无机化学晶体结构

合集下载

无机化学第3章_晶体结构

无机化学第3章_晶体结构
图3-8哪个是氯化钠晶胞?哪个是金刚石晶胞?
[答] 图3-1中的小立方体不具有平移性,因为它与相邻的小立方体并非等 同。相反,大立方体才具有平移性,在它的上下左右前后都有无隙并置的完 全等同的立方体,只是没有画出来而已,因此大立方体才是晶胞,小立方体 不是晶胞。
(2) 晶胞具有相同的顶角、相同的平面和相同的 平行棱
图3-19 底心晶胞举例(I2) [答]将晶胞原点移至bc面心(a)和ab面心(c)均不能
使所有原子坐标不变,只有将晶胞原点移至ac面心(b) 才得到所有原子坐标不变的新晶胞,可见碘的晶胞是B底 心(正交)晶胞。
立方
边长: a=b=c
夹角: = = =900
实例: Cu , NaCl
(只有1个晶胞参数a是可变动的)
四方
边长:a=bc
夹角: = = =900
实例: Sn, SnCl2
(有2个晶胞参数a和c)
六方
边长:a= bc
夹角: = =900 =1200
实例: Mg, AgI
(有2个晶胞参数a和c)
面心晶胞的特征
可作面心平移,即所有原子均可作在其原子坐标上+ (1/2,1/2,0;0,1/2,1/2;1/2,0,1/2)的平移 而得到周围环境完全相同的原子。如晶胞顶角有一个原子, 在晶胞三对平行面的中心必有完全相同的原子(周围环境 也相同)。
[例3-5]图3-17中哪个晶胞是面心晶胞?
图3-17面心晶胞(金属铜)(左)与非面心晶胞(Cu3Au)(右)举例
3-2-4 素晶胞与复晶胞
素晶胞是晶体微观空间中的最小基本单元。 复晶胞是素晶胞的多倍体。即体心晶胞、面心晶胞、 底心晶胞。

素晶胞P
体心晶胞 I(2倍体)

无机化学第七章 晶体结构

无机化学第七章   晶体结构


例1:体心立方晶胞中金属原子的空间利用 率计算 (教材P.213, 图9-10) (1)计算每个晶胞含有几个原子:

1 + 8 × 1/8
= 2

体心立方晶胞:中心有1个原子, 8个顶点各1个原子,每个原子被8个 晶胞共享。
(二)空间利用率计算(续)

(2)原子半径r 与晶胞边长a 的关系: 勾股定理: 2a 2 + a 2 = (4r)
半径比规则(续)说明:

3. 值位于“边界”位置附近时,相应化合物 有2种构型。 例:GeO2 r + / r - = 53 pm / 132 pm = 0.40. 立方ZnS NaCl 两种晶体空间构型均存在. 4.离子晶体空间构型除了与r + / r -有关外,还 与离子的电子构型、离子互相极化作用(如 AgI)以至外部条件(如温度)等有关。
(三)半径比规则(续)说明:



1.―半径比规则”把离子视为刚性球,适用于离子 性很强的化合物,如NaCl、CsCl等。否则,误差大。 例:AgI(c) r + / r - = 0.583. 按半径比规则预言为NaCl型,实际为立方ZnS型。 原因:Ag+与I-强烈互相极化,键共价性↑,晶型转 为立方ZnS(C.N.变小,为4:4,而不是NaCl中的6:6) 2.经验规则,例外不少。 例:RbCl(c),r / r 147pm / 184pm 0.80 0.732 预言CsCl型,实为NaCl型。

一、离子极化作用


离子极化作用(教材P.220图9-18) 离子极化力(Polarizing主动) 离子变形性 ( Polarizability, Polarized被动) 在异号离子电场作用下,离子的电子云发生变形, 正、负电荷重心分离,产生“诱导偶极”,这个过程 称为“离子极化”。 阳离子、阴离子既有极化力,又有变形性。 通常阳离子半径小,电场强,“极化力”显著。 阴离子半径大,电子云易变形,“变形性”显著。

无机化学 第7章 晶体的结构和性质

无机化学 第7章 晶体的结构和性质

离子电荷 NaCl Na+ +1 CuCl Cu+ +1
r+/pm 95 96
溶解性 易溶于水 难溶于水
说明影响离子晶体的性质除了离子电荷、 离子半径外,还有离子的电子构型
7.6.1 离子的电子构型
简单阴离子的电子构型:ns2np6 8电子构型
阳离子外电子层 电子分布式
离子电 子构型
实例
1s2
2(稀有 气体型)
晶 液晶——介于液态和晶态之间的各向异 性的凝聚流体。
近似液态:能流动、不能承受应切力
近似晶体:介电常数、折射率、电导 率等性质各向异性
应用
由于对光、电、磁、热、机械压力及 化学环境变化都非常敏感,可作为各种信 息的显示和记忆材料。
第七章 固体结构与性质
7.2
离子晶体及其性质
7.2.1 离子晶体的特征和性
Sn2+、Pb2+ 、 Sb3+、Bi3+
7.6.2 离子极化的概念



对于孤立的简单离 子来说,离子电荷 分布基本上是球形 对称的,离子本身 的正、负电荷中心 重合, 不存在偶极
电场中,离子的原子 核和电子受电场的作 用,离子会发生变形, 产生诱导偶极,这种 过程称为离子极化
Li+
0.034
OH-
1.95
Na+
0.199
F-
1.16
Ca2+
0.52
Cl-
4.07
B3+
0.0033
Br-
5.31
Ag+
1.91
O2-
4.32
Hg2+
1.39

固体无机化学-晶体学基础2

固体无机化学-晶体学基础2
ree- four- three-index system four-index system
l) (h k l) l) (h k i l) i = - h+k ) (
[U V W] [u v t w] U = u - t, V = v - t, W = w 1 1 u = [2U - V], v = [2V - U], t = -(u + v), w = W 3 3
(Miller Indices of Crystallographic Direction and Planes) 前已指出,任何阵点的位置可由矢量ruvw和该点阵的坐标u,v,w来确定。 同样晶向OP可沿a,b,c三个方向分解为三个矢量,即 1.阵点坐标 op = xa + yb + zc 2.晶向指数(Orientation index)
宏观对称要素— 宏观对称要素—回转对称轴
二维晶胞的密排图形
宏观对称要素— 宏观对称要素—对称面
1 晶体通过某一平面作 镜像反映而能复原, 则该平面称为对称面 或镜面。 2 对称面用符号 m 表示。
宏观对称要素宏观对称要素-对称中心
1 如果位于晶体中心O点一边 的每点都可在中心的另一边 得到对应的等同点,且每对 点子的连线均通过O点并被 它所等分,则此中心点称为 晶体的对称中心 对称中心。或称为反 对称中心 演中心。即晶体的每一点都 可借以O点为中心的反演动 作而与其对应点重合。 2 对称中心用符号 z 表示。
1 对称要素构成一些动作,即晶体经过这些动作 之后所处的位置与其原始位置完全重合,也就 是晶体上每一点的新旧位置都完全重合。 2 晶体的对称要素可分为宏观和微观两类。宏观 对称要素反映出晶体外形和其宏观性质的对称 性。而微观对称要素与宏观对称要素配合运用 就能反映出晶体中原子排列的对称性。

大学无机化学知识点总结

大学无机化学知识点总结

大学无机化学知识点总结无机化学是化学学科的一个重要分支,对于大学化学相关专业的学生来说,掌握无机化学的知识点至关重要。

以下是对大学无机化学主要知识点的总结。

一、原子结构与元素周期律原子由原子核和核外电子组成。

原子核包含质子和中子,质子数决定了元素的种类。

电子在核外分层排布,遵循一定的规律。

原子轨道理论描述了电子在原子核外的运动状态。

包括 s、p、d、f 等轨道,其形状和能量各不相同。

元素周期表是无机化学的重要工具。

同一周期元素从左到右,原子半径逐渐减小,金属性逐渐减弱,非金属性逐渐增强;同一主族元素从上到下,原子半径逐渐增大,金属性逐渐增强,非金属性逐渐减弱。

二、化学键与物质结构化学键包括离子键、共价键和金属键。

离子键是由阴阳离子之间的静电作用形成的,通常存在于活泼金属与活泼非金属组成的化合物中。

共价键是原子之间通过共用电子对形成的,分为极性共价键和非极性共价键。

分子的空间构型对于物质的性质有着重要影响。

例如,甲烷分子是正四面体结构,氨气分子是三角锥形结构。

晶体结构也是无机化学的重要内容。

常见的晶体类型有离子晶体、原子晶体、分子晶体和金属晶体,它们具有不同的物理性质。

三、化学热力学基础热力学第一定律指出能量守恒,即能量可以在不同形式之间转化,但总量不变。

焓变(ΔH)是化学反应中热量变化的重要指标。

热力学第二定律涉及到熵(S)的概念,自发的过程总是朝着熵增加的方向进行。

通过吉布斯自由能(ΔG)可以判断化学反应的方向。

当ΔG < 0 时,反应自发进行;当ΔG > 0 时,反应非自发进行;当ΔG = 0 时,反应达到平衡。

四、化学反应速率化学反应速率可以用单位时间内反应物浓度的减少或生成物浓度的增加来表示。

影响化学反应速率的因素包括浓度、温度、压强、催化剂等。

浓度增大,反应速率加快;温度升高,分子运动加快,有效碰撞增加,反应速率增大;对于有气体参与的反应,压强增大,反应速率通常也会增大;催化剂能够改变反应的历程,降低反应的活化能,从而加快反应速率。

无机化学晶体结构

无机化学晶体结构

晶体结构和类型 金属晶体 离子晶体 分子晶体 混合晶体
§9.1 晶体结构和类型
9.1.1 晶体结构的特征与晶格理论 9.1.2 晶体缺陷 非晶体 9.1.3 球的密堆积 9.1.4 晶体类型
9.1.1 晶体结构的特征与晶格理论
晶胞:晶体的最小重复单元,通过晶胞
在空间平移无隙地堆砌而成晶体。 晶胞的两个要素:
第九章 晶体结构
• 教学要求: • 1、理解晶体的基本概念,掌握四种晶体类
型的特征和性质; • 2、初步了解离子极化的概念及其应用; • 3、掌握金属键的“自由电子”理论,了解
能带理论。 • 教学难点: • 离子极化;离子晶体的空间结构。
第九章 晶体结构
§9.1 §9.2 §9.3 §9.4 §9.5
a=b=c a=b=c a = b≠c a = b≠c a≠b≠c a≠b≠c a≠b≠c
α=β=γ= 900 α=β=γ≠900 α=β=γ= 900 α=β= 900, γ= 1200 α=β=γ= 900 α=β= 900, γ≠ 900 α≠β≠γ≠ 900
NaCl
Al2O3 SnO2 AgI HgCl2 KClO3 CuSO4·5H2O
-:8 1
1个
8
ZnS型(立方型)
晶格:面心立方
配位比:4:4 (红球-Zn2+ , 绿球-S2-) 晶胞中离子的个数: Zn2:4个
S2-:6 1 8 1 4个 28
半径比(r+/r-)规则: 其中一层横截面: (4r )2 2(2r 2r )2
令 r 1
r / r 0.414
NaCl晶体
△ rHm,1=89.2kJ·mol-1 △ rHm,2 =418.8kJ·mol-1 △ rHm,3 =15.5kJ·mol-1 △ rHm,4 =96.5kJ·mol-1 △ rHm,5 =-324.7kJ·mol-1 △ fHm =295.3kJ·mol-1

无机化学——原子晶体与分子晶体

无机化学——原子晶体与分子晶体

B
B
C A
A
面心立方 紧密堆积
六方紧密堆积
Body-centered cubic cell (BCC)
体心立方紧密堆积 CN=12,利用率 =68% K、Rb、Cs、Li、 Na A B
A
体心立方 紧密堆积
7.4.2 金属键 金属键:金属原子的价电子可以完全失去成为自由电子,并在 晶格中运动,自由电子把金属阳离子胶合成金属晶体,这种胶 合作用就叫金属键。金属键无饱和性和方向性。
氯化氢、氨、三氯化磷、冰等由极性键构成的极性分子,晶体 中分子间存在色散力、取向力、诱导力,有的还有氢键,所以 它们的结点上的粒子间作用力大于分子量相近的非极性分子之 间的引力。
分子晶体的特性 分子晶体是以独立的分子出现的 ,化学式就是分子式。
分子晶体可以是非金属单质,如卤素、H2、N2、O2; 非金属化合物,如CO2、H2S、HCl、HN3等 绝大多数有机化合物,稀有气体的晶体
7.6.3 离子极化对物质性质的影响 一、离子的电子构型
外层电子结构 电子构型 阳离子实例
ns2np6
8
Na+, Mg2+,Al3+,Ti4+
ns2np6 nd1-9
9-17
Cr3+,Mn2+,Fe3+,Cu2+
ns2np6 nd10
18
Ag+,Zn2+,Cd2+,Hg2+
s2p6d10ns2
18+2
7.3 原子晶体与分子晶体 Atomic Crystals
在原子晶体的晶格结点上排列着中性原子,原子间以极强的 共价键相结合,如单质硅(Si)、二氧化硅(SiO2)、碳化 硅(SiC)金刚砂、金刚石(C)和氮化硼BN(立方)等。

无机化学《晶体结构》教案

无机化学《晶体结构》教案

无机化学《晶体结构》教案[ 教学要求]1 .了解晶体与非晶体的区别,掌握晶体的基本类型及其性质特点。

2 .了解离子极化的基本观点及其对离子化合物的结构和性质变化的解释。

3 .了解晶体的缺陷和非整比化合物。

[ 教学重点]1 .晶胞2 .各种类型晶体的结构特征3 .离子极化[ 教学难点]晶胞的概念[ 教学时数] 4 学时[ 主要内容]1 .晶体的基本知识2 .离子键和离子晶体3 .原子晶体和分子晶体4 .金属键和金属晶体5 .晶体的缺陷和非整比化合物6 .离子极化[ 教学内容]3-1 晶体3-1-1 晶体的宏观特征晶体有一定规则的几何外形。

不论在何种条件下结晶,所得的晶体表面夹角(晶角)是一定的。

晶体有一定的熔点。

晶体在熔化时,在未熔化完之前,其体系温度不会上升。

只有熔化后温度才上升。

3-1-2 晶体的微观特征晶体有各向异性。

有些晶体,因在各个方向上排列的差异而导致各向异性。

各向异性只有在单晶中才能表现出来。

晶体的这三大特性是由晶体内部结构决定的。

晶体内部的质点以确定的位置在空间作有规则的排列,这些点本身有一定的几何形状,称结晶格子或晶格。

每个质点在晶格中所占的位置称晶体的结点。

每种晶体都可找出其具有代表性的最小重复单位,称为单元晶胞简称晶胞。

晶胞在三维空间无限重复就产生晶体。

故晶体的性质是由晶胞的大小、形状和质点的种类以及质点间的作用力所决定的。

3-2 晶胞3-2-1 晶胞的基本特征平移性3-2-2 布拉维系十四种不拉维格子类 型 说 明单斜底心格子( N ) 单位平行六面体的三对面中 有两对是矩形,另一对是非矩形 。

两对矩形平面都垂直于非矩形 平面,而它们之间的夹角为β, 但∠β≠ 90°。

a 0≠ b 0 ≠ c 0 ,α = γ =90°, β≠ 90°正交原始格子( O ) 属于正交晶系,单位平 行六面体为长、宽、高都不 等的长方体,单位平行六面 体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 °正交体心格子( P ) 属于正交晶系,单位平行六 面体为长、宽、高都不等的长方 体,单位平行六面体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 °正交底心格子( Q ) 属于正交晶系,单位平 行六面体为长、宽、高都不 等的长方体,单位平行六面 体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 °正交面心格子( S ) 属于正交晶系,单位平 行六面体为长、宽、高都不 等的长方体,单位平行六面 体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 °立方体心格子( B ) 属于等轴晶系,单位平行六 面体是一个立方体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


△ fHm = △ rHm,1 + △ rHm,2 +△ rHm,3 +△ rHm,4
+△ rHm,5 + △ rHm,6 mol-1 △ rHm,1 =89.2kJ·
△ rHm,3 △ rHm,2 =418.8kJ· mol-1
=15.5kJ· mol-1
mol-1 △ rHm,4 =96.5kJ·
1.三种典型的离子晶体
NaCl型
晶格:面心立方
配位比:6:6 晶胞中离子的个数: (红球-Na+ ,
绿球-Cl-)
1 1 1 Na : 12 1 4个 Cl : 8 6 4个 8 2 4

CsCl型
晶格: 简单立方 配位比: 8:8
(红球-Cs+ ,
绿球-Cl-)
例如:μ(SF6) = 0,键矩互相抵消, μ(H2O)≠0,键矩未能抵消。
分子的偶极矩μ(×10-30 C· m)
分子式 H2 N2 CO2 CS2 CH4 CO CHCl3 H2S 偶极矩 0 0 0 0 0 0.40 3.50 3.67 分子式 SO2 H2O NH3 HCN HF HCl HBr HI 偶极矩 5.33 6.17 4.90 9.85 6.37 3.57 2.67 1.40
mol-1 △ rHm,5 =-324.7kJ· mol-1 △ fHm =295.3kJ· 上述数据代入上式求得:
△ rHm,6 =-689.1kJ· mol-1
则:U =689.1kJ· mol-1
2.Born-Lande公式
KAZ1Z 2 1 U (1 ) R0 n
当 R0 以pm,U 以 kJ mol 为单位时,
定义:在标准状态下,按下列化学反
应计量式使离子晶体变为气体正离子和气
态负离子时所吸收的能量称为晶格能,用
U 表示。 MaXb(s)
aMb+(g) + bXa-(g)
△ rHm
例如: NaCl(s)
Na (g) + Cl (g)
-1 -1
+
-
△ rHm 786kJ mol
U 786kJ mol
Packing);
体心立方堆积(Body-centred Cubic Packing)。
§9.3
离子晶体
9.3.1 离子晶体的特征结构 9.3.2 晶格能 9.3.3 离子极化
9.3.1 离子晶体的特征结构
离子晶体:密堆积空隙的填充。 阴离子:大球,密堆积,形成空隙。 阳离子:小球,填充空隙。 规则:阴阳离子相互接触稳定; 配位数大,稳定。
NaCl NaCl
思考题:
解释碱土金属氯化物的熔点变化规律:
BeCl2 MgCl 2 CaCl2 SrCl 2 BaCl2
熔点/℃
405
714
782
876
962
§9.4
分子晶体
9.4.1 分子的偶极矩和极化率
9.4.2 分子间的吸引作用 9.4.3 氢键
9.4.1 分子的偶极矩和极化率
1.分子的偶极矩(μ):用于定量地表示极性 分子的极性大小。 ql
§9.4
§9.5
分子晶体
混合晶体
§9.1
晶体结构和类型
9.1.1 晶体结构的特征与晶格理论
9.1.2 晶体缺陷
9.1.3 球的密堆积 9.1.4 晶体类型
非晶体
9.1.1 晶体结构的特征与晶格理论
晶胞:晶体的最小重复单元,通过晶胞 在空间平移无隙地堆砌而成晶体。 晶胞的两个要素: 1. 晶胞的大小与形状: 由晶胞参数a,b,c, α,β,γ表示, a,b,c 为六面体边长, α,β, γ 分别是bc , ca , ab 所 组成的夹角。
ZnS型 n的取值:
离子电子 层构型 n值 He 5 Ne 7 Ar Kr Xe
A=1.638
(Cu )
9
+
(Ag )
10
+
(Au )
12
+
3.Калустинский公式
Z1Z 2 34.5 U 1.20210 1 {r r } {r r }
2.分子的极化率: 用于定量地表示分子的变形性大小。分 子的变形性大小指的是正电中心与负电中心 发生位移(由重合变不重合,由偶极长度小变 偶极长度大) 。 影响分子变形性大小的因素:
外因:外加电 场愈强,分子 变形愈厉害; 内因:分子愈 大,分子变形 愈厉害。
分子的极化率α(×10-40C· m2 · V-1)
138940 AZ1Z 2 1 1 U (1 ) kJ mol R0 n 式中: R0—正负离子核间距离, Z1,Z2 —分别为正负离子电荷的绝对值, A —Madelung常数,与晶体类型有关,
n —Born指数,与离子电子层结构类型有关。
1
A的取值: CsCl型 A=1.763
NaCl型 A=1.748
1.Born-Haber循环
1 K (s) + Br2 (l) 2
△ fHm
KBr(s)
U △ rHm,6
1 升 Br2 (g) 华 △ rHm,1 2 1 焓 键能 △ rHm,4 2气源自热 △ rHm,3Br (g)
K(g)
△ rHm,2
电离能
△ rHm,5
电子亲和能
Br (g) + + K (g)
按带心型式分类,将七大晶系分为14种 型式。例如,立方晶系分为简单立方、体心 立方和面心立方三种型式。
9.1.3 球的密堆积
1.六方密堆积:hcp
第三层与第一 层对齐,产生 ABAB…方式。 配位数:12 空间占有率: 74.05%
2.面心立方密堆积:fcc
第三层与 第一层有错位, 以ABCABC… 方式排列。
2
2
令 r 1
r / r 0.414
NaCl晶体
r / r 0.414 理想的稳定结构(NaCl)
r / r 0.225 → 0.414 0.414 → 0.732 0.732 → 1.00 半径比规则
配位数 4 6 8
构型 ZnS 型 NaCl 型 CsCl 型
9.3.2 晶格能
第九章
晶体结构
• 教学要求: • 1、理解晶体的基本概念,掌握四种晶体类 型的特征和性质; • 2、初步了解离子极化的概念及其应用; • 3、掌握金属键的“自由电子”理论,了解 能带理论。 • 教学难点: • 离子极化;离子晶体的空间结构。
第九章
§9.1
§9.2 §9.3
晶体结构
晶体结构和类型
金属晶体 离子晶体
式中 q 为极上所带电量,l 为偶极长度。 极性分子 非极性分子 μ≠0 μ=0
双原子分子: 异核:HX 多原子分子: O3(V字形)
同核: H2 N2 O2
S8,P4
CO 2 BF3 ,CH 4 ,
NH3
分子的偶极矩与键矩的关系: 极性键构成的双原子分子: 分子偶极矩 = 键矩
多原子分子的偶极矩 = 键矩的矢量和,
晶格能对离子晶体物理性质的影响: 离子电荷数大,离子半径小的离子晶体晶 格能大,相应表现为熔点高、硬度大等性能。
NaCl 型 离子晶体 NaF NaCl NaBr NaI MgO CaO SrO BaO Z1 1 1 1 1 2 2 2 2 Z2 1 1 1 1 2 2 2 2 r+ /pm 95 95 95 95 65 99 113 135 rU /pm /kJ·mol-1 136 920 181 770 195 733 216 683 140 4147 140 3557 140 3360 140 3091 熔点 /o C 992 801 747 662 2800 2576 2430 1923 硬度 3.2 2.5 <2.5 <2.5 5.5 4.5 3.5 3.3
9.3.3 离子极化
未极化的负离子
极化的负离子
离子的极化率(α): 描述离子本身变形性的物理量。 离子的极化力(f ): 描述一个离子对其他离子变形的影响能力。
1.离子的极化率(α ) 一般规律: ① 离子半径 r : r 愈大, α 愈大。 如α :Li+<Na+<K+<Rb+<Cs+;F-<Cl-<Br-<I- ② 负离子极化率大于正离子的极化率。 ③ 离子电荷:正离子电荷少的极化率大。 如:α (Na+) >α (Mg2+) ④ 离子电荷:负离子电荷多的极化率大。 如:α (S2-) >α (Cl-) ⑤ 离子的电子层构型:(18+2)e-,18e-> 9-17e->8e如:α (Cd2+) >α (Ca2+); α (Cu+) >α (Na+)
SiO 2
NaCl 干冰
§9.2
金属晶体
9.2.1 金属晶体的结构 9.2.2 金属键理论
9.2.3 金属合金
9.2.1 金属晶体的结构
金属晶体是金属原子或离子彼此靠金 属键结合而成的。金属键没有方向性,金 属晶体内原子以配位数高为特征。 金属晶体的结构:等径球的密堆积。
金属晶体中粒子的排列方式常见的有三种: 六方密堆积(Hexgonal close Packing); 面心立方密堆积(Face-centred Cubic clode
5
n n
n :晶体分子式中正离子的个数 n :晶体分子式中负离子的个数
例如:CaCl2 1 2 3 2 1 34.5 5 U ( NaCl ) 1.202 10 (1 ) 95 181 95 181
相关文档
最新文档