无缝线路理论知识
无缝线路知识点总结

无缝线路知识点总结一、概念无缝线路(Seamless Rail)的概念最早出现在城市交通规划领域。
它是指各种交通方式之间具有良好的衔接和互联性,让乘客能够在不同的交通工具之间实现“无缝”的转换和连接。
这种交通系统的特点是,不同的交通工具之间的运营模式有机组合,可以实现更加便捷、高效的出行体验。
无缝线路系统的设计理念是让出行者在城市中能够轻松、流畅地进行出行。
无论是通过地铁、公交车、出租车或共享单车等交通方式,都能够无缝地衔接,并从中获得最佳的出行体验。
这种综合性的交通系统可以实现不同出行方式之间的互联互通,更好地满足城市居民的出行需求。
二、发展历程无缝线路的发展历程可以追溯到19世纪末、20世纪初的城市交通规划和建设阶段。
当时,基于城市化的快速发展和出行需求的增加,人们开始思考如何通过不同的交通方式实现城市交通的快捷和便利。
逐步形成了地铁、公交车等交通方式的运营体系,并在不同交通工具之间进行衔接和互联。
20世纪90年代以来,随着城市交通的快速发展和信息技术的应用,无缝线路的概念逐渐被提出并开始得到实践。
一些先进的城市开始将地铁、公交车、出租车和共享单车等交通方式结合起来,构建完善的无缝线路系统。
这些城市的做法不仅受到了国内外业界的广泛关注,也为其他城市提供了借鉴和参考。
近年来,随着城市交通规划和建设的不断深化和完善,越来越多的城市开始关注如何构建无缝线路系统,提升城市交通运营的效率和品质。
一些国内城市如上海、深圳、广州等,也在不断推动无缝线路系统的建设,取得了一定的成果和经验。
三、特点1. 多样性:无缝线路系统具有多样性和综合性的特点,可以融合地铁、公交车、出租车、共享单车等多种交通方式,在城市中实现多向度、多维度的出行选择。
2. 互联互通:不同的交通工具之间通过互联互通的衔接,可以实现无缝的转换和连接。
出行者可以通过一张交通卡或手机APP,实现不同交通方式的无缝衔接,提高出行效率和便捷性。
3. 便捷高效:无缝线路系统的运营模式具有便捷高效的特点,出行者可以根据自身的出行需求和目的地选择最佳的交通方式,实现出行的高效和便捷。
无缝线路复习

图6-8
f0表示轨道存在的原始弯曲矢度,依横向位移随 钢轨温升的变化特征,曲线变化可分为三个阶段 : 第一阶段: O’→A:轨温上升,因轨道横向位移 受到道床的约束,轨道保持原始弯曲的状态,横 向位移不发生增长。 第二阶段: A→B:轨道随钢轨温升发生横向位移, 轨道的弯曲矢度进一步扩大,习惯称为胀轨阶段。 第三阶段: B→C(经过S点):钢轨温升超过 △TB之后,轨道将发生突发性横移,即位移骤然 扩大,并可能伴随有轻微响声,习惯称为跑道。
温度应力式无缝线路的发展经历了三个阶段: 普通无缝线路:无缝线路的轨条长度不长,考虑 自动闭塞区段绝缘接头的设臵、桥梁、隧道、道 岔衔接及施工养护维修的方便,其长轨长度一般 为1-2km,两端铺2-4对标准轨组成的“缓冲区”。 区间无缝线路:随着胶接绝缘接头技术的推广应 用及无缝线路施工技术的完善,为满足列车提速 的需要,尽量减少钢轨接头的存在,把原来长12km的长轨条延长,使长轨长度达到或接近两个 车站之间的长度。
无缝线路轨道稳定性主要研究高温条件下轨道 横向位移与钢轨温度力的变化规律,并针对轨 道及其运营环境条件,确定相应的轨温变化幅 度及横向变形位移容许值,制定相应的轨道设 计标准及线路维修标准。 无缝线路轨道在横向受到道床的约束,由于钢 轨制造及列车运行等原因,导致轨道方向不良, 即存在所谓的“轨道原始弯曲”。在上述条件 下,无缝线路轨道的横向位移f与钢轨温升幅 度△T之间存在着如图6-8的关系。
6.5 桥上无缝线路
6.5.1 桥上无缝线路概况 6.5.2 桥上无缝线路的附加力 6.5.3 伸缩力、挠曲力计算方法 6.5.4 桥上无缝线路设计
6.5.2 桥上无缝线路的附加力
桥上无缝线路设计除计算长钢轨的温度力 作用之外,还应计算桥上纵向附加力作用, 包括:伸缩力、挠曲力、制动力及断轨力。
第十讲无缝线路

1
第六章 无缝线路
本讲主要内容
概述 无缝线路基本原理 无缝线路纵向温度力分布 无缝线路稳定性分析 无缝线路结构设计 桥上无缝线路 跨区间无缝线路
长期运营条件下中和轨温会逐渐下降,其机理尚不明!
15
三、无缝线路纵向温度力分布
1、线路纵向阻力*
接头阻力、扣件阻力、道床纵向阻力 均是抵抗钢轨自由伸缩的作用力
扣件阻力与道床阻力是串联关系,它们与接头阻力是并联关系
这三种阻力均具有滑动摩擦力的性质,只要有位移发生即达到滑动 极限值,与弹簧性质不同,不随钢轨伸缩位移的增大而增大
F 2( 1 2 ) P
橡胶垫板扣件 1 2 0.8
小阻力扣件实现途径: 减小扣压力 降低摩擦系数
19
三、无缝线路纵向温度力分布
3、扣件阻力*
扣件阻力随钢轨位移的增加而增大。当钢轨位移达到某一定值之后, 钢轨产生滑移,阻力不再增加
轨下胶垫产生残余压缩变形,以致 扣件阻力下降
基地吊装
长钢轨运输
6
一、概述
无缝线路关键技术
机械化铺轨技术
基地焊接
铺轨列车
7
一、概述
无缝线路关键技术
机械化铺轨技术
1
2
3
4
前进方向
8
一、概述 无缝线路关键技术
机械化铺轨技术
5
6
7
布枕过程
9
一、概述 无缝线路关键技术
无缝线路基本理论

力也不再增大;在正常轨道条件下,钢筋混凝土轨枕
位移小于2mm,木枕位移小于1mm,道床纵向阻力 呈斜线增长,钢筋混凝土枕轨道道床纵向阻力大于木 枕轨道。 在无缝线路设计中,采用轨枕位移为2 mm时相应 的道床纵向阻力值,见表8—3。
二、钢轨温度力与锁定轨温
无缝线路的特点是轨条长,当轨温变化时,钢轨要
据铁道科学研究院试验,如果混凝土轨枕下采用橡
胶垫板,不论是扣板式扣件还是弹条式扣件,其摩擦 系数为:μ1+μ2=0.8。 扣压力P的大小与螺栓所 受拉力的大小有关。以扣板 式扣件为例:
b P P拉 ab
式中P拉——扣板螺栓拉力, 与螺帽扭矩有关; a、b——扣板着力点至 螺栓中心的距离。 扣板受力图
b P拉 扣件摩阻力F的表达式为: F 2( 1 2 ) ab
实测资料指出,在一定的扭矩下,扣件阻力随钢轨
位移的增加而增大。当钢轨位移达到某一定值之后,
钢轨产生滑移,阻力不再增加。
垫板压缩和扣件局部磨损,将导致扣件阻力下降, 通常垫板的压缩与扣件的磨损按1mm估计。 此外,列车通过时的振动,会使螺帽松动,扭矩下 降,导致扣件阻力下降。为此规定:扣板扣件扭矩应 保持在80~120N· m;弹条扣件为100~150N· m。
一根钢轨所受的温度力Pt 为:
Pt t F 2.50t F (N)
l l t
t E t E
l E t l
Pt t F 2.50t F
以上为无缝线路温度应力和温度力计算的基本公式。 由此可得知: 1.在两端固定的钢轨中所产生的温度力,仅与轨
度力,这时有多大温度力作用于接头上,接头就提供 相等的阻力与之平衡。当温度力大于接头阻力时,钢 轨才能开始伸缩。因此在克服接头阻力阶段,温度力 的大小等于接头阻力,即:Pt = 2.5ΔtH· F = PH (N)
无缝线路

1.什么是无缝线路?用具有相当长度的焊接长度长钢轨代替普通标准钢轨的轨道称为无缝线路。
2.什么是温度应力式无缝线路,温度应力式无缝线路的发展经历了那三个阶段?·在运营过程中,随着轨温的变化,每段无缝线路除两端的伸缩区放散部分温度应力外,通常不放散温度应力,它有固定的锁定轨温。
·普通无缝线路、区间无缝线路、跨区间无缝线路3.什么是区间无缝线路?什么是跨区间无缝线路?·随着胶接绝缘接头技术的推广应用及无缝线路施工技术的完善,为满足列车提速的需要,尽量减少钢轨接头的存在,把原来长1-2km 的长轨条延长,使长轨长度达到或接近两个车站之间的长度。
·为了最大限度减少钢轨接头,延长轨条长度,把区间无缝线路的长轨条延长与车站道岔焊接在一起,成为跨区间无缝线路。
4.为什么无缝线路长钢轨理论上可以无限长?钢轨伴随轨温变化的伸缩变形完全受到约束时,其温度应力仅仅与其轨温变化幅度呈线性关系,而与钢轨的长度无关。
只要能够实现钢轨的完全约束,无缝线路可以任意的增加长度而不会增加钢轨应力。
5.无缝线路温度力与什么有关,其计算公式是什么?轨温。
σ=2.48Δt6.什么是无缝线路稳定性,无缝线路稳定性的主要研究内容是什么?·处于高温条件下的无缝线路轨道易于发生横向位移,形成线路方向不良,影响列车行驶的平稳性,甚至胀轨跑道,引发列车脱轨事故。
·高温条件下轨道横向位移与钢轨温度力的变化规律7.简述无缝线路胀轨跑道的含义?·轨道随钢轨温升发生横向位移,轨道的弯曲矢度进一步扩大,习惯称为胀轨阶段。
之后,轨道将发生突发性横移,即位移骤然扩大,并可·钢轨温升超过△TB能伴随有轻微响声,习惯称为跑道。
8.无缝线路稳定性的影响因素?工程上可采取那些措施提高无缝线路的稳定性?钢轨的温升幅度、轨道原始不平顺、道床横向阻力、轨道框架刚度。
9.桥上无缝线路有那些纵向附加力?伸缩力、挠曲力、制动力、断轨力10.什么是桥上无缝线路伸缩附加力?伴随温度变化,因梁轨相对位移而产生的钢轨纵向附加力。
无缝线路的知识点梳理总结

无缝线路的知识点梳理总结无缝线路的知识点梳理总结无缝线路(seamless routing)是指在计算机网络中,当一条物理链路发生故障时,网络能够自动将数据流量切换到其他可用路径上,以确保网络通信的可靠性和连续性。
无缝线路的实现依靠路由协议和相关技术,本文将对无缝线路的相关知识点进行梳理总结。
一、无缝线路的基本原理无缝线路的基本原理是通过建立多条可用路径,当某条路径发生故障时,可以快速切换到其他可用路径,使网络服务不中断。
为实现这一目标,需要引入以下几个关键技术:1. 冗余路径:要实现无缝线路,必须建立多条冗余路径,可以是物理链路的冗余或者逻辑路径的冗余。
这样,当某条路径发生故障时,可以切换到其他可用路径,避免中断网络通信。
2. 快速切换:当发生故障时,需要尽快切换到其他可用路径。
为了实现快速切换,可以使用静态路由或动态路由的方式,在路由表中保存多条路径信息,当发生故障时,路由协议可以根据预先设定的优先级和路径状态进行路径切换。
3. 路由协议:路由协议是实现无缝线路的关键。
常见的路由协议有RIP、OSPF、BGP等。
这些协议可根据网络中设备的状态信息,自动更新路由表,选择最优路径,实现无缝线路。
二、无缝线路的优缺点无缝线路的实现带来了一些明显的优点和一些潜在的缺点。
1. 优点:(1)提高网络的可靠性:通过建立冗余路径和实现快速切换,无缝线路可以显著提高网络的可靠性和容错性。
当某条路径发生故障时,可以快速切换到其他可用路径,避免网络中断。
(2)提高网络的可用性:无缝线路可以提高网络的可用性,确保网络服务的连续性。
即使发生故障,网络可以继续运行,用户感知不到中断。
(3)提高网络的性能:通过路由协议选择最优路径,无缝线路可以优化网络的性能。
当发生故障时,可以根据预设的优先级和路径状态选择最佳替代路径,避免网络拥堵和性能下降。
2. 缺点:(1)部署复杂:无缝线路需要在网络中部署多条冗余路径和相关设备,增加了网络的复杂性。
无缝线路-1

三、无缝线路的结构
无缝线路的平面结构分为固定区、伸缩区、 无缝线路的平面结构分为固定区、伸缩区、缓冲 区等组成部分。(以下分别作简要介绍) 。(以下分别作简要介绍 区等组成部分。(以下分别作简要介绍
25m 12.5m 12.5m 25m 25m 12.5m 12.5m 25m
缓冲区
伸缩区
固定区 伸缩区 缓冲区
无 缝 线 路
第一节
概
述
一、基本概念
• 用普通标准钢轨铺设成的线路称为普通线路,普 用普通标准钢轨铺设成的线路称为普通线路, 通线路的钢轨与钢轨之间用夹板、 通线路的钢轨与钢轨之间用夹板、螺栓等联结零 件进行连接, 件进行连接,相邻钢轨的轨端预留着提供钢轨伸 缩的轨缝。 缩的轨缝。 • 为减少钢轨接头的不良影响,人们将钢轨的轨端 为减少钢轨接头的不良影响, 进行焊接,这样,就形成了无缝线路,这是与普 进行焊接,这样,就形成了无缝线路, 通线路的结构的根本区别。 通线路的结构的根本区别。 • 用普通标准钢轨焊接成具有一定长度的长轨条所 铺设成的轨道称为无缝线路。 铺设成的轨道称为无缝线路。
四、无缝线路的类型
无缝线路分为锁定应力式和放散应力式两大类, 无缝线路分为锁定应力式和放散应力式两大类,其 放散应力式又可以分为: 中,放散应力式又可以分为:定期放散应力式和自 动放散应力式。 动放散应力式。
锁定应力式 无缝线路 放散应力式 自动放散应力式 定期放散应力式
1、锁定式无缝线路
锁定式无缝线路,用线路配件将钢轨锁定, 锁定式无缝线路,用线路配件将钢轨锁定, 无论轨温上升还是下降, 无论轨温上升还是下降,通过多种阻力与温 度力相抗衡,使钢轨内应力得到锁定, 度力相抗衡,使钢轨内应力得到锁定,不让 其释放。 其释放。如地面碎石道床线路及遂道内的整 体道床线路均采用锁定应力式无缝线路。 体道床线路均采用锁定应力式无缝线路。
无缝线路的知识点总结归纳

无缝线路的知识点总结归纳无缝线路的知识点总结归纳导语:在现代社会中,无缝线路已经成为人们生活和工作中必不可少的一部分。
它不仅可以实现人与人之间的高效通信,还可以支持各种大型网络和云计算应用。
本文旨在总结和归纳无缝线路的相关知识点,帮助读者深入了解和应用这一技术。
第一部分:无缝线路的基础概念1. 什么是无缝线路?无缝线路是一种能够实现用户间通信并在网络故障时自动切换到备用路由的通信系统。
它可以在不中断服务的情况下实现数据传输,并能够提供高可靠性和容错能力。
2. 无缝线路的组成无缝线路由路由器、交换机、光纤等组成。
路由器负责将数据包转发到目标地址,交换机则提供高速数据转发和连接多个用户,而光纤则作为数据的物理介质进行传输。
3. 无缝线路的工作原理无缝线路的工作原理基于路由表和转发表的匹配。
路由器通过比对数据包的目标地址,找到符合条件的转发规则,并将数据包发送到相应的目标地址。
当网络发生故障时,无缝线路会自动切换到备用路由,以保证数据传输的连续性和可靠性。
第二部分:无缝线路的应用1. 企业网络无缝线路可以在企业网络中实现跨网络的通信和数据传输。
它可以提供高速、可靠的连接,支持企业内部的各种应用和系统之间的数据交换。
2. 通信网络无缝线路在通信网络中扮演着关键的角色。
它可以实现电话、视频、互联网等各种通信方式的无缝切换和传输,提供高质量的通信服务。
3. 云计算和大数据无缝线路为云计算和大数据应用提供了高速、可扩展和可靠的网络连接。
它可以支持各种虚拟化技术,实现数据中心之间的快速数据传输和资源共享。
第三部分:无缝线路的优缺点1. 优点a. 高可靠性:无缝线路可以通过备用路由在网络故障时自动切换,保证数据传输的连续性。
b. 高效性:无缝线路提供了高速、低延迟的数据传输,支持大规模的数据交换和通信。
c. 容错能力:无缝线路可以通过多路径转发数据,避免单点故障导致的数据丢失。
d. 可扩展性:无缝线路可以根据需求扩展带宽和连接数,满足不断增长的数据传输需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无缝线路理论知识一、发展无缝线路的意义无缝线路是把标准长度的钢轨焊接而成的长钢轨线路,又称焊接长钢轨线路。
它是当今轨道结构的一项重要新技术,世界各国竞相发展。
在普通线路上,钢轨接头是轨道的薄弱环节之一,由于接缝的存在,列车通过是发生冲击和振动,并伴随有打击噪声,冲击力可达到非接头区的三倍以上。
接头冲击力影响行车的平稳和旅客的舒适,并促使道床破坏、线路状况恶化、钢轨及连接零件的使用寿命缩短、维修劳动费用的增加。
养护线路接头区的费用占养护总经费的35%以上;钢轨因轨端损坏而抽换的数量较其他部位大2-3倍;重伤钢轨60%发生在接头区。
随着列车轴重、行车速度和密度的不断增长,上述缺点更加突出,更不能适应现代高速重载运输的需要。
为了改善钢轨接头的工作状态,人们从本世纪三十年代开始至今,一直致力于这方面的研究与实践,采用各种方法将钢轨焊接起来构成无缝线路。
这中间首先遇到了接头焊接质量问题;其次就是长轨在列车动力和温度力共同作用下的强度和稳定问题;还有无缝线路设计、长轨运输、铺设施工、养护维修等一系列理论和技术问题。
随着上述一系列问题的逐步解决,无缝线路在世界各国得到了广泛的运用。
无缝线路由于消灭了大量的接头,因而具有行车平稳、旅客舒适,同时机车车辆和轨道的维修费用减少,使用寿命延长等一系列优点。
有资料表明,从节约劳动力和延长设备寿命方面计算,无缝线路比有缝线路可节约维修费用30%~70%。
在桥梁上铺设无缝线路,可以减轻列车车论对桥梁的冲击,改善列车和桥梁的运营条件,延长设备使用寿命,减少养护维修工作量。
这些优点在行车速度提高时尤为显著。
二、无缝线路的类型无缝线路根据处理钢轨内部温度应力方式的不同,可分为温度应力式和放散温度应力式两种。
温度应力事无缝线路是由一根焊接长钢轨及其端2~4根标准轨组成,并采用普通接头的形式。
无缝线路铺设锁定后,焊接长钢轨因受线路纵向阻力的抵抗,两端自由伸缩受到一定的限制,中间部分完全不能伸缩,因而在钢轨内部产生很大的温度力,其值随轨温变化而异。
温度应力式无缝线路结构简单,铺设维修方便,因而得到广泛应用。
对于直线轨道,铺设50kg/m和60kg/m钢轨,每公里配量1840根混凝土枕时,铺设温度应力式无缝线路允许轨温差分别为100℃和108℃。
放散温度应力式无缝线路,又分为自动放散式和定期放散式两种,适用与年轨温差较大的地区。
自动放散式是为了消除和减少钢轨内部的温度力,允许长轨条自由伸缩,在长轨两端设置钢轨伸缩接头,为了防止钢轨爬行,在长轨中部使用特制的中间扣件。
由于结构复杂,已不使用。
定期放散温度应力式无缝线路的结构形式与温度应力式相同。
根据当地轨温条件,把钢轨内部的温度应力每年调整放散~2次。
放散时,松开焊接长钢轨的全部扣件,使它自由伸缩,放散内部温度应力,应用更换缓冲区不同长度调节轨的办法,保持必要的轨缝。
每次放散应力许耗费大量劳动力,作业很不方便。
放散温度应力式无缝线路曾在前苏联和我国年温差较大的地区使用,目前已不使用。
现在世界各国主要采用温度应力式无缝线路。
三、国内外无缝线路发展概况随着无缝线路一系列理论和技术问题的解决,于五十年代无缝线路才得以迅速发展。
德国是无缝线路发展最早的国家,1926年就开始铺设,到50年代,已将无缝线路作为国家的标准线路。
到60年代已开始试验把无缝线路和道岔焊连在一起,至今大部分道岔已焊成无缝道岔。
美国虽然从30年代开始铺设无缝线路,但较进展缓慢,直到70年代才得以迅速发展,以年平均铺设7 590km的速度增长,最多时年铺设达到10 000km。
到1979年底无缝线路已超过12万km,是目前全世界铺设无缝线路最多的国家。
日本于50年代开始铺设无缝线路,现已铺设5 000余公里,其特点是每段无缝线路长1300km,在长轨条两端设置伸缩调节器。
近年来在新干线上采用一次性铺设无缝线路技术。
原苏联由于大部分地区温度变化幅度较大,对无缝线路的发展有所影响,直到1956年才正式开始铺设。
近十年发展较快,无缝线路已达5 000余公里。
我国无缝线路从1957年开始铺设,开始时采用电弧焊法,分别在北京、上海各试铺了1km,以后逐步扩大。
后来在工厂采用气压焊或接触焊将钢轨焊成250~500m的长轨条,然后运至铺设地点在现场用铝热焊或小型气压焊将其焊连成设计长度。
一般情况下,一段无缝线路长度为1 000~2 000m。
每段之间铺设2~4根调节轨,接头采用高强螺栓连接。
目前京广、京沪、京沈、陇海等主要干线均已铺设无缝线路。
至今无缝线路已铺设约2.46万km。
90年代开始了对超长无缝线路的研究和铺设工作,至今已在北京、上海、郑州等路局铺设了超长无缝线路近千公里。
一、钢轨温度力、伸缩位移与轨温变化的关系无缝线路的特点是轨条长,当轨温变化时,钢轨要发生伸缩,但由于有约束作用,不能自由伸缩,在钢轨内部要产生很大的轴向温度力。
为保证无缝线路的强度和稳定,需要了解长轨条内温度力及其变化规律。
为此首先要分析温度力、伸缩位移与轨温变化及阻力之间的关系。
一根长度为l可自由伸缩的钢轨,当轨温变化Δt℃时,其伸缩量为(5-1)式中α--钢轨的线膨胀系数,取11.8×10-6/℃;l --钢轨长度(mm);Δt--轨温变化幅度(℃)。
如果钢轨两端完全被固定,不能随轨温变化而自由伸缩,则将在钢轨内部产生温度应力。
根据虎克定律,温度应力σt为(5-2)式中E——钢的弹性模量,E=2.1×105Mpa;εt——钢的温度应变。
将E、α之值带入式(5-2),则温度应力为:(5-3)一根钢轨所受的温度力Pt为:(5-4)式中 F--钢轨断面积(mm)。
公式(5-1、5-2、5-4)即为无缝线路温度应力和温度力计算的基本公式。
由此可知:1.在两端规定的钢轨中所产生的温度力,仅与轨温变化有关,而与钢轨本身长度无关。
因此,从理论上讲,钢轨可以焊成任意长,且对轨内温度力没有影响,控制温度力大小的关键是如何控制轨温变化幅度Δt。
2.对于不同类型的钢轨,同一轨温变化幅度产生的温度力大小不同。
如轨温变化1℃所产生的温度力。
对于75、60、50kg/m轨分别是23.6、19.2、16.3kN。
3.无缝线路钢轨伸长量与轨温变化幅度Δt,轨长l有关,与钢轨断面积无关。
为降低长轨条内的温度力,需选择一个适宜的锁定轨温,又称零应力状态的轨温。
在铺设无缝线路中,将长轨条始终端落槽就位时的平均轨温称为施工锁定轨温。
施工锁定轨温应在设计锁定轨温允许变化范围之内。
锁定轨温是决定钢轨温度力水平的基准,因此根据强度、稳定条件确定锁定轨温是无缝线路设计的主要内容。
钢轨温度不同于气温。
影响轨温的因素比较复杂,它与气候变化、风力大小、日照强度、线路走向和所取部位等有密切关系。
根据多年观测,最高轨温Tmax要比当地最高气温高18~25℃,最低轨温Tmin比当地的最低气温低2~3℃。
计算时通常取最高轨温等于当地最高气温加20℃,最低轨温等于最低气温。
表5-1为我国主要地区的轨温资料。
第二节无缝线路纵向受力分析线路纵向阻力轨温变化时,影响钢轨两端自由伸缩的原因是来自线路纵向阻力的抵抗,它包括接头阻力、扣件阻力及道床纵向阻力。
(一)接头阻力钢轨两端接头处由钢轨夹板通过螺栓拧紧,产生阻止钢轨纵向位移的阻力,称接头阻力。
接头阻力由钢轨夹板间的摩擦力和螺栓的抗剪力提供。
为了安全,我国接头阻力PH仅考虑钢轨与夹板间的摩擦力。
图5-1 夹板受力图式中s——钢轨与夹板间对应1枚螺栓的摩擦力;n——接头一端的螺栓数。
摩擦力的大小主要取决于螺栓拧紧后的张拉力P和钢轨与夹板之间的摩擦系数f。
图5-1为夹板的受力情况。
接头螺栓拧紧后产生的拉力P在夹板的上、下接触面上将产生分力。
图中T为水平分力;N为法向分力,它垂直于夹板的接触面;R为N与T的合力,它与N的夹角等于摩擦角φ。
由图可知:∵T=P/2,则有:式中P——一枚螺栓拧紧后的拉力(kN);α——夹板接触面的倾角,tanα=i;i——轨底顶面接触面斜率,50、75kg/m钢轨:i=1/4;43、60kg/m钢轨:i=1/3。
当钢轨发生位移时,夹板与钢轨接触面之间将产生摩阻力F,F将阻止钢轨的位移。
一枚螺栓对应有四个接触面,其上所产生的摩阻力之和为s,则有:(5-5)对应于一枚螺栓所提供的摩阻力可作如下分析。
钢的摩擦系数一般为0.25,而f=tan ,则有=arctan0.25,又有α=arctani。
将以上相应值代入求s的公式,可得到:70、50kg/m钢轨:s=1.03P;60、43kg/m钢轨:s=0.90P。
上式表明,一跟螺栓的拉力接近它所产生的接头阻力。
在此情况下,接头阻力PH的表达式,可写成:接头阻力与螺栓材质、直径、拧紧程度和夹板孔数有关。
在其他条件均相同的情况下,螺栓的拧紧程度就是保持接头阻力的关键。
扭力矩T与螺栓拉力的关系可用经验公式表示:式中T ——拧紧螺帽时的扭力矩(N•m);K ——扭矩系数,K=0.18~0.24;P——螺栓拉力(kN);D ——螺栓直径(mm)。
列车通过钢轨接头是产生的振动,会使扭力矩下降,接头阻力值降低。
据国内外资料,可降低到静力测定值的40%~50%。
所以,定期检查扭力矩,重新拧紧螺帽,保证接头阻力值在长期运营过程中保持不变,是一项十分重要的措施。
维修规则规定无缝线路钢轨接头必须采用10.9级螺栓,扭矩应保持在700~900 N •m。
表5-2所示为计算时采用的接头阻力值。
(二)扣件阻力中间扣件和防爬设备抵抗钢轨沿轨枕面纵向位移的阻力,称扣件阻力。
为了防止钢轨爬行,要求扣件阻力必须大于道床纵向阻力。
扣件阻力是由钢轨与轨枕板面之间的摩擦力和扣压件与轨底扣着面之间的摩阻力所组成。
摩阻力的大小取决于扣件扣压力和摩擦系数的大小。
一组口家的阻力F为:式中 P ——扣件一侧扣压件对钢轨的扣压力;μ1——钢轨与垫板之间的摩擦系数;μ2 --钢轨与扣压件之间的摩擦系数。
据铁道科学研究院试验,如果混凝土轨枕下采用橡胶垫板,不论是扣板式扣件还是弹条式扣件,其摩擦系数为μ1 +μ2=0.8。
扣压件P的大小与螺栓所受拉力P拉的大小有关。
以扣板式扣件为例,按图5-2可得P的算式如下:图5-2 扣板受力图式中 P拉——扣件螺栓所受拉力,与螺帽扭矩有关;a、b——扣板着力点只螺栓中心的距离。
扣件摩阻力F的表达式为:实测资料指出,在一定的扭矩下,扣件阻力岁钢轨位移的增加而增大。
当钢轨位移达到某一定值之后,钢轨产生滑移,阻力不再增加。
垫板压缩和扣件局部磨损,将导致扣件阻力下降,如在一个维修周期内,垫板的压缩与扣件的磨损按1mm估计,则不同扣件的摩阻力,如表5-3所示。
表5-3 扣件阻力表此外,列车通过时的振动,会使螺帽松动,扭矩下降,导致扣件阻力下降。