高中数学基本不等式的解法十例

合集下载

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一解15种典型例题的不等式,需要注意处理好有重根的情况。

例如,如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>(或f(x)<)可用“穿根法”求解。

对于偶次或奇次重根,可以转化为不含重根的不等式,也可直接用“穿根法”,但要注意“奇穿偶不穿”,其法如图。

下面分别解两个例题:例题一:解不等式2x-x²-15x>0;(x+4)(x+5)(2-x)<231)原不等式可化为x(2x+5)(x-3)>0.把方程x(2x+5)(x -3)=0的三个根5,-1,3顺次标上数轴。

然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分。

∴原不等式解集为{x|-5<x<0}∪{x|x>3}。

2)原不等式等价于(x+4)(x+5)(x-2)>23.用“穿根法”得到原不等式解集为{x|x<-5或-5<x<-4或x>2}。

典型例题二解分式不等式时,要注意它的等价变形。

当分式不等式化为f(x)/g(x)<(或≤)时,可以按如下方法解题。

1)解:原不等式等价于3(x+2)-x(x-2)-x²+5x+6/3x(x+2)<1-2x+2.化简后得到原不等式等价于(x-6)(x+1)(x-2)(x+2)≥0.用“穿根法”得到原不等式解集为{x|x<-2或-1≤x≤2或x≥6}。

2)解法一:原不等式等价于2x²-3x+1/2x²-9x+14>0.化简后得到原不等式等价于(x-1)(2x-1)(3x-7)<0.用“穿根法”得到原不等式解集为{x|x<1/2或7/3<x<1}。

解法二:原不等式等价于(2x-1)(x-1)<0.用“穿根法”得到原不等式解集为{x|x<1/2或x>1}。

例7解不等式2ax-a2>1-x(a>0)。

分析:将不等式移项整理得到2ax+x>a2+1,然后按照无理不等式的解法化为两个不等式组,再分类讨论求解。

解:原不等式等价于(1) 2ax-a2>1-x,或(2) 2ax-a2<1-x。

高中不等式经典例题

高中不等式经典例题

高中不等式经典例题例1解不等式:(1)2x ³-x ²-15x>0;(2)(x+4)(x+5)²(2-x)³<0.分析:如果多项式 f(x)可分解为 n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)把方程x(2x+5)(x-3)=0的三个根说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正:②对于偶次或奇次重根可转化为不含重根的不等式, 也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2解下列分式不等式: (1)3x−2≤1−2x+2; (2)x 2−4x+13x 2−7x+2<1分析:当分式不等式化为 f (x )g (x )<0(或≤0)时,要注意它的等价变形(1) 解:原不等式等价于3x−2≤x x+23x−2−x x+2≤03(x+2)−x (x−2)(x−2)(x+2)≤0−x 2+5x+6(x−2)(x+2)≤0可用“穿根法”求解,但要注意处理好有重根的情况。

解:(1) 原不等式可化为x(2x+5)(x-3)>0x 1=0,x 2=−52,x 3=3顺次标上数轴, 然后从右上开始画线顺次经过三个根, 其解集如下图的阴影部分,∴原不等式解集为(2) 原不等式等价于(x+4)(x+5)³(x -2)³>0x>2 ∴原不等式解集为 或-5<x<-4或x>2}f (x )g (x )<0f (x )⋅g (x )<0;(x−6)(x+1)(x−2)(x+2)≥0{(x −6)(x +1)(x −2)(x +2)≥0(x +2)(x −2)≠0(2) 解法一:原不等式等价于2x 2−3x+13x 2−7x+2>0 (2x 2−3x +1)(3x 2−7x +2)>0{2x 2−3x +1>03x 2−7x +2>0或 {2x 2−3x +1<03x 2−7x +2<0x <13或 12<x <1或x>2,∴原不等式解集为 (−∞,13)∪(12,1)∪(2,+∞). 解法二:原不等式等价于典型例题三例3解不等式|x ²-4|<x+2 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义 |a|={a (a ≥0)−a(a <0)二是根据绝对值的性质: |x|<a −a <x <a,|x|ax >a 或x<-a, 因此本题有如下两种解法。

基本不等式经典例题精讲

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式)典题精讲例1(1)已知0<x <31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.(1)解法一:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121. 解法二:∵0<x <31,∴31-x >0. ∴y=x(1-3x)=3x(31-x)≤3[231x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2xx 1∙=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x 1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立. ∴y=x+x1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x >-1时,求f(x)=x+11+x 的最小值.思路分析:x >-1⇒x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x >-1,∴x+1>0.∴f(x)=x+11+x =x+1+11+x -1≥2)1(1)1(+∙+x x -1=1. 当且仅当x+1=11+x ,即x=0时,取得等号. ∴f(x)min =1.变式训练2求函数y=133224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开. 解:令t=x 2+1,则t≥1且x 2=t-1.∴y=133224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2tt 1∙=2,当且仅当t=t 1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.例2已知x >0,y >0,且x 1+y9=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.解法一:利用“1的代换”, ∵x 1+y9=1, ∴x+y=(x+y)·(x 1+y 9)=10+yx x y 9+. ∵x >0,y >0,∴y x x y 9+≥2yx x y 9∙=6. 当且仅当yx x y 9=,即y=3x 时,取等号.又x 1+y9=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y 9=1,得x=9-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+99-y +10. ∵y >9,∴y-9>0. ∴999-+-y y ≥299)9(-∙-y y =6. 当且仅当y-9=99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y9=1,得y+9x=xy, ∴(x-1)(y-9)=9.∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16,当且仅当x-1=y-9时取得等号.又x 1+y9=1, ∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16.绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.黑色陷阱:本题容易犯这样的错误:x 1+y 9≥2xy 9①,即xy6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y 9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.变式训练已知正数a,b,x,y 满足a+b=10,y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+xay y bx +. ∵x,y >0,a,b >0,∴x+y≥10+2ab =18,即ab =4.又a+b=10,∴⎩⎨⎧==8,2b a 或⎩⎨⎧==.2,8b a 例3求f(x)=3+lgx+x lg 4的最小值(0<x <1). 思路分析:∵0<x <1,∴lgx <0,xlg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数.解:∵0<x <1,∴lgx <0,x lg 4<0.∴-xlg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (xx --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+xlg 4≤3-4=-1. 当且仅当lgx=x lg 4,即x=1001时取得等号. 则有f(x)=3+lgx+xlg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.变式训练1已知x <45,求函数y=4x-2+541-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <45,则4x-5<0. 解:∵x <45,∴4x-5<0. y=4x-5+541-x +3=-[(5-4x)+x 451-]+3 ≤-2x x 451)45(-∙-+3=-2+3=1. 当且仅当5-4x=x451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.变式训练2当x <23时,求函数y=x+328-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·328-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,再求最值.解:y=21(2x-3)+328-x +23=-(x x 238223-+-)+23, ∵当x <23时,3-2x >0, ∴x x 238223-+-≥xx 2382232-∙-=4,当且仅当x x 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值25-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-1(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S ,则S=xy.方法一:由于2x+3y≥2y x 32⨯=2xy 6,∴2xy 6≤18,得xy≤227,即S≤227. 当且仅当2x=3y 时等号成立.由⎩⎨⎧=+=,1832,22y x y x 解得⎩⎨⎧==.3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=23 (6-y)y. ∵0<y <6,∴6-y >0.∴S≤23[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.方法一:∵2x+3y≥2y x 32∙=2xy 6=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.由⎩⎨⎧==,24,32xy y x 解得⎩⎨⎧==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 方法二:由xy=24,得x=y 24. ∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y⨯16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:(1)x,y 都是正数;(2)积xy (或x+y )为定值;(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x 200+80×200. =800(x+x 324)+16 000≥800×2xx 324∙+16 000=44 800, 当且仅当x=x 324 (x >0),即x=18时等号成立,而18∉[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1211x x -)] =800×212112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.∴Q(x)≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.探究:设此人应选第n 层楼,此时的不满意程度为y. 由题意知y=n+n8. ∵n+n 8≥2248=⨯nn , 当且仅当n=n 8,即n=22时取等号. 但考虑到n ∈N *,∴n≈2×1.414=2.828≈3,即此人应选3楼,不满意度最低.例5解关于x 的不等式2)1(--x x a >1(a ≠1) 解 原不等式可化为 2)2()1(--+-x a x a >0, ①当a >1时,原不等式与(x -12--a a )(x -2)>0同解 由于2111211a a a -=-<<-- ∴原不等式的解为(-∞,12--a a )∪(2,+∞) ②当a <1时,原不等式与(x -12--a a )(x -2) <0同解 由于21111a a a -=---, 若a <0,211211a a a -=-<--,解集为(12--a a ,2); 若a =0时,211211a a a -=-=--,解集为∅; 若0<a <1,211211a a a -=->--,解集为(2,12--a a ) 综上所述 当a >1时解集为(-∞,12--a a )∪(2,+∞);当0<a <1时,解集为(2,12--a a );当a =0时,解集为∅;当a <0时,解集为(12--a a ,2)。

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f ) 可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔2450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--<x x x x 或或 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ① 0)()(0)()(<⋅⇔<x g x f x g x f ; ② ⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x g x g x f x g x f (1)解:原不等式等价于0223223≤+--⇔+≤-x x x x x x 0)2)(2(650)2)(2()2()2(32≤+-++-⇔≤+---+⇔x x x x x x x x x⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(x x x x x x x x x x 用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

高中数学不等式解法15种典型例题

高中数学不等式解法15种典型例题

c
= =
− + = − 1
1 = (− 1 )(−
− 1
1
),
,
a
∴ x2 + b x + a 0 ,即 x2 + (− 1 − 1 )x + (− 1 )(− 1 ) 0 , 即 (x − 1 )(x − 1 ) 0 . 又 0 ,∴ 1 1 ,
画数轴,找因式根,分区间,定符号. (x − 1)(x − 5) 符号 (x + 2)(x − 6)
解之,得原不等式的解集为{x −1 x 2或x 3}.
说明:此题易出现去分母得 x2 + 2x − 2 x(3 + 2x − x2 ) 的错误解法.避免误解的方法是移项使一边为0再解. 另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.
不等式解法 15 种典型例题
例 1 解不等式:(1) 2x3 − x2 −15x 0 ;(2) (x + 4)(x + 5)2 (2 − x)3 0 .
分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f (x) 0(或 f (x) 0 )可用“穿根法”求解,
但要注意处理好有重根的情况. 解:(1)原不等式可化为
当 a 2 时,不等式组(1)无解,(2)的解是 x a . 2
) 综上可知,当 0 a 2 时,原不等式的解集是 a + 1 −
2a ,+
;当 a
2
时,原不等式的解集是
a 2
,+

说明:本题分类讨论标准“ 0 a 2 , a 2 ”是依据“已知 a 0 及(1)中‘ x a , x 1 ’,(2)中‘ x a , x 1 ’”

高中数学——“不等式的解法”归类专题(参考)

高中数学——“不等式的解法”归类专题(参考)

“不等式的解法”专题一.整式不等式的解法步骤:正化,求根,标轴,穿线(奇过偶不过),定解1. 一元一次不等式ax >b 解的讨论: 当a>0时解集为⎪⎭⎫ ⎝⎛+∞,a b ,当a<0时解集为,b a ⎛⎫-∞ ⎪⎝⎭当a=0且b<0时解集为R ,当a=0且b ≥0时,解集为Φ;2. 一元二次不等式我们总可化为ax 2+bx+c>0和ax 2+bx+c+<0(a>0)两形式之一,记△=b 2-4ac 。

跟踪训练1.若01,a <<则不等式()10x a x a ⎛⎫--< ⎪⎝⎭的解是 2. x 的取值范围是3. 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.4.解下列不等式(1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)(4)3x 2-+--+-31325113122x x x x x x >>()()二.分式不等式的解法先移项通分化为一边为()()f xg x ,一边为0的形式,再等价转化为整式不等式,即: ()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩跟踪训练 1.下列不等式与012≤+x x同解的是( ) (A)01≤+xx (B)0)1(≤+x x (C) 0)1lg(≤+x (D)21|1|≤+x x 2. 不等式x x<1的解集为 .3. 不等式1213≥--xx 的解集为( ) (A){x |43≤x ≤2} (B) {x |43≤x <2} (C) {x |x >2或x ≤43} (D){x |x <2} 4. 不等式21≥+x x的解集为 .5.解不等式237223x x x -≥+- 巩固训练不等式(x -2)2·(x -1)>0的解集为 . 不等式(x +1) ·(x -1)2≤0的解集为 .1. 不等式(x 2-2x -3)(x 2-4x +4)<0的解集为( ) A .{x | x <-1或x >3} B .{x | -1<x <3}C .{x | x <-3或x >1}D .{x | -1<x <2或2<x <3} 2.与不等式023≥--xx 同解的不等式是 ( ) A.(x -3)(2-x )≥0 B.lg(x -2)≤0 C.032≥--x xD.(x -3)(2-x )>0 3.不等式12x x-≥的解集为( ) A. [1,0)- B. [1,)-+∞C. (,1]-∞-D. (,1](0,)-∞-+∞U含绝对值的不等式1.应用分类讨论思想去绝对值;2.应用数形结合思想;3.应用平方法(要求不等式两端同号)基础训练1. 不等式|8-3x|>0的解集是( )A B RC {x|x }D {83}...≠.∅83 2.不等式1|1|3x <+<的解集为( ).C. (4,0)-D. (4,2)(0,2)--U3. 不等式4<|1-3x|≤7的解集为指数、对数不等式的解法解指数、对数不等式的一些常用方法:(1) 同底法:能化为同底数先化为同底,再根据指数、对数的单调性转化为代数不等式,底是参数时要注意分类讨论,并注意到对数真数大于零的限制条件 (2) 转化法:多用于指数不等式,通过两边取对数转化为对数不等式(3) 换元法:多用于不等式两边均有统一的组合形式,或取对数后再换元,注意所换“元”的范围 (4) 数形结合 基础训练 1. 不等式2261xx +-<的解集为2.不等式1(33>的解集为 3. 不等式2log (2)0x -≤的解集为 4.函数()f x =为5. 不等式20.20.2log (23)log (31)x x x +->+的解集为6. 不等式0.51log x x ->的解集为 巩固训练 1.已知当94x =时,不等式22log (2)log (23)a a x x x x -->-++成立,则不等式的解集为 2.设1232,(2)()log (1),(2)x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则不等式()2f x >的解集为 3. 已知集合22{228,},{log 1,}x A x x Z B x x x R -=≤≤∈=>∈,则()R A C B ⋂的元素个数为_____个5 若关于x 的方程2222x xxxa ---=+有解,求实数a 的取值范围6 已知0,1a a >≠,若2log 2log a a <,求实数a 的取值范围不等式解法六种典型例题典型例题一(整式不等式) 例1. 解不等式:(1)015223>--x x x ; (2)0)2()5)(4(32<-++x x x说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”。

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

一.基本不等式注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大” . (2) 求最值的条件“一正,二定,三取等”(3) 均值定理在求最值、应用一:求最值 例1 :求下列函数的值域基本不等式应用1解:(1) y = 3x 2 + 21^ 1X = - 2例1 :已知x 4,求函数y4x 2 —1—的最大值。

4x 5解:因4x 5 0 ,所以首先要 “调整”符号,又(4x 」不是常数,所以对4x 2要进行拆、凑项, Qx 544x 0, y4x 21---- 54x 52)g4x 54x 32 3 15 4x11一,即x 1时, 5 4x评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数当且仅当5 4x上式等号成立, 故当x 1时,y max 1。

1. (1)若 a,b R ,则 a 1 2b 2 *2ab (2)若a,bR ,则 ab 2. (1)若 a,b R *,则2Jab ⑵若a,b R ,则 a b2 .2a —L (当且仅当a22J OE (当且仅当ab 时取“二”) b 时取“=”)⑶若a,b R ,则ab(当且仅当a b 时取“=”)3.若x 0,则x— 2 (当且仅当x 1时取“=”x若x 0,则 x 1 1 1 2 即 X — 2 或 X - -2 (x x X 3.若 ab 0,则 a b .2 (当且仅当a b 时取b a1时取“=”)若ab 0,则- b-2(当且仅当a b 时取“=”)4.若 a,b2 .2a—L (当且仅当 2b 时取“=”)比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.(1) y = 3x 2+ 女1(2) y = x + x“=”)当且仅当a b 时取“=”)2例1.当Dux 4时,求y x(8 2x)的最大值。

解析:由0 < J <4知,S- 2工> 0|,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子 积的形式,但其和不是定值。

数学复习:基本不等式的十大解题技巧

数学复习:基本不等式的十大解题技巧

运用凑项或换元法将所给的函数化简为满足基本不等式的形式,运用基本不等式并检验其
等号成立的条件,若等号取不到则,结合函数 y = x + a (a 0) 单调性,并运用其图像与性 x
质求出其函数的最值即可。
【例5】(★★★)函数 y = x2 + 5 的值域为
.
x2 + 4
【答案】
5 2
,
+
【解析】令 x2 + 4 = t(t 2) , 则 y = x2 + 3 = x2 + 4 + 1 = t + 1 (t 2) .
数学复习:基本不等式的十大解题技巧
1. 基本不等式原始形式
(1)若 a,b R ,则 a2 + b2 2ab .
(2)若 a,b R ,则 ab a2 + b2 . 2
2.基本不等式一般形式(均值不等式)
若 a 0,b 0 ,则 a + b 2 ab .
3. 基本不等式的两个重要变形
(1)若 a 0,b 0 则 a + b ab (当且仅当 a = b 时取“ = ”). 2
【答案】 2 3 3
【解析】由 x2 + y2 + xy = 1,得1 = (x + y)2 − xy, (x + y)2 = 1+ xy 1+ (x + y)2 ,解得 4
− 2 3 x + y 2 3 ,又 x 0, y 0 ,所以 0 x + y 2 3 ,因此 x + y 的最大值为 2 3
【例2】(★★)已知 0 x 4 时,则 y = x(8 − 2x) 的最大值为
【答案】8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学基本不等式问题求解十例
一、基本不等式的基础形式
1.222a b ab +≥,其中,a b R ∈,当且仅当a b =时等号成立。

2
.a b +≥[),0,a b ∈+∞,当且仅当a b =时等号成立。

3
.常考不等式:2
222
1122a b a b ab ++⎛⎫≥≥≥ ⎪⎝⎭+
,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。

二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路:
(1)积定和最小:若ab 是定值,那么当且仅当a b =时,(
)min a b +=。

其中[),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2
max 2a b ab +⎛⎫
= ⎪⎝⎭
,其中,a b R ∈。

例题1:若实数,a b 满足221a
b
+=,则a b +的最大值是 .
解析:很明显,和为定,
当且仅当1a b ==-时取等号。

变式:函数1
(0,1)x y a
a a -=>≠的图象恒过定点A ,若点在直线1mx ny +=上,则mn 的最大值为______。

解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1mx ny +=中可得1m n +=,明显,和为
12m n ==时取等号。

例题2:已知函数()2
122
x
x f x +=+
,则()f x 取最小值时对应的x 的值为__________.
解析:很明显,积为定,
当且仅当2
1212
x x x +=
⇒=-时
取等号。

变式:已知2x >-,则1
2
x x +
+的最小值为 。

解析:由题意可得()1
20,212
x x x +>+⨯=+,明显,积为定,根据和定积最大法则可得:
,当且仅当1
22112
x x x x +=⇒+=⇒=-+时取等号,此时可得
例题3:若对任意x>0,
x
x2+3x+1
≤a恒成立,则a的取值范围是________.
解析:
解法1:
和最小的法则可得
当且仅
取等号。

故而可得分式的分

解法2:
故而可
得。

故而分
母,代入分式函数取倒数可

问题2:“1”的代换
例题4:若两个正实数x、y满足
14
1
x y
+=,且不等式23
4
y
x m m
+-
<有解,则实数m的取值范围是。

解析:由题意可得
14
1
x y
+=,左边乘以
14
1
x y
+=可得:
14
4
41
y
x
x y
y
x
⎛⎫
⎛⎫
++
⎪⎪
⎝⎭⎝⎭
+=,化简可得:
144
11
44
y y x
x
x y x y
⎛⎫
⎛⎫
++=+++
⎪⎪
⎝⎭⎝⎭
,很明显
4
4
y x
x y
+中积为定值,根据积定和最小的法则可得

4
2
4
y x
x y
+≥=,当且仅当
2
4
1
8
4
x
y x
y
x y
=

==⇒⎨
=

时取等号。

故而可得
14
4
4
y
x
x y
⎛⎫
⎛⎫
++≥
⎪⎪
⎝⎭⎝⎭。

不等式
23
4
y
x m m
+-
<有解,亦即2
min
34
4
y
m m x
⎛⎫
->+=

⎝⎭
,亦即2340
m m
-->,解得4
m>或者1
m<-,故而可
得()(),14,m ∈-∞-⋃+∞。

变式:若0x ≥, 0y ≥,且
12
22x y x y
+=++,则43x y +的最小值为__________.
解析:由()()2243x y x y x y +++=+,化简题干条件可得
14
2222x y x y
+=++乘以所求内容可得:
()()1414432222222224322
x y x y x y x y x y x y x y x y ⎛⎫⎛⎫
++++++ ⎪ ⎪++++⎝⎭⎝⎭+==,化简后可得:
()422241
222432
x y x y x y x y
x y ++++++++=,很明显()4222222x y x y x y x y +++++中二者积为定值,根据积定和最小法则可
得()
42224222x y x y
x y x y +++≥=++,当且仅当()42222222x y x y x y x y ++==++,亦即0
32x y =⎧⎪⎨=
⎪⎩
时取
问题3:方程中的基本不等式
解题思路:将需要利用不等式的项移到方程的一边,利用基本不等式求解即可。

例题5:(2015·湖南高考)若实数a ,b 满足1a +2
b =ab ,则ab 的最小值为__________.
解析:
由题意可知可以利用基本不等式,根据基本不等式可得:
12a b =
+≥=
,当且仅当122b a a b =
⇒=时取等号,化简后可得:ab =1
4
5
4
22a b ⎧
=⎪⎨⎪=⎩
变式:若lg(3x )+lg y =lg(x +y +1),则xy 的最小值为__________.
解析:将题干条件化简可得:()()lg 3lg 131x y x y xy x y ⋅=++⇒=++,由题意需要求解
xy ,故而可知利用不等式x y
+≥,将条件化简可得:31xy x y -=+≥当且仅当x
y =
时等号成立,化简上式可得
(
)
3101
1011xy xy --≥⇒+≥⇒≥⇒≥,此时1x y ==
问题4:含参基本不等式问题
解题思路:利用含参不等式的解法求解即可。

例题6:已知
22224
1a a x x x
++≤+-对于任意的()1,x ∈+∞恒成立,则( ) A .a 的最小值为3- B .a 的最小值为4-
C .a 的最大值为2
D .a 的最大值为4
解析:由题意可知参数为a ,将自变量移项可得:22
44
221x a a x x x x x ++≤
+=+--,观察等式右侧,可知等式右侧经配凑可得积为定值,根据积定和最小可得:
4141x x +-≥=-,当且仅当4131x x x =-=⇒=-时取等号,此时可得min
451x x ⎛⎫
+= ⎪-⎝⎭。

由24221a a x x ++≤+-对于任意的()1,x ∈+∞恒成立可得:2
min
42251a a x x ⎛⎫
++≤+=
⎪-⎝⎭,化简可得()()310a a +-≤,解得31a -≤≤。

变式6:已知a >0,b >0,若不等式22182m m
a b a b
-+≥+恒成立,则m 的取值范围是 。

解析:由题意可知参数为m ,将双自变量a 、b 移项可得:()2
2182m m a b a b ⎛⎫
-≤++
⎪⎝
⎭恒成立,故而可得()2min
2182m m a b a b ⎡⎤⎛⎫-≤++ ⎪⎢⎥⎝⎭⎣⎦,
将不等式右侧化简可得()212225b a a b a b a b ⎛⎫
++=++ ⎪⎝⎭,很明显积为定值,根据积定和最小法则可得

224b a a b +≥=,当且仅当221b a
a b a b
=⇒==时取等号。

故而()min
2129a b a b ⎡⎤⎛⎫++= ⎪⎢⎥
⎝⎭⎣⎦,代入不等式中可得289m m -≤化简为()()910m m -+≤解不等式可得19m -≤≤。

问题5:不等式与其他问题结合
(向量与不等式)例题7:已知(0,0)OA aOB bOC a b =+>>,且,,A B C 三点在同一条直线上,则11
a b
+的最小值为_________.
解析:由三点共线可得1a b +=,观察形式采用“1”
积为定值,
故而可
ABC C a b c ∆=++≤。

相关文档
最新文档