422778$sd2089$基于DSP5509的数字图像边缘检测算法的研究
数字图像中边缘检测方法的研究.

数字图像中边缘检测方法的研究1引言图像处理,包括图像增强、噪声滤除和边缘检测等部分;图像信息量巨大,而边缘信息是图像的一种紧描述,是图像最基本的特征,所包含的也是图像中用于识别的有用信息。
所谓边缘是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,为人们描述或识别目标以及解释图像提供了一个有价值的和重要的特征参数,其算法的优劣直接影响着所研制系统的性能。
理想的边缘检测应当正确解决边缘的有无、真假、和定向定位,长期以来,人们已付出许多努力,设法利用边界来寻找区域,进而实现物体的识别和景物分析,由于目标边缘、图像纹理甚至噪声都可能成为有意义的边缘,因此很难找到一种普适性的边缘检测算法,现有诸多边缘检测的方法各有其特点,同时也都存在着各自的局限性和不足之处,因此图像的边缘检测这个领域还有待于进一步的改进和发展。
而根据具体应用的要求,设计新的边缘检测方法或对现有的方法进行改进,以得到满意的边缘检测结果依然是研究的主流方向。
2边缘检测的分类及方法研究早在1965年就有人提出边缘检测算子,主要分为经典算子、最优算子、多尺度方法及自适应平滑滤波方法,近年来又提出了将模糊数学、神经元和数学形态学应用于边缘检测的思想。
2.1 经典算子传统的边缘检测算法通过梯度算子来实现,在求边缘的梯度时,需要对每个象素位置计算。
在实际中常用小区域模板卷积来近似计算,模板是N*N的权值方阵,经典的梯度算子模板:Sobel模板、Kirsch模板、Prewitt模板、Roberts模板、Laplacian模板等,表2.1给出了经典算子运算速度的比较。
表2.1 经典算子运算速度比较可以看出,Krisch算子的运算量比较大。
其次在边缘检测中边缘定位能力和噪声抑制能力方面,有的算子边缘定位能力强,有的抗噪声能力比较好:Roberts 算子利用局部差分算子寻找边缘,边缘定位精度较高,但容易丢失一部分边缘,同时由于没经过图像平滑计算,不能抑制噪声。
数字图像处理中的边缘检测技术

数字图像处理中的边缘检测技术随着数字图像处理技术的日益发展,边缘检测技术不但在计算机视觉领域被广泛应用,而且在生物医学图像处理、遥感图像处理等领域也得到了广泛的应用。
边缘作为图像中物体分界线的表现,其精准提取对于图像处理和分析具有非常重要的意义。
本文将主要围绕数字图像处理中的边缘检测技术展开讨论。
一、边缘检测的概念边缘是指像素灰度值变化发生较大的位置或过渡区域,也可以定义为图像灰度值变化的一部分或所有的轮廓。
我们可以将边缘视为图像中相邻物体或目标之间的边缘线,边缘是图像不同区域之间不可或缺的分界线。
在数字图像处理中,边缘检测就是指从图像中提取出边缘信息的过程,从而把图像分割成不同的对象。
边缘检测技术主要分为两类:一类是基于模板匹配的滤波方法;另一类是基于阈值分割的方法。
由于现实图像中存在的噪声干扰等因素,边缘检测一直是计算机视觉领域中的难点问题之一。
二、基于模板匹配的滤波方法基于模板匹配的滤波方法许多基于微分算子的边缘检测方法,包括Sobel算子、Prewitt算子、Roberts算子、Laplacian算子等。
Sobel算子是一种基于模板匹配的滤波方法之一。
它是一种二维差分算法,可通过对图像应用模板进行卷积操作来检测图像中的边缘。
经过卷积后,结果的大小和方向可以用来提取垂直和水平方向的边缘信息。
Sobel算子在极少的计算量下可以实现较好的效果,但是其容易受噪声的影响,产生较多的假边缘。
Prewitt算子是一种和Sobel算子类似的卷积算子,它也是基于模板匹配的滤波方法。
与Sobel算子不同的是,Prewitt算子不仅可以提取水平和垂直方向的边缘,还可以提取45度和135度的斜向边缘。
但是,Prewitt算子同样也存在一定的缺陷,会对边缘方向检测不够敏感。
三、基于阈值分割的方法基于阈值分割的方法主要包括基于全局阈值和基于局部阈值的分割方法。
基于全局阈值的方法是一种最基本的分割方法,主要利用图像中的灰度值和满足预定义条件的像素点之间的关系来将图像分割成不同的物体。
图像处理中的边缘检测算法研究与性能评估

图像处理中的边缘检测算法研究与性能评估引言:在当今数字图像处理领域,边缘检测一直是一个重要且挑战性的问题。
边缘提取是图像处理中的一项基本操作,对于目标检测、图像分割和图像识别等任务都具有重要意义。
边缘检测的目标是找到图像中明显的灰度跃变区域,以准确地确定物体的边缘位置。
本文将介绍几种常见的图像处理中的边缘检测算法,并对其性能进行评估。
一、经典边缘检测算法1. Sobel算子Sobel算子是一种基于差分的边缘检测算子,它结合了图像梯度的信息。
Sobel算子使用一个3×3的模板对图像进行卷积操作,通过计算水平和垂直方向上的梯度来找到边缘位置。
Sobel算子虽然简单,但在边缘检测中表现良好。
2. Prewitt算子Prewitt算子是另一种基于差分的边缘检测算子,与Sobel 算子类似,它也使用一个3×3的模板对图像进行卷积操作。
该算子通过计算水平和垂直方向上的梯度来检测边缘。
Prewitt 算子在边缘检测中也有较好的性能。
3. Canny边缘检测Canny边缘检测是一种广泛应用的边缘检测算法。
与Sobel 和Prewitt算子相比,Canny算法不仅能够检测边缘,还能够进行边缘细化和抑制不必要的边缘响应。
它通过多阶段的边缘检测过程,包括高斯滤波、计算梯度幅值和方向、非极大值抑制和双阈值处理等步骤,来提取图像中的边缘。
二、边缘检测算法的性能评估1. 准确性评估准确性是评估边缘检测算法好坏的重要指标。
在进行准确性评估时,可以使用一些评价指标,如PR曲线、F值等。
PR 曲线是以检测到的边缘像素为横坐标,以正确的边缘像素为纵坐标绘制的曲线,用于评估算法的召回率和准确率。
F值则是召回率和准确率的综合评价指标,能够综合考虑算法的检测效果。
2. 实时性评估实时性是边缘检测算法是否适用于实际应用的重要因素。
在实时性评估时,可以考虑算法的运行时间,以及算法对硬件资源的要求。
边缘检测算法应尽量满足实时性的要求,并能够在不同硬件平台上高效运行。
数字图像处理中的边缘检测技术研究

数字图像处理中的边缘检测技术研究数字图像处理技术已经成为现代社会中不可或缺的一部分。
我们如今所浏览的许多网页、看到的广告、视频和图片等等,都是数字图像处理所产生的。
为了更好地处理和分析图像信息,图像处理领域的研究者们不断提高图像处理算法的复杂度和准确度。
其中边缘检测算法是数字图像处理领域中不可或缺的一部分,目前已有不少学者和研究机构致力于边缘检测技术的研究。
一、边缘检测技术的概念从直观上讲,我们可以认为边缘就是图像中明显的灰度变化。
边缘检测技术就是用计算机程序来检测图像中的各种边缘,包括强度、位置、形状等信息。
边缘检测在数学和信号处理中是一种非常基本的技术,它的主要目的是检测出图像中对象的轮廓,并使对象与背景分离。
在许多图像处理的应用中,只有通过检测出图像中的边缘信息,才能完成后续的处理操作。
二、边缘检测技术的分类根据边缘检测技术的特点和应用场景的不同,目前主要有以下几种常见的边缘检测技术。
1. 基于灰度变化的边缘检测技术这种边缘检测技术是根据图像中像素灰度值的梯度变化来检测边缘。
当像素灰度值之间的变化较大时,我们可以认为是图像中的边缘。
2. 基于方向的边缘检测技术在大多数应用场景中,边缘不仅包括灰度变化,还包括方向的变化。
例如人脸识别部分就需要检测面部的边缘,因此基于方向的边缘检测技术在这些场景中往往更适用。
这种技术通常采用Sobel、Prewitt、Roberts等操作来计算不同方向的梯度,以识别出图像中的各种边缘。
3. 基于物体内部特征的边缘检测技术这种边缘检测技术主要基于待处理的图像的物体内部特征。
它通常有以下特点:在物体内部无法直接观察到边缘,在处理图像特征上需要对其进行进一步分类和降噪。
4. 基于局部特征的边缘检测技术这种边缘检测技术是基于图像局部特征的一种处理方式。
它通常利用像素之间显著的灰度差异,并确定其中值最大的像素作为目标边缘点。
三、边缘检测技术的应用边缘检测技术已经广泛应用于许多领域中,包括自动驾驶、医学图像、计算机视觉和追踪等。
数字图像处理中的边缘检测算法研究

数字图像处理中的边缘检测算法研究一、引言边缘检测在数字图像处理中是一个非常重要的问题,其主要任务是检测图像中物体的边缘信息,为后续的图像分割、目标跟踪、模式识别等处理提供基础。
目前,数字图像处理领域中常用的边缘检测算法主要包括基于梯度的算法、基于模板的算法和基于机器学习的算法,这些算法各有特点,适用于不同的应用场景。
本文将介绍几种经典的边缘检测算法及其特点,以期对数字图像处理领域的研究有所帮助。
二、基于梯度的边缘检测算法基于梯度的边缘检测算法是最为常见的一种边缘检测算法,其主要思路是通过对图像做梯度运算,来检测图像中的边缘信息。
经典的基于梯度的边缘检测算法包括Sobel算法、Prewitt算法、Roberts算法、Canny算法等。
下面我们将依次介绍这几种算法的特点及其优缺点。
1. Sobel算法Sobel算法是一种常见的基于梯度的边缘检测算法,其主要思想是对图像进行一阶梯度运算。
Sobel算子可以分为水平滤波器和垂直滤波器两个部分,分别用于检测图像中水平和垂直方向的边缘信息。
Sobel算法不仅能够提取较为精确的边缘信息,而且计算速度也较快,在实际应用中得到了广泛的应用。
2. Prewitt算法Prewitt算法也是一种基于梯度的边缘检测算法,其内核包括水平和垂直方向的两个模板。
与Sobel算法相比,Prewitt算法更加注重增强图像的垂直边缘信息,因此在一些需要检测线状目标的应用场景中,效果更加明显。
3. Roberts算法Roberts算法是一种基于梯度的边缘检测算法,它通过对图像做两阶梯度运算,来检测图像中的边缘信息。
Roberts算法在边缘检测的过程中可以检测到细节较为丰富的边缘,但是它所检测到的边缘信息相对于其他算法而言较为稀疏。
4. Canny算法Canny算法是一种经典的基于梯度的边缘检测算法,其主要思路是先将图像做高斯滤波,之后再计算图像的梯度值,通过非极大值抑制和双阈值分割等处理,最终得到准确的边缘信息。
数字图像处理中的边缘检测算法

数字图像处理中的边缘检测算法数字图像处理是一门关于数字图像的理论和方法的学科,它涵盖了数字图像的获取、处理、分析和应用等方面。
在实际应用中,数字图像处理一般包括对图像进行处理和分析,这里将会详细介绍边缘检测算法在数字图像处理中的应用。
一、数字图像处理数字图像处理主要包括以下几个方面:1. 图像获取:利用各种成像设备如摄像机、扫描仪等,获取数字图像。
2. 图像处理:在获取的图像数据上进行各种预处理、增强、降噪、分割等操作,使图像更清晰、更适合后续分析操作。
3. 图像分析:对图像进行统计分析、形态学分析、特征提取等操作,得到图像的表征或者图像中感兴趣目标的属性信息。
4. 图像应用:将得到的图像信息应用于各种相关领域,如医学、工业、环境、军事等。
图像处理中的边缘检测是一项非常重要的操作,它用于检测图像中的边缘信息,常被应用于图像分割、目标提取、图像对比等方面。
下面将就数字图像处理中的边缘检测算法进行介绍。
二、边缘检测算法边缘检测算法是用于检测图像中边缘信息的算法,它可以用来检测图像中物体的轮廓、检测出图像中区域的变化等。
边缘是图像中像素灰度值变化较大的位置,边缘检测的目的即是找到这些边缘。
不同的边缘检测算法有不同的原理和处理步骤,大致分为以下几种:1. 基于微分的边缘检测算法基于微分的边缘检测算法采用的是微分运算的原理,通过计算像素点灰度值的一阶或者二阶微分值来检测边缘。
常用的微分算子有Sobel算子、Prewitt算子、Roberts算子等。
其中,Sobel算子是一种较为常用的边缘检测算子,它是一种离散运算,对于像素点的上下、左右两个方向的灰度变化敏感,可以较好地检测出图像中的边缘。
2. 基于阈值的边缘检测算法基于阈值的边缘检测算法是一种简单的边缘检测方法,其原理是通过设置一个阈值,将图像中高于或低于该阈值的像素点筛选出来,这些被筛选出的像素点就是图像中的边缘点。
该方法的优点是操作简单,但同时也存在一些缺点,如由于图像中像素点的灰度值变化较大,可能出现部分像素点灰度值在两个阈值之间,这些像素点可能未被筛选出来,导致边缘检测效果不佳。
基于机器学习的图像边缘检测方法的研究与应用的开题报告

基于机器学习的图像边缘检测方法的研究与应用的开题报告1.研究背景与研究意义图像边缘是图像中最基本的特征之一,图像边缘检测是计算机视觉领域中的一个重要问题。
传统的边缘检测方法包括Sobel算子、Canny算子、Prewitt算子等,但这些方法仍然存在局限性,例如对噪声敏感、边缘检测结果不准确等问题。
针对这些问题,近年来,基于机器学习的图像边缘检测方法得到了广泛的研究与应用。
这种方法能够自动从大量的图像数据中学习图像特征,并得到更高精度的边缘检测结果。
因此,本研究旨在通过对基于机器学习的图像边缘检测方法的研究与应用,提高图像边缘检测的准确度和鲁棒性,为计算机视觉领域的发展做出贡献。
2.研究内容与研究思路本研究将围绕以下内容进行深入研究:(1)机器学习的基本变上下文边缘检测理论介绍机器学习相关的理论知识,包括分类器、神经网络、卷积神经网络等,并着重介绍上下文边缘检测理论。
(2)基础边缘检测算法介绍传统的边缘检测算法,包括Sobel算子、Canny算子、Prewitt 算子等,并比较各算子的优劣。
(3)基于机器学习的边缘检测方法介绍基于机器学习的边缘检测方法,包括基于Haar特征的Adaboost算法、基于LBP特征的SVM算法、基于CNN的图像边缘检测算法等,并分析各种方法的优缺点。
(4)实验与应用本研究将使用大量的实验数据验证上述研究内容,在各种场景下应用并评估不同边缘检测方法的性能表现。
3.研究预期成果本研究主要预期达到以下成果:(1)深入了解机器学习相关理论知识及其在图像边缘检测中的应用。
(2)对传统边缘检测算法进行分析,并比较不同算法的优缺点。
(3)研究基于机器学习的图像边缘检测方法,并对各种方法进行评估和比较。
(4)通过实验与应用,验证机器学习方法在图像边缘检测中的性能表现,并与传统算法进行对比。
4.研究工作计划本研究的工作计划如下:(1)第一阶段(第1-4周):学习机器学习理论知识,阅读相关文献,进行相关实验的准备。
基于图像处理技术的边缘检测算法研究与实现

基于图像处理技术的边缘检测算法研究与实现随着计算机视觉技术的快速发展,图像处理已经成为了一个重要的领域。
其中,边缘检测是图像处理中最重要的基础技术之一,它可以帮助我们在处理图像时快速准确地分离出图像中的物体和背景,为后续的图像分析和处理提供了重要的依据。
图像边缘是指图像中不同区域之间强度或颜色变化比较明显的部分,它是图像中最重要的特征之一。
在图像处理中,必须首先进行边缘检测,然后才能进行目标识别、分割等更高级的图像处理。
近年来,随着计算机硬件和软件的不断更新和发展,图像处理技术已经发展到了一个新的高度。
图像处理技术的快速发展,也带动了边缘检测算法的不断更新和发展。
目前,边缘检测算法分为多种,例如基于灰度变化、方向梯度、二阶导数等方法,每种方法都有其适用场合。
本文将以Canny算法为例,对基于图像处理技术的边缘检测算法进行研究与实现。
一、Canny算法概述Canny算法是一种基于灰度变化的边缘检测算法,被广泛应用于图像处理领域。
Canny算法以边缘位置最大值的概率为判定方法,通过多轮计算,将图像中的边缘检测出来。
Canny算法的主要步骤包括四个部分:高斯滤波、计算图像梯度、非极大值抑制和双阈值处理。
二、Canny算法的实现1、高斯滤波Canny算法的第一步是高斯滤波。
高斯滤波是一种线性平滑滤波器,可以去噪声的同时保留图像的主要特征。
高斯滤波器是一个由多个值组成的核,该核函数越接近于高斯分布,滤波器去噪的效果越好。
2、计算图像梯度图像梯度可以用于刻画边缘的方向和变化强度。
在Canny算法中,使用的是Sobel算子,它是一种常见的边缘检测算子,既能检测垂直边缘,又能检测水平边缘。
3、非极大值抑制非极大值抑制是用来消除图像中的所有非极大值点,只保留与边缘方向相同的极大值点。
这样可以保证边缘线更加的细腻。
4、双阈值处理双阈值处理是Canny算法的最后一步,主要用于边缘的提取。
具体地,将图像中所有像素点的梯度计算出来,并将其按照大小排序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南人文科技学院毕业设计I学科分类号:___________ 湖南人文科技学院本科生毕业设计题目:基于DSP5509的数字图像检测算法的研究学生姓名:吴虎学号:06409235系部:通信与控制工程系专业年级:电子信息工程2006级指导教师:方智文职称:讲师湖南人文科技学院教务处制湖南人文科技学院毕业设计II 湖南人文科技学院本科毕业设计诚信声明本人郑重声明:所呈交的本科毕业设计,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
作者签名:二0一0 年月日湖南人文科技学院毕业设计III数字图像边缘检测算法实现摘要:随着计算机和各个相关领域研究的迅速发展,科学计算可视化、多媒体技术等研究和应用的兴起,数字图像处理从一个专门领域的学科,变成了一种新型的科学研究和人机界面的工具。
边缘检测是数字图像处理中的重要内容。
本设计基于Visual C#程序设计语言,综合运用面向对象程序设计技术,数字图像处理技术对数字图像进行边缘检测。
主要工作包括图像的二值处理,灰度处理,并运用Sobel,Canny,Roberts,Laplacan四个算子实现数字图像边缘检测,结果表明:Roberts 算子定位比较精确,但对噪声比较敏感,Sobel算子对灰度渐变低噪声的图像有较好的检测效果,拉普拉斯算子可以检测出绝大部分边缘,同时基本没有出现伪边缘,可以精确定位边缘,Canny算子是传统一阶微分算子中最好的算子之一,检测边缘检测的效果最好,边缘轮廓清晰,使人一目了然。
关键词:边缘检测;数字图像处理;Canny;Sobel;oberts湖南人文科技学院毕业设计IVThe Realization of Edge Detection Algorithm ofDigital ImageAbstract: With the rapid development of research on computer and it’s relative domains and visualization of scientific computation, digital image processing turns to be a tool for a new type of science research and man-machine interface from a special field. Edge detection is an important part of digital image processing. This design, bases on Visual C# programming language, was carried on with “C#” programming. The digital image processing technique realized edge detection of digital image. The main tasks include two-value and gradation processing of image, and realize edge detection of digital image with four operators—Sobel,Canny,Roberts and Laplacan.The results show that Roberts operator is more exact, but sensitive to noises. Sobel operator performs better on gradually-changing and noiseless place operator is competent to detect major parts of edge. At the same time, hardly any false edge turns up and it’s just to the point. Canny operator is one of best operators of traditional one-band differential, and it is the best operator of edge detection, contours of edge detected by which is clear enough to be observed.Keywords: Edge Detection, Image Procession, Canny, RobertsV目录第1章绪论 (1)1.1 边缘检测国内外研究现状 (1)1.2 选题的目的和意义 (2)第2章基础知识 (4)2.1 数字图像 (4)2.2 TMS320C5509的优势 (4)2.3 CCS集成编译环境开发应用程序的步骤 (5)3章边缘检测设计 (7)3.1 利用DSP处理数字图像的基本思想 (7)3.2 系统总体设计流程图 (7)3.4 数字图像图形预处理 (8)3.4.1 数字图像的灰度处理 (8)3.4.2 数字图像的二值处理 (11)3.5 Sobel算子设计实现 (15)3.6 Laplacan算子设计实现 (19)3.7 Roberts算子设计实现 (23)3.8 Canny算子设计实现 (25)第4章设计的测试与运行 (30)4.1 设计测试环境 (30)4.2 设计总测试 (30)4.4 边缘检测算子的评价 (30)4.4.1 数字图像边缘检测的要求 (30)4.4.2 边缘检测评测结果 (31)第5章总结与展望 (33)致谢 (34)参考文献 (35)附录 (37)VI附录1 (37)附录2 TMS320C550 结构图 (51)第1章绪论1.1 边缘检测国内外研究现状图像边缘检测与提取的研究一直贯穿于图像处理与分析的始终,传统的图像边缘检测方法大多可归结为图像高频分量的增强过程,微分运算自然就成了边缘检测与提取的主要手段。
从而,人们自然最早提出了一阶微分边缘算子,如Roberts算子、Sobel算子、Prewitt算子和Kirsh算子等,这些算子由于梯度或一阶微分算子通常在图像边缘附近的区域内产生较宽的响应,故采用上述算子检测的边缘图像常需作细化处理,这就影响了边缘定位的精度;因而又产生了与边缘方向无关的二阶微分边缘检测算子,即Laplacian算子。
利用二阶导数零交叉所提取的边缘宽度为一个像素,所得的边缘结果无需细化,有利于边缘的精确定位。
因此,二阶微分形式的边缘检测算子是目前边缘检测的主要手段之一。
边缘检测的基本问题是检测精度与抗噪性能间的矛盾。
由于图像边缘和噪声均为频域中的高频分量,简单的微分运算会增加图像中的噪声,因此,在微分运算之前应采取适当的平滑滤波以减少高频分量中噪声的影响。
Canny 应用严格的数学方法对此问题进行了分析,提出了由四个指数函数线性组合形成的最佳边缘检测算子,其方法的实质是用一个准高斯函数作平滑运算,然后以带方向的一阶微分定位导数最大值,它可用高斯函数的梯度来近似,属于具有平滑功能的一阶微分算子。
Deriche将Canny的算法作了一定的简化,并直接将Canny的基于有限宽度的边缘检测器的宽度推广至无限宽度,从而增加了边缘检测算子的抗噪性能,但Deriche 和Canny的研究是针对单边缘模型的。
沈俊则是从最优滤波的观点出发,推导出运算复杂性小、精度高的最优平滑滤波器,即对称双指数型滤波器。
同时研究了多边缘模型的情况,为边缘检测与提取技术的发展奠定了一定的基础。
随着平滑滤波技术的日渐完善,平滑二阶微分的边缘检测算子也在近年来得到了应用。
这种方法是先对图像作最佳平滑,然后再利用平滑图像的二阶微分零交叉确定边缘位置。
Marr Hildreth认为LOG算子是这类边缘检测算子中应用最成功的一种,并且从生理学和心理学的角度证明了其边缘检测的有效性。
在LOG算子中,具有完美数学特性的高斯函数能有效消除切尺度远小于高斯滤波器方差的图像灰度变化。
Marr Hildreth 指出,用不同尺度的LOG算子作用于图像,可得到图像在不同分辨率上的描述。
1通常小尺度算子能获得较多的图像细节,但对噪声也较敏感; 而大尺度算子虽然对噪声不很敏感,但会忽视图像细节。
因此,尺度参数的选择是该算法的关键。
此外该算子不可避免地也存在一定缺陷,Berzins对LOG算子的边缘检测精度分析说明,在二维图像中LOG算子对直线边缘定位精确,而对实际情况中占多数的曲线边缘总是存在误差,误差大小与边缘的曲率有关。
Clerk的研究表明,LOG算子零交叉并不总是图像的真实边缘,但假边缘的零交叉点比真实边缘的零交叉点的频率要小得多,随着高斯滤波器方差的减小,假边缘的强度逐渐减小而真实边缘的强度逐渐增加。
当滤波器的方差减小为零时,假边缘的强度将完全消失。
不过这种算法实现较为复杂。
1.2 选题的目的和意义所谓边缘是指周围像素灰度后阶变化或屋顶状变化的那些象素的集合,它存在于目标与背景,目标与目标,区域与区域,基元与基元之间,因此它是图像分割所依赖的重要特征,也是文理特征的重要信息源和形状特征的基础;而图像的纹理形状特征的提取又常常依赖于图象分割。
图像的边缘提取也是图像匹配的基础,因为它是位置的标志,对灰度的变化不敏感,它可作为匹配的特征点。
机器视觉主要是利用计算机实现人类的视觉功能,对客观世界的三维场景的感知、识别和理解。
边缘是图像的最基本特征,边缘检测通常是机器视觉系统处理图像的第一个阶段,是机器视觉领域内经典的研究课题之一,其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。
图像工程技术由高级到简单分为图像理解、图像分析和图像处理三个层次,边缘检测就属于图像分析的范畴。
在实际的处理问题中,图像的边缘作为图像的一种基本特征,经常应用到较高层次的特征描述、图像识别、图像分割、图像增强以及图像压缩等处理技术中,从而可对图像做进一步分析和理解。
图像的其他特征都是由边缘和区域这些基本特征推导出来的。
边缘具有方向和幅度两个特征。
沿边缘走向,像素值的变化比较平缓;而垂直与边缘走向,则像素值的变化比较剧烈。
而这种剧烈可能呈现出阶跃状,也可能呈现斜坡状。
边缘上像素值的一阶导数较大;而阶导数在边缘处的值为零,呈现零交叉。
经典的、最简单的边缘检测方法是对原始图像按像素的某邻域构造边缘算子。