杨氏模量实验报告重点讲义资料
杨氏模量的测定实验报告

杨氏模量的测定实验报告杨氏模量的测定实验报告引言:杨氏模量是描述材料在受力下的弹性性质的重要参数,它可以衡量材料的刚性和弹性变形能力。
本实验旨在通过测量材料的应力和应变关系,来确定杨氏模量。
实验装置:本实验使用了一台万能材料测试机、一根长而细的金属杆和一套测量应变的装置。
测试机用于施加力,金属杆则是被测材料,测量装置用于记录金属杆的应变。
实验步骤:1. 准备工作:先将测试机调整至零点,确保测量的准确性。
然后,将金属杆固定在测试机上,确保其处于水平状态。
2. 施加力:通过测试机施加不同大小的拉力,使金属杆产生相应的应变。
在每次施加力之前,要等待金属杆恢复到初始状态。
3. 记录应变:使用测量装置记录金属杆在不同拉力下的应变。
应变的计算公式为ε=ΔL/L0,其中ε表示应变,ΔL表示金属杆在拉力作用下的长度变化,L0表示金属杆的初始长度。
4. 绘制应力-应变曲线:根据测得的应变数据,计算应力,应力的计算公式为σ=F/A,其中σ表示应力,F表示施加的力,A表示金属杆的横截面积。
然后,将应变和应力绘制成应力-应变曲线。
5. 计算杨氏模量:从应力-应变曲线中选取线性部分,即弹性阶段的曲线,计算其斜率,斜率即为杨氏模量。
实验结果:根据实验数据,我们绘制了一条应力-应变曲线,通过斜率计算得到杨氏模量为XXX GPa。
这个结果表明,金属杆具有较高的刚性和弹性变形能力。
讨论:在本实验中,测得的杨氏模量与理论值相比较接近,说明实验结果的可靠性。
然而,由于实验中存在一些误差,如测量误差和材料的非完美性等,因此实际测得的数值可能会有一定的偏差。
为了提高实验的准确性,可以采取一些改进措施,例如增加测量次数、使用更精确的测量装置等。
结论:通过本实验,我们成功地测定了金属杆的杨氏模量。
杨氏模量是描述材料弹性性质的重要参数,它能够反映材料的刚性和弹性变形能力。
本实验的结果表明,金属杆具有较高的刚性和弹性变形能力,与理论值相比较接近。
杨氏模量实验报告

杨氏模量实验报告(2)杨氏模量实验报告计算杨氏模量不确定度:实验结果:【实验教学指导】1、望远镜中观察不到竖尺的像应先从望远筒外侧,沿轴线方向望去,能看到平面镜中竖尺的像。
若看不到时,可调节望远镜的位置或方向,或平面反射镜的角度,直到找到竖尺的'像为止,然后,再从望远镜中找到竖尺的像。
2、叉丝成像不清楚。
这是望远镜目镜调焦不合适的缘故,可慢慢调节望远镜目镜,使叉丝像变清晰。
3、实验中,加减法时,测提对应的数值重复性不好或规律性不好。
(1) 金属丝夹头未夹紧,金属丝滑动。
(2)杨氏模量仪支柱不垂直,使金属丝端的方框形夹头与平台孔壁接触摩擦太大。
(3)加冯法码时,动作不够平稳,导致光杠杆足尖发生移动。
(4)可能是金属丝直径太细,加砝码时已超出弹性范围。
【实验随即提问】⑴ 根据Y的不确定度公式,分析哪个量的测量对测量结果影响最大。
答:根据由实际测量出的量计算可知对Y的测量结果影响最大,因此测此二量尤应精细。
⑵ 可否用作图法求钢丝的杨氏模量,如何作图。
答:本实验不用逐差法,而用作图法处理数据,也可以算出杨氏模量。
由公式Y=可得:F= Y△n=KY△n。
式中K=可视为常数。
以荷重F为纵坐标,与之相应的ni为横坐标作图。
由上式可见该图为一直线。
从图上求出直线的斜率,即可计算出杨氏模量。
⑶ 怎样提高光杠杆的灵敏度?灵敏度是否越高越好?答:由Δn= ΔL可知,为光杠杆的放大倍率。
适当改变R和b,可以增加放大倍数,提高光杠杆的灵敏度,但这种灵敏度并非越高越好;因为ΔL=Δn成立的条件是平面镜的转角θ很小(θ≤2.5°),否则tg2θ≠2θ。
要使θ≤2.5°,必须使b≥ 4cm,这样tg2θ≈2θ引起的误差在允许范围内;而b尽量大可以减小这种误差。
如果通过减小b来增加放大倍数将引起较大误差⑷ 称为光杠杆的放大倍数,算算你的实验结果的放大倍数。
答:以实验结果计算光杠杆的放大倍数为杨氏模量实验报告2【预习重点】(1)杨氏模量的定义。
杨氏模量实验报告实验原理(3篇)

第1篇一、实验背景杨氏模量(Young's Modulus)是材料力学中的一个重要物理量,它表征了材料在受力时抵抗形变的能力。
在工程实践中,杨氏模量是衡量材料刚度的重要指标之一,对材料的选择和结构设计具有重要意义。
本实验旨在通过实验方法测定金属材料的杨氏模量,并掌握相关实验原理和操作步骤。
二、实验原理1. 杨氏模量的定义杨氏模量(E)是指材料在弹性变形范围内,单位面积上所承受的应力与相应的应变之比。
其数学表达式为:E = σ / ε其中,σ为应力,ε为应变。
应力(σ)是指单位面积上的力,其数学表达式为:σ = F / A其中,F为作用在材料上的力,A为受力面积。
应变(ε)是指材料形变与原始长度的比值,其数学表达式为:ε = ΔL / L其中,ΔL为材料形变的长度,L为原始长度。
2. 胡克定律在弹性变形范围内,杨氏模量与应力、应变之间存在线性关系,即胡克定律:σ = Eε该定律表明,在弹性变形范围内,材料的应力与应变成正比。
3. 实验原理本实验采用拉伸法测定金属材料的杨氏模量。
具体实验步骤如下:(1)将金属样品固定在实验装置上,使其一端受到拉伸力F的作用。
(2)测量金属样品的原始长度L0和受力后的长度L。
(3)计算金属样品的形变长度ΔL = L - L0。
(4)根据胡克定律,计算应力σ = F / A,其中A为金属样品的横截面积。
(5)计算应变ε = ΔL / L0。
(6)根据杨氏模量的定义,计算杨氏模量E = σ / ε。
三、实验仪器1. 拉伸试验机:用于施加拉伸力F。
2. 样品夹具:用于固定金属样品。
3. 量具:用于测量金属样品的原始长度L0、受力后的长度L和形变长度ΔL。
4. 计算器:用于计算应力、应变和杨氏模量。
四、实验步骤1. 将金属样品固定在实验装置上,确保其牢固。
2. 调整拉伸试验机,使其施加一定的拉伸力F。
3. 测量金属样品的原始长度L0。
4. 拉伸金属样品,使其受力后的长度L。
实验二 杨氏模量讲义

实验二杨氏模量的测定杨氏模量是描述固体材料抵抗形变能力的物理量,是选定机械构件材料的依据之一,是工程技术中常用的参数。
用拉伸法测杨氏模量实验,在调节、测量以及数据处理方面都有丰富的内容。
一、实验目的(1)学会用拉伸法测量金属丝的杨氏模量的方法。
(2)掌握用光杠杆装置测量微小长度变化量的原理和方法。
(3)学会用逐差法和作图法处理数据。
二、实验仪器YMC-1型杨氏模量仪(图3-9)、千分尺、钢直尺、钢卷尺和水平仪。
三、实验原理1.拉伸法测量杨氏弹性模量物体受到外力作用时要发生形变,撤除外力后物体的形变随之消失,物体完全恢复原状的形变,称为弹性形变。
若形变超过一定限度,撤除外力后物体不能完全恢复原状,仍有剩余形变,称为范性形变。
本实验仅限于弹性形变内。
设一根长为L ,横截面积为S 的均匀直金属钢丝,在受到沿长度方向的外力mgF =的作用下伸长了L ∆。
把单位截面积上所受的作用力S F /称为应力(胁强),单位长度的伸长LL ∆称为应变(胁变)。
根据胡克定律在弹性限度内应力与应变成正比,即L L Y S F ∆= 或 LS FL Y ∆= (3-3) 其中,Y 是杨氏模量,仅决定于材料本身性质,是表征固体性质的一个物理量。
在(3-3)式右边各个量中,唯有L ∆用一般长度量具无法测量(如一根长约1m 的钢丝,在外力作用下产生微小伸长,约0.2mm 的数量级)。
为此,本实验用光杠杆原理测量L ∆。
12a 3bc 0n 1n O 图3-10 光杠杆1-平面镜;2-后足;3-前足l l ∆ 2.光杠杆测量微小长度变化原理用光杠杆测量微小长度L ∆其原理见图3-10所示。
设开始平面镜的法线0on 在水平位置,在标尺上的标度线0n 发出的光通过平面镜反射后进入望远镜的像被观察到。
当金属丝伸长后,光杠杆的后足随金属丝下落L ∆,带动平面镜转一角α,法线o on 也转同一角度α。
根据光的反射定律,入射光线和反射光线的夹角为α2,于是在望远镜中可观察到标度线1n 的像。
杨氏模量的测定实验报告

杨氏模量的测定实验报告引言杨氏模量是衡量材料力学性能的重要指标之一,对于不同材料的应力-应变关系有着重要的意义。
在本次实验中,我们将通过实验测量的方式来确定一些材料的杨氏模量。
实验原理杨氏模量是指材料在一定条件下的弹性模量,即单位应力下的应变。
公式为E=σ/ε,其中E为杨氏模量,σ为应力,ε为应变。
在实验时,我们将通过测量材料的伸长量和受力大小,来确定它们的杨氏模量。
实验步骤本次实验我们选取了三种不同的材料进行测试,分别是铜线、铝线和钢丝。
以下是实验步骤:1. 首先,我们将准备好三根不同材质的线材,分别为铜线、铝线和钢丝。
2. 接下来,我们将通过量具来测量线材的长度和直径,并记录下数据。
3. 然后,我们将在实验平台上固定住线材,并用夹子将线材的一端固定,另一端挂上不同重量的砝码。
4. 接着,我们将记录下线材承受不同重量砝码时的伸长量,并计算出对应的应力和应变。
5. 最后,我们将计算出每根线材的杨氏模量,并进行比较。
实验结果以下是我们在实验中得到的数据和计算结果:铜线:长度为1.5m,直径为0.5mm,承受10N的重量时伸长1.2mm,20N时伸长2.5mm,30N时伸长3.8mm。
计算得出它的弹性模量为1.16×1011Pa。
铝线:长度为1.5m,直径为0.8mm,承受10N的重量时伸长0.9mm,20N时伸长1.8mm,30N时伸长2.6mm。
计算得出它的弹性模量为7.34×1010Pa。
钢丝:长度为1.5m,直径为0.4mm,承受10N的重量时伸长0.05mm,20N时伸长0.1mm,30N时伸长0.15mm。
计算得出它的弹性模量为2.00×1011P a。
讨论通过实验测量,我们成功地确定了铜线、铝线和钢丝的弹性模量。
我们可以看到,不同材料的弹性模量存在着明显的差异,这是由于它们的材质和结构不同所导致的。
铜线的弹性模量最大,而铝线的弹性模量则最小,这也符合我们对材料性能的一般认识。
测定杨氏模量的实验报告

一、实验目的1. 理解杨氏模量的概念及其在材料力学中的重要性;2. 掌握杨氏模量的测定方法,包括实验原理、实验步骤和数据处理;3. 培养学生严谨的实验态度和实际操作能力。
二、实验原理杨氏模量(E)是描述材料在弹性范围内应力与应变成正比关系的物理量,其定义式为:E = σ/ε,其中σ为应力,ε为应变。
本实验采用拉伸法测定杨氏模量,实验原理如下:1. 将金属丝固定在拉伸试验机上,一端固定,另一端施加拉伸力;2. 测量金属丝的原始长度L0和受力后的长度L;3. 计算金属丝的伸长量ΔL = L - L0;4. 根据胡克定律,在弹性范围内,应力σ与伸长量ΔL成正比,即σ = Eε;5. 由上述公式,可得杨氏模量E = σΔL/(L0A),其中A为金属丝的横截面积。
三、实验仪器与材料1. 实验仪器:杨氏模量测定仪、光杠杆、望远镜、标尺、千分尺、游标卡尺、米尺、砝码、金属丝等;2. 实验材料:金属丝(长度约1米,直径约0.1毫米)。
四、实验步骤1. 准备实验仪器,检查设备是否完好;2. 将金属丝固定在杨氏模量测定仪的支架上,调整支架使金属丝铅直;3. 使用游标卡尺测量金属丝的直径d,计算横截面积A = πd²/4;4. 将金属丝一端固定在支架上,另一端连接到拉伸试验机;5. 在金属丝上施加一定的拉伸力,观察并记录金属丝的原始长度L0;6. 拉伸金属丝至一定长度,记录受力后的长度L;7. 重复步骤5和6,进行多次测量,以减小误差;8. 计算金属丝的伸长量ΔL和杨氏模量E。
五、数据处理与结果分析1. 将实验数据整理成表格,包括金属丝的直径、原始长度、受力后的长度、伸长量和杨氏模量;2. 计算每组数据的平均值,以减小误差;3. 分析实验结果,与理论值进行比较,探讨误差来源。
六、实验结论1. 通过本实验,成功测定了金属丝的杨氏模量;2. 实验结果表明,本实验测得的杨氏模量与理论值基本一致;3. 实验过程中,操作规范,数据处理合理,误差在可接受范围内。
杨氏模量_实验报告

一、实验目的1. 了解杨氏模量的概念及其在材料力学中的应用。
2. 掌握杨氏模量的测定方法,即拉伸法。
3. 培养实验操作技能和数据处理能力。
二、实验原理杨氏模量(E)是描述材料在受到拉伸或压缩时抵抗形变的能力的物理量。
根据胡克定律,在弹性限度内,材料的相对伸长(或压缩)量与外力成正比,即:ΔL/L = F/S E其中,ΔL为材料的伸长量,L为材料的原始长度,F为施加在材料上的外力,S为材料的横截面积,E为杨氏模量。
本实验采用拉伸法测定杨氏模量,通过测量材料在拉伸过程中产生的伸长量,结合材料的原始长度和横截面积,计算出杨氏模量。
三、实验仪器与材料1. 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺)2. 螺旋测微器3. 游标卡尺4. 钢直尺5. 金属丝(直径约为0.5mm)四、实验步骤1. 将金属丝一端固定在杨氏模量测定仪的拉伸仪上,另一端连接到重物托盘。
2. 调整螺栓,使金属丝处于铅直状态。
3. 使用游标卡尺测量金属丝的直径,并记录数据。
4. 将望远镜和标尺放置在光杠杆前方约1.2m处。
5. 调节望远镜和标尺,使标尺铅直,光杠杆平面镜平行于标尺。
6. 观察望远镜中的标尺像,记录初始像的位置。
7. 挂上重物,使金属丝产生一定的伸长量。
8. 观察望远镜中的标尺像,记录新的像的位置。
9. 计算金属丝的伸长量,并记录数据。
10. 重复步骤7-9,进行多次测量,取平均值。
五、数据处理与结果分析1. 计算金属丝的横截面积S,S = π (d/2)^2,其中d为金属丝直径。
2. 计算金属丝的相对伸长量ΔL/L,ΔL/L = ΔL/L0,其中L0为金属丝的原始长度,ΔL为金属丝的伸长量。
3. 根据公式E = F/S ΔL/L,计算杨氏模量E。
4. 计算多次测量的平均值,并求出标准偏差。
六、实验结果1. 金属丝直径d:0.48mm2. 金属丝原始长度L0:500mm3. 金属丝伸长量ΔL:0.5mm4. 金属丝横截面积S:0.185mm^25. 杨氏模量E:2.10×10^11 Pa七、结论通过本实验,我们成功地测定了金属丝的杨氏模量,结果为2.10×10^11 Pa。
大学物理实验讲义实验杨氏模量的测定

实验 1 拉伸法测量杨氏模量杨氏弹性模量(以下简称杨氏模量)是表征固体材料性质的重要的力学参量,它反映材料弹性形变的难易程度,在机械设计及材料性能研究中有着广泛的应用。
其测量方法有静态拉伸法、悬臂梁法、简支梁法、共振法、脉冲波传输法,后两种方法测量精度较高;本实验采用静态拉伸法测量金属丝的杨氏模量,因涉及多个长度量的测量,需要研究不同测量对象如何选择不同的测量仪器。
【实验目的】1. 学习用静态拉伸法测量金属丝的杨氏模量。
2. 掌握钢卷尺、螺旋测微计和读数显微镜的使用。
3. 学习用逐差法和作图法处理数据。
4. 掌握不确定度的评定方法。
【仪器用具】杨氏模量测量仪(包括砝码、待测金属丝)、螺旋测微计、钢卷尺、读数显微镜【实验原理】1. 杨氏模量的定义本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用后的伸长或缩短。
按照胡克定律:在弹性限度内,弹性体的应力F与应变L成正比。
SL设有一根原长为l ,横截面积为S 的金属丝(或金属棒),在外力F 的作用下伸长了L ,则根据胡克定律有F E(L)(1-1)SL式中的比例系数E称为杨氏模量,单位为Pa(或N·m –2)。
实验证明,杨氏模量E与外力F 、金属丝的长度L 、横截面积S 的大小无关,它只与制成金属丝的材料有关。
12若金属丝的直径为d ,则S d 2,代入(1-1)式中可得4E 4d F2L L1-2)1-2)式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝伸长量较小,杨氏模量小的金属丝伸长量较大。
因此,杨氏模量反映了材料抵抗外力引起的拉伸(或压缩)形变的能力。
实验中,测量出F、L、d、L 值就可以计算出金属丝的杨氏模量E 。
2. 静态拉伸法的测量方法测量金属丝的杨氏模量的方法就是将金属丝悬挂于支架上,上端固定,下端加砝码对金属丝F ,测出金属丝的伸长量L ,即可求出E 。
金属丝长度L 用钢卷尺测量,金属丝直径d 用螺旋测微计测量,力F 由砝码的重力F mg 求出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学物理实验报告
课程名称:大学物理实验
实验名称:金属丝杨氏模量的测定
学院:机电工程学院专业班级:能源与动力工程152 学生姓名:王启威学号:5902615035 实验地点:106 座位号:
实验时间:第九周星期一下午4点开始
一、实验目的:
1.学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原理.
2.学会用“对称测量”消除系统误差.
3.学会如何依实际情况对各个测量量进行误差估算.
4.练习用逐差法、作图法处理数据.
二、实验原理:
物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。
设有一截面为S,长度为L的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了d,其单位面积截
面所受到的拉力F/S称为应力,而单位长度的伸长量d/L称为应变。
根据胡克定律,在弹性形变范围内,棒状(或线状)固体应变与它所受的应力成正
比:F/S=E(d/L) 其比例系数E取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。
E=FL/Sd (1)
上图是光杠杆镜测微小长度变化量的原理图。
左侧曲尺状物为光杠杆镜,M是反射镜,b为光杠杆镜短臂的杆长,2d为光杆杆平面镜到尺的距离,当加减砝码时,b边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M镜法线的方向,使得钢丝原长为L时,从一个调节好的位于图右侧的望远镜看M镜中标尺像的读数为n0;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为n1。
这样,钢丝的微小伸长量d,对应光杠杆镜的角度变化量θ,而对应的光杠杆镜中标尺读数变化则为Δn。
由光路可逆可以得知,Δn对光杠杆镜的张角应为2θ。
从图中用几何方法可以得出:
tanθ≈θ
=d/b (2)
tan2θ≈2θ=|n1-n0| /D=Δn/D (3)
将(2)式和(3)式联列后得:
d=(b/2D)Δn (4)
式(4)中的2D/b叫做光杠杆镜的放大倍数,由于D>>b,所以Δn>>d,
从而获得对微小量的线性放大,提高了d的测量精度。
实验总结:光杠杆后尖脚至于夹头上且要垂直圆孔面,这一点我们在做实验的时候忽略了,我那时就只把两前尖脚摆放好,老师发现后给我们纠正并耐心讲解;就是用望远镜在镜子中找尺子时,没有找到,我们以为没有对准,其中一人就把手指放在镜子那里,另一个人能从望眼镜中看到手指,我们重复而好几次,都找不原因呢,然后我们就去请教老师,老师就把物镜调焦按钮调了一调,就解决了我们的问题,老师并且给我们讲解了物镜的作用,这使我们受益匪浅。