代收敛性分析方法包括:1. 收敛域分析收敛域分析用于确定迭代方法的收敛域,即迭代过程中能够保证收敛的初始猜测解的范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品课件!
简单迭代法 X (k1) X (k ) (b AX (k ) )
迭代矩阵: B I A
设矩阵A对称正定,则特征值 0 ,由于B是A
的多项式,故 B 的特征值为
1 (B) 1 | | 1 0 2/ 当不等式 0 2 / || A || 成立时
平面点列: (x1 , y1),(x2 ,y2), ···, (xk , yk),······
lim(
k
xk
,
yk )

( x* ,
y* )
lim
k
( xk x* )2 ( yk y* )2 0
Xk∈Rn : X1, X2, ···, Xk , ·······
lim
k
X
则称集合 {1 , 2 , , n }
为B 的谱. 记为 ch B
特征值取模最大
矩阵B的谱半径
(B)

max |
1 k n
k
|
注1: 当B是对称矩阵时, ||B||2 = (B)
注2: 对 Rn×n 中的范数|| ·||,有
(B) ≤ || B ||
6/18
定理4.1 迭代法 X(k+1) = B X(k) + f 收敛
简单迭代法收敛.
18/18
14/18
所以 || X (k ) X * || 1 || X (k1) X (k ) ||
1 || B ||
X(k+1)–X(k) =B(X(k) – X(k-1) )
||X(k+1)–X(k)|| ≤ ||B || || X(k) – X(k-1) ||
误差估计:
|| X (k) X * ||
|a11| > |a12| + |a13| |a22| > |a21| + |a23| |a33| > |a31| + |a32|
16/18
定理4.3 若Ax=b的系数矩阵A是严格对角占优 矩阵,则Jacobi迭代和Seidel迭代均收敛
证: 由于矩阵A严格对角占优
n
| aii | | aij | j1 ji
X = ( I – B )-1 f
注2: 若 lim Bk 0 则 k ( I - B)-1 = I + B + B2 + ······+ Bk + ······
事实上 ( I - B)( I + B + B2 + ······+ Bk ) =I –
B注k+31: X(k) =B X(k-1) + f = B(B X(k-2) + f) + f =···· = Bk X(0) + ( I + B + ····+ Bk-1)f ≈ ( I – B )-1 f
(BJ ) 1.1180 Ans= 1.1180
11/18
0 BS 0
0
1/ 2 1/ 2
0
1/ 2 1 / 2 1 / 2
(BS ) 1/ 2
DL=tril(A2) B2=DL\(DL-A2) max(abs(eig(B2)))
Ans= 1/2
k

X*
lim ||
k
Xk

X*
||2
0
利用向量范数等价性, 对任意范数 || ·||
lim
k
X
k

X*
lim
k
||
Xk

X*
||
0
2/18
原方程: A X = b 计算格式: X(k+1) = B X(k) + f
设方程组的精确解为 X*,则有 X* = B X* + f
X(k+1) – X*= B(X(k) – X*)
迭代法
x(k+1) = B x(k) + f 收敛 <=> lim Bk 0 k lim J k 0 k
lim
k
i
k

0
(i = 1, 2,···, r)
| i | 1
max |
1 i r
i
|

1
(i = 1, 2,···, r)
谱半径 (B) < 1
8/18
注1: AX = b X = BX + f ( I – B )X = f
( k = 1, 2, 3, ······ )
|| (k)|| ≤ || B||k || (0)||
|| B|| < 1 所以
lim || (k) || lim || B ||k || (0) || 0
k
k
lim (k) 0
k
5/18
矩阵B 的谱
设n阶方阵B 的n个特征值为: 1 , 2 , , n
k
k
(2)
lim [X (k) X *] 0
k
lim X (k) X *
k
迭代格式 X(k+1) = B X(k) + f 收敛 !
4/18
命题 若||B||<1,则迭代法 X(k+1) =B X(k) +f 收敛
证: 由(k) = B (k-1),得 || (k)|| ≤ || B|| || (k-1)||
DL=tril(A1) B1=DL\(DL-A1) max(abs(eig(B1)))
(BS ) 2 Ans= 2
(2) A2=[2, -1, 1; 1, 1, 1; 1, 1, -2]
0 1/ 2 1/ 2
BJ


1
0
1

1 / 2 1 / 2 0
D=diag(diag(A2)) B2=D\(D-A2) max(abs(eig(Bj)))
|| B ||
|| X (k ) X (k1) ||
1 || B ||
|| X (k ) X * || || B ||k || X (1) X (0) || 1 || B ||
15/18
n
定义4.1 A=(aij)n×n, 如果 | aii | | aij |
j1
则称A为严格对角占优阵.
对矩阵A1,求A1 X = b 的Jacobi迭代法收敛, 而Gauss-Seidel迭代法发散;
对矩阵A2,求A2 X = b 的Jacobi迭代法发散, 而Gauss-Seidel迭代法收敛.
除非BJ是非负矩阵时,两种迭代法有联系。
12/18
误差估计定理 定理4.2 :设X*为方程组 AX=b 的解 若||B||<1,则对迭代格式 X(k+1) = B X(k) + f 有
ji
例4.1

9 x1 x2 x3 7 x1 10x2 x3
8
9 A 1
1 10
1 1
x1 x2 15x3 13
1 1 15
9 > |-1| + |-1| 10 > |-1| + |-1| 15 > |-1| + |-1|
谱半径ρ(B) < 1 证: 对任何 n 阶矩阵B都存在非奇矩阵P使
B = P –1 J P
其中, J 为B的 Jordan 标准型
J1

J



J2



J
r
nn
其中, Ji 为Jordan块
i 1
Ji



1


i ni ni
7/18
其中,λi 是矩阵B的特征值, 由 B = P –1 J P B k = (P –1 J P) (P –1 J P) ···(P –1 J P)= P –1 J k P
(BJ ) 1
2 A1=[1,2,-2;1,1,1;2,2,1] 1 D=diag(diag(A1)); 0 B1=D\(D-A1);
max(abs(eig(B1)))
Ans= 1.2604e-005
10/18
0 2 2 BS 0 2 3
0 0 2
k
X(k+1)–X* =B(X(k) – X* )
|| X(k+1) – X* || ≤ ||B|| || X(k) – X* ||
||X(k+1) – X(k) ||= ||(X*– X(k)) – (X* – X(k+1))|| ≥||(X*– X(k)) || – ||(X* – X(k+1))|| ≥ ||(X*– X(k))|| –||B|| ||(X* – X(k))|| = ( 1 - || B ||) ||(X* – X(k))||
(1) || X (k) X * || || B || || X (k ) X (k1) ||
1 || B ||
(2) || X (k ) X * || || B ||k || X (1) X (0) ||
1 || B ||
13/18
证 由||B||<1,有
lim X (k) X *
9/18
例 线性方程组 A X = b, 分别取系数矩阵为
1 2 2
A1 1 1
1

2 2 1
2 1 1
A2 1 1
1

1 1 2
试分析Jacobi 迭代法和 Seidel 迭代法的敛散性
相关文档
最新文档