高中数学第3章不等式3.3二元一次不等式组与简单的线性规划问题3.3.3简单的线性规划问题1教案苏教版必修5

合集下载

人教版高中数学目录(文科)

人教版高中数学目录(文科)

人教 A 版高中数学(文)目录表必修 1 第一章会合与函数观点1.1 会合1.2 函数及其表示1.3 函数的基天性质阅读与思虑广告中数据的靠谱性阅读与思虑怎样获得敏感性问题的诚实反响2.2 用样本预计整体阅读与思虑生产过程中的质量控制图2.3 变量间的有关关系阅读与思虑有关关系的强与弱第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章概率3.1 随机事件的概率阅读与思虑天气变化的认识过程3.2 古典概型3.3 几何概型第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修 4 第一章三角函数1.1 随意角和弧度制1.2 随意角的三角函数必修21.3 三角函数的引诱公式第一章空间几何体1.4 三角函数的图象与性质1.1 空间几何体的构造1.2 空间几何体的三视图和直观图1.5 函数 y=Asin(ωx+ψ)1.3 空间几何体的表面积与体积1.6 三角函数模型的简单应用第二章平面向量第二章点、直线、平面之间的地点关2.1 平面向量的实质背景及基本概牵挂2.1 空间点、直线、平面之间的位2.2 平面向量的线性运算置关系2.3 平面向量的基本定理及坐标表2.2 直线、平面平行的判断及其性示质2.4 平面向量的数目积2.3 直线、平面垂直的判断及其性2.5 平面向量应用举例质第三章直线与方程第三章三角恒等变换3.1 直线的倾斜角与斜率3.1 两角和与差的正弦、余弦和正3.2 直线的方程切公式3.3 直线的交点坐标与距离公式3.2 简单的三角恒等变换必修 3 第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法事例阅读与思虑割圆术必修 5 第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列第二章统计2.1 随机抽样阅读与思虑一个有名的事例 1 人教 A 版高中数学(文)目录表2.1 数列的观点与简单表示法2.2 等差数列2.3 等差数列的前 n 项和2.4 等比数列2.5 等比数列的前 n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面地区3.3.2 简单的线性规划问题3.4 基本不等式第一章统计事例1.1 回归剖析的基本思想及其初步应用1.2 独立性查验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩大与复数的引入3.1 数系的扩大和复数的观点3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 构造图选修 1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充足条件与必需条件1.3 简单的逻辑联络词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修4-1 第一讲相像三角形的判断及有关性质第二讲直线与圆的地点关系第三讲圆锥曲线性质的商讨选修 4-4 第一讲坐标系第二讲参数方程选修 1-22。

人教版高中数学必修5第三章不等式-3

人教版高中数学必修5第三章不等式-3

在可行域内打出网格线,
y
B(3,9)
x y0
M(18 , 39) 55
C(4,8)
x
O
2x+y=15 x+2y=18 x+3y=27
直线 x y=12 经过整点B(3,9)和C(4,8),
它们是最优解.
z最小值 =12.
答:要截得所需三种规格的钢板,且使所截两种钢板 张数最小的方法有两种,第一种截法是第一种钢板3 张,第二种钢板9张;第二种截法是截第一种钢板4 张,第二种钢板8张;这两种截法都至少要两种钢板 12张.
或最后经过的点为最优解; (4)求出最优解并代入目标函数,从而求出目标函数的
最值.
简单线性规划问题的图解方法
例1 设 z=2x+y,式中变量x、 y满足下列条件:
x 4 y 3,
3x 5 y 25, 求z的最大值和最小值.
x 1,
分析:作可行域,画平行线,解方程组,求最值.
y x1
第2课时 简单线性规划的应用
1.体会线性规划的基本思想,并能借助几何直观解决 一些简单的实际问题; 2.利用线性规划解决具有限制条件的不等式; 3.培养学生搜集、整理和分析信息的能力,提高数学 建模和解决实际问题的能力.
在实际问题中常遇到两类问题: 一是在人力、物力、资金等资源一定的条件下,
如何使用它们来完成最多的任务;
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,

高中数学目录(选修)

高中数学目录(选修)

必修五第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式选修1-1 文科第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线第三章导数及其应用3.1 变化率与导数 3.2 导数的计算3.3 导数在研究函数中的应用 3.4 生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图选修2-1理科第一章常用逻辑用语1.1 命题及其关系 1.2 充分条件与必要条件1.3 简单的逻辑联结词 1.4 全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用。

高中数学第三章不等式3.3.3第2课时整数线性规划和非线性规划问题数学

高中数学第三章不等式3.3.3第2课时整数线性规划和非线性规划问题数学

解析 答案
命题角度2 距离型目标函数
2x+y-2≥0, 例 3 已知 x,y 满足约束条件x-2y+4≥0, 试求 z=x2+y2 的最大值和最小值.
3x-y-3≤0,
12/13/2021
解答
反思与感悟 当两点间的距离、点到直线的距离与可行域相结合求最 值时,注意数形结合思想方法的灵活运用.
12/13/2021
跟踪训练 3
x-4y+3≤0,
已知变量 x,y 满足约束条件3x+5y-25≤0, x≥1.
(1)设 z=yx,求 z 的最小值;
12/13/2021
解答
(2)设z=x2+y2,求z的取值范围;
解 z=x2+y2 的几何意义是可行域上的点到原点 O 的距离的平方.结合图形 可知,可行域上的点到原点的距离中,dmin=OC= 2,dmax=OB= 29,即 2≤z≤29.
12/13/2021
解答
达标检测
12/13/2021
1.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70 元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2 盒,则不同的选购方式共有__7_种.
12/13/2021
1234
解析 答案
x+y≤4, 2.已知点 P(x,y)的坐标满足约束条件y≥x,
12/13/2021
解答
类型二 非线性目标函数的最值问题
命题角度1 斜率型目标函数 2x+y-2≥0,
例 2 已知实数 x,y 满足约束条件x-2y+4≥0, 3x-y-3≤0.
y+1 试求 z=x+1的最大值和最小值.
12/13/2021
解答
引申探究
3y+1 1.把目标函数改为 z=2x+1,求 z 的取值范围.

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。

2014年人教A版必修五课件 3.3 二元一次不等式(组)与简单的线性规划问题

2014年人教A版必修五课件 3.3 二元一次不等式(组)与简单的线性规划问题
y>x06 y=x06
在 A 点的上方取 B(x0, y), 则 y>x06. 在 A 点的下方取 C(x0, y), 则 y<x06.
于是得结论:
o
6 y<x06
B · x 6 A · C ·
0
xy=6
x
对于不等式 y>f(x) 表示的区域在直线 y=f(x) 的上方; y<f(x) 表示的区域在直线 y=f(x) 的下方.
二元一次方程 AxByC=0 (A、B不同时为0) 在坐 标平面上表示一条直线. 二元一次不等式 AxByC > 0 (或<0) (A、B不同 时为 0 ) 在坐标平面上表示的是一个区域. 是直线 AxByC=0 一旁的区域.
操作题: 在坐标平面上画出直线 xy=6. (1) 对于方程 xy=6, 任意取 3 组解, 在坐标平面 上标出这 3 组解所表示的点, 看在什么位置? (2) 对于不等式 xy>6, 任意取 3 组解, 在坐标平 面上标出这 3 组解所表示的点, 看在什么位置? (3) 对于不等式 xy<6, 任意取 3 组解, 在坐标平 面上标出这 3 组解所表示的点, 看在什么位置? y (1) (0, 6), (1, 5), (2, 4). 在直线 xy=6上. (2) (0, 7), (2, 6), (6, 4). 在直线 xy=6 的右下边. (3) (3, 2), (0, 1), (6, 1). 在直线 xy=6 的左上边.
练习: (课本86页) 第 1、 2 题 .
(补充). 分别画出下列不等式表示的平面区域: (1) xy1<0; (2) 2xy2≤0; (3) x3y; (4) y>0.
练习: (课本86页) 1. 不等式 x2y6>0 表示的区域在直线 x2y6=0 的( B ) (A) 右上方. (B) 右下方. (C) 左上方. (D) 左下方. 解: 取原点(0, 0)检验, 得 x2y6=0206 =6>0, 满足不等式. ∴不等式 x2y6>0 表示的

人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1

人教A版高中数学必修5《三章 不等式  3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1

利用Excel 求解数学规划问题1、 线性规划 例1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥≥≤+++≤+++≤++++++=4,3,2,10105000452110001001401101401100101461680..6001180310460max 214321432143214321j x x x x x x x x x x x x x x x t s x x x x z j利用Excel 求解其步骤如下:1、选择“工具”菜单中的“加载宏”选项,装入“规划求解”宏,此时,“工具”菜单中便出现“规划求解”选项。

如果“工具”菜单中已有“规划求解”选项,则直接进行第2步。

2、 按下表格式输入线性规划模型表中3、 在目标函数所在行的G3单元格内输入公式: =$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3此公式即为目标函数表达式,将该公式复制到G4,G5,G6,G7,G8单元格,即得约束条件左端表达式。

4、选择“工具”菜单的“规划求解”选项,弹出“规划求解参数”对话框,依次选定符合模型要求的项目。

(1)单击“设置目标单元格”框,将光标定位于框内,然后单击目标函数值单元格G3。

(2)在“规划求解参数”对话框的“等于”栏内,选择“最大值”选项。

(3)在“可变单元格”栏输入处,从表中选择$B$2:$E$2区域,使之出现$B$2:$E$2。

(4)在“约束”栏,单击“添加”按钮,弹出“添加约束”对话框,依次输入约束条件。

在“单元格引用位置”处,点击G4单元格,从“约束值”位置处选择约束类型“>=,<=,=,int,bin ”中的“<=”,在后面的框内点击F4单元格,按“添加”按钮,产生第一个约束条件。

类似地,添加第二、第三、第四、第五个约束条件后,按“确定”按钮,返回“规划求解参数”对话框。

(5)点击“选项”按钮,根据需要选择“假定非负”等项目后,按“确定”按钮,返回“规划求解参数”对话框(6)按“求解”按钮,弹出“规划求解结果”对话框,可根据需要选择“运算结果报告、敏感性报告、极限值报告”。

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT
在线性约束条件下,求目标函数最小值.
思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x

7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.3 简单的线性规划问题(1)
教学目标:
1.让学生了解线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念.
2.让学生掌握线性规划的图解法,并会用图解法求线性目标函数的最大值与最小值.
教学重点:
用图解法求线性规划问题的最优解.
教学难点:
对用图解法求解简单线性规划问题的最优解这一方法的理解和掌握.
教学方法:
1.在学生的独立探究和师生的双边活动中完成简单的线性规划的数学理论的构建,在实践中掌握求解简单的线性规划问题的方法——图解法.
2.渗透数形结合的思想,培养分析问题、解决问题的能力.
教学过程:
一、问题情境
1.情境:我们先考察生产中遇到的一个问题:(投影)
某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t、B种原料12t,产生的利润为2万元;生产1t乙种产品需要A种原料1t、B种原料9t,产生的利润为1万元.现有库存A种原料10t,B种原料60t,问如何安排才能使利润最大?
为理解题意,可以将已知数据整理成下表:(投影)
过10t和60t,即,即.
这是一个二元一次不等式组,此外,产量不可能是负数,所以③
于是上述问题转化为如下的一个数学问题:在约束条件④下,求出x,y,使利润(万元)达到最大.
2.问题:上述问题如何解决?
二、学生活动
①让学生探究解决这个问题分几个步骤;
②让学生分组讨论:如何在不等式组确定的区域中找到取得最大值的数对(x,y);
③由学生整理解决这个问题的思路.
(投影)首先,作出约束条件所表示的区域.其次,考虑的几何意义,将变形为,它表示斜率为-2,在y轴上截距为P的一条直线.平移直线,当它经过两直线与的交点A(1.25,5)时,直线在y轴上的截距P最大.
因此,当时,取得最大值,即甲、乙两种产品分别生产1.25t和5t时,可获得最大利润7.5万元.
三、数学建构(投影)
1.目标函数,线性目标函数线性规划问题,可行解,可行域,最优解.
诸如上述问题中,不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.是欲达到最大值或最小值所涉及的变量x,y的解析式,我们把它称为目标函数.由于又是关于x,y的一次解析式,所以又可叫做线性目标函数.
另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数在线性约束条件下的最大值和最小值的问题,即为线性规划问题.
那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在问题中,可行域就是阴影部分表示的区域.其中可行解(一般是区域的顶点)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
2.用图解法解决简单的线性规划问题的基本步骤:
(1)列出线性约束条件及写出目标函数;
(2)画出线性约束条件所表示的平面区域;
(3)通过平面区域求出满足线性条件下的可行解;
(4)用图形的直观性求最值;
(5)检验由(4)求出的解是否为最优解或符合问题的实际意义.
3.应用线性规划的图解方法,一般必须具备下列条件:
(1)能够将目标函数表示为最大化或最小化的要求;
(2)要有不同选择的可能性存在,即所有可行解不止一个;
(3)所求的目标函数是受条件约束的;
(4)约束条件应明确地表示为线性不等式或等式;
(5)约束条件中所涉及的变量不超过3个.
四、数学运用
例1 若已知满足求的最大值和最小值.
解约束条件,是关于的一个二元一次不等式组;
目标函数:是关于的一个二元一次函数;
可行域:是指由直线和所围成的一个三角形区域(包括边界)(如图);
可行解所有满足[即三角形区域内(包括边界)的点的坐标的实数都是可行解;
最优解,即可行域内一点,使得一组平行线为参数)中的z取得最大值和最小值时,所对应的点的坐标就是线性规划的最优解.当直线,即过三角形区域,且纵截距取最值时,z有最值,即目标函数z有最值.由图知,当l过B(1,1)点和A(5,2)时,z有最小值和最大值.


例2 已知满足不等式组求使取最大值的整数的值.
解不等式组的解集为三直线:
所围成的三角形内部(不含边界),设与,与,与交点分别为A,B,C,则A,B,C坐标分别为.
作一组平行线平行于,
当l往l0右上方移动时,t随之增大,
∴当l过C点时最大为,但不是整数解.
又由知x可取1,2,3,
当x=1时,代入原不等式组得y=-2,∴ x+y=-1;
当x=2时,得y=0或-1, x+y=2或1;
当x=3时,y=-1, x+y=2.
故x+y的最大整数解为或.
练习:
设,式中x,y满足条件求z的最大值或最小值.
五、回顾反思
本节课的主要内容为:
1.目标函数,线性目标函数线性规划问题、可行解、可行域、最优解;2.用图解法解决简单的线性规划问题的基本步骤;
3.应用线性规划的图解方法,必须具备的条件.。

相关文档
最新文档