高中数学不等式的分类、解法讲解学习
高考数学不等式的解法知识点

高考数学不等式的解法知识点高考数学不等式的解法知识点在年少学习的日子里,大家都背过各种知识点吧?知识点也可以通俗的理解为重要的内容。
哪些知识点能够真正帮助到我们呢?以下是店铺帮大家整理的高考数学不等式的解法知识点,仅供参考,希望能够帮助到大家。
不等式的解法:(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则 ; ;注意:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(3).含有多个绝对值符号的不等式可用按零点分区间讨论的方法来解。
(4)分式不等式的解法:通解变形为整式不等式;(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(6)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要讨论。
不等式与不等式组1.定义:用符号〉,=,〈号连接的式子叫不等式。
2.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
高中数学不等式知识点总结

高中数学不等式知识点总结不等式是数学中重要的概念之一,也是解决实际问题的重要工具。
在高中数学中,学习不等式的知识是非常必要的。
本文将对高中数学不等式的知识点进行总结。
一、不等式的基本概念不等式是数学中描述两个数或两个式子大小关系的一种表示方法。
常见的不等式包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。
二、一元一次不等式一元一次不等式是指只有一个未知数、次数为1的不等式。
解一元一次不等式的方法和解一元一次方程类似,可以通过加减法、乘除法进行变形。
三、一元二次不等式一元二次不等式是指只有一个未知数、次数为2的不等式。
由于一元二次不等式的图像是一个抛物线,并且可以通过求函数的最值来解决不等式,所以解一元二次不等式的方法较为灵活。
四、绝对值不等式绝对值不等式是指包含绝对值的不等式。
解绝对值不等式时,需要对绝对值进行分类讨论,并利用绝对值的性质进行求解。
另外,当绝对值中含有未知数时,还需要根据未知数所在的范围进行讨论。
五、有理不等式有理不等式是指不等式中含有有理式(即有理数和代数式)的不等式。
对于有理不等式的解集求解,需要借助分式的性质和一元一次不等式的解法。
六、不等式的性质不等式有许多重要的性质,这些性质在求解不等式时起到非常重要的作用。
常见的不等式性质包括:1. 加减法性质:对不等式的两边同时加减一个数,不等号方向不变;2. 乘除法性质:对不等式的两边同时乘除一个正数,不等号方向不变;但对一个负数进行乘除操作时,需要改变不等号的方向;3. 倒数性质:如果两个数的倒数大小关系相反,那么这两个数的大小关系也相反;4. 平方性质:对非负实数的平方操作,不改变它们的大小关系;5. 倒数平方性质:对正实数的倒数平方操作,改变它们的大小关系;6. 同底指数性质:对于正实数的指数幂操作,不改变它们的大小关系。
七、不等式的应用不等式在实际生活中有广泛的应用,尤其在解决数学建模问题时起到关键作用。
高考数学知识点:不等式

高考数学知识点:不等式1500字高考数学中的不等式是一个重要的知识点,几乎在每年的高考试卷中都会出现。
不等式在很多实际问题中都有重要的应用,如经济学中的利润最大化问题、几何学中的面积最大最小问题等。
下面将对高考数学中常见的不等式知识点进行详细介绍。
一、一元一次不等式一元一次不等式的形式为ax+b>0(或ax+b≥0)、ax+b<0(或ax+b≤0),其中a和b为已知实数,x为未知数。
要求解这类不等式,需要注意以下几点:1. 若a>0,则当a>0时,不等式两侧都乘以正数a;当a<0时,不等式两侧都乘以负数a,不等号方向不变。
2. 若a<0,则当a>0时,解的不等式两侧都乘以负数a,不等号方向相反;当a<0时,解的不等式两侧都乘以正数a,不等号方向不变。
3. 若a=0,则不等式只有在b>0(或b≥0)和b<0(或b≤0)时有解。
二、一元二次不等式一元二次不等式是形如ax²+bx+c>0(或ax²+bx+c≥0)、ax²+bx+c<0(或ax²+bx+c≤0)的不等式,其中a、b、c为已知实数,a≠0。
要求解一元二次不等式,需要经过以下几个步骤:1. 确定a的正负性,若a>0则为开口向上的抛物线,若a<0则为开口向下的抛物线。
2. 计算抛物线的顶点坐标,即x₀=-b/2a。
3. 根据a的正负性确定抛物线的上升段或下降段。
4. 根据a的正负性确定不等式的解集。
三、绝对值不等式绝对值不等式是形如|ax+b|>c(或|ax+b|≥c)、|ax+b<c(或|ax+b|≤c)的不等式,其中a、b、c为已知实数,a≠0且c>0。
要求解绝对值不等式,需要根据绝对值的定义和性质进行推导,具体步骤如下:1. 根据绝对值的定义,将不等式分为正数和负数两个部分。
2. 对于正数部分,去掉绝对值符号,并得到一个二次不等式。
高中数学不等式解题方法全归纳

高中数学不等式解题方法全归纳大家好,今天咱们来聊聊高中数学里的不等式。
这个话题呢,看起来有点吓人,但其实掌握了几个方法,解起来也就像吃饭喝水那么简单了。
我们就像个探险家,一步步揭开不等式的神秘面纱吧!1. 不等式基础知识1.1 不等式的基本概念首先,不等式呢,其实就是用来比较两个数值之间大小关系的。
最常见的有“<”、“>”、“≤”、“≥”这四种符号。
比如,3 < 5,这里表示3小于5。
其实,不等式就像是一道门,我们要找出哪一方在门的左边,哪一方在右边。
1.2 不等式的基本性质要解不等式,得先了解几个基本性质。
比如说,加减乘除这几个操作在不等式中是怎么表现的。
举个简单的例子:加减法:如果你在不等式的两边都加上或减去一个相同的数,结果不等式的方向不会改变。
比如,3 < 5,加2后变成了5 < 7。
乘除法:如果你在不等式的两边都乘以一个正数,结果不等式的方向也不会改变。
但如果你乘或除以负数,不等式的方向就会翻转。
比如,2 < 4,当你乘以1时,就变成了2 > 4。
2. 不等式的常见解法2.1 线性不等式的解法线性不等式是最简单的一类不等式。
比如,2x + 3 < 7。
这种情况,我们可以通过移项和合并同类项来解。
步骤如下:1. 移项:把常数项移到另一边。
2x < 7 3。
2. 化简:化简右边的数值。
2x < 4。
3. 除以系数:最后,除以2,得到x < 2。
这时候,不等式就解出来了。
简单吧?2.2 二次不等式的解法二次不等式可能有点复杂,但不怕,我们一步步来。
假如有一个不等式x^2 4 < 0。
解这个不等式可以分为几个步骤:1. 解对应的方程:先解x^2 4 = 0。
这个方程的解是x = ±2。
2. 画图分析:我们可以把这个方程的解标在数轴上,x = 2和x = 2。
然后就可以用测试点法或者符号法来判断在哪些区间内不等式成立。
高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
高中数学中所有不等式解法汇总每题均含详细解析

高中数学中所有不等式解法汇总每题均含详细解析本文介绍了解简单不等式的几种方法,包括解二元一次不等式组、一元二次不等式、含绝对值的简单不等式、分式不等式和简单高次不等式。
其中,第一部分介绍了分数不等式的性质,包括两种情况下的大小关系。
第二部分介绍了“三个二次”的关系,即二次函数图象、一元二次方程的根和不等式的解集之间的关系。
第三部分介绍了解一元二次方程的三种方法,包括求根公式、因式分解法和配方法。
最后一部分介绍了解一元二次不等式的方法,包括统一处理二次项系数为正数,以及(x -a)(x-b)>0或(x-a)(x-b)<0型不等式的解法。
由y=x^2-3x-10的开口向上,可得x^2-3x-10>0的解集为(-∞,-2)∪(5,+∞)。
设集合M={x|x^2-3x-4<0},N={x|0≤x≤5},则M∩N等于[0,4)。
解析:因为M={x|x^2-3x-4<0}={x|-1<x<4},所以M∩N=[0,4)。
已知不等式ax^2-bx-1≥0的解集是(3/2,3],则不等式x^2-bx-a0,且Δ=b^2-4ac0,b<0,且0<b<3.综合可得x^2-bx-a<0的解集是(0,3)。
若关于x的不等式m(x-1)>x^2-x的解集为{x|1x^2-x的解集为{x|1<x<2},所以1和2一定是m(x-1)=x^2-x的解,因此m=2.若一元二次不等式2kx^2+kx-8<0对一切实数x都成立,则k的取值范围为(-3,0]。
解析:因为2kx^2+kx-8<0对一切实数x都成立,所以2k<0,解得k∈(-∞,0),又因为Δ=k^2-4×2k×(-8)<0,解得k∈(-3,0]。
设a为常数,∀x∈R,ax^2+ax+1>0,则a的取值范围是(0,4)。
解析:对于任意实数x,ax^2+ax+1>0,即Δ=a^2-4a<0,解得0<a<4.若不等式x^2-2x+5≥a^2-3a对任意实数x恒成立,则实数a的取值范围为(-∞,-1]∪[4,+∞)。
高中数学不等式知识点

高中数学不等式知识点数学作为一门抽象的学科,有着严密的逻辑和精确的计算方法。
在高中数学中,不等式是一个重要的知识点。
不等式的概念和应用不仅仅存在于数学领域,也在现实生活中扮演着重要的角色。
本文将通过对不等式的定义、性质和解题方法的探讨,帮助读者深入了解高中数学不等式知识点。
一、不等式的定义和性质不等式是用于表示两个数之间大小关系的符号。
常见的不等式符号有“大于”、“小于”、“不小于”、“不大于”等。
不等式中常见的数学符号有小于号(<)、大于号(>)、小于等于号(≤)、大于等于号(≥)。
不等式的定义为:设a和b为两个实数,如果a和b满足某种约束关系,就可表示为a≤b或a≥b。
当a和b之间存在一个不等于号,即a<b或a>b时,称之为真不等式;当a和b之间存在一个等于号,即a≤b或a≥b时,称之为假不等式。
不等式的性质有:1. 若a>b,则-a<-b。
2. 若a>b且c>0,则ac>bc。
3. 若a>b且c<0,则ac<bc。
4. 若a>b且c>0,则(a+c)>(b+c)。
5. 若a>b且c<0,则(a+c)<(b+c)。
二、一元一次不等式的解法一元一次不等式是指只含有一个未知数x,并且该未知数的最高次数为1的不等式。
解一元一次不等式可以采用图像法、等价变形法或区间法等方法。
图像法:首先将不等式转化为等式,画出对应的直线,然后确定不等式符号代表的方向。
最后根据图像确定解的区间。
等价变形法:通过等价变形将不等式化简为等价的简单不等式,然后求解。
例如,对于不等式3x+2>5x-1,可以将其化简为2x<3,然后解出x的取值范围。
区间法:根据不等式的性质,将未知数的取值范围划分成若干个区间,在每个区间上判断不等式的真假,并确定解的范围。
三、一元二次不等式的解法一元二次不等式是指含有一个未知数x,并且该未知数的最高次数为2的不等式。
高中数学不等式求解方法及应用

高中数学不等式求解方法及应用引言:在高中数学中,不等式是一个重要的概念和工具。
它不仅在数学理论中有着广泛的应用,而且在实际问题中也有着重要的意义。
本文将介绍高中数学中常见的不等式求解方法,并通过具体的例题来分析和说明这些方法的应用。
一、一元一次不等式的求解方法一元一次不等式是高中数学中最简单的不等式之一。
常见的一元一次不等式形式为ax + b > 0或ax + b < 0。
对于这种类型的不等式,我们可以使用图像法或代数法进行求解。
1. 图像法图像法是一种直观的方法,通过绘制一元一次不等式的图像,可以直观地看出不等式的解集。
例如,对于不等式2x + 3 > 0,我们可以绘制出一元一次函数y = 2x + 3的图像,并找出图像上y > 0的部分,即为不等式的解集。
2. 代数法代数法是一种更为常用和通用的方法,通过对不等式进行代数运算,可以得到不等式的解集。
例如,对于不等式2x + 3 > 0,我们可以通过移项和分析系数的正负来得到解集。
首先,移项得到2x > -3,然后除以2得到x > -3/2,即x的取值范围为(-3/2, +∞)。
二、一元二次不等式的求解方法一元二次不等式是高中数学中常见的不等式之一。
常见的一元二次不等式形式为ax^2 + bx + c > 0或ax^2 + bx + c < 0。
对于这种类型的不等式,我们可以使用图像法或代数法进行求解。
图像法同样是一种直观的方法,通过绘制一元二次不等式的图像,可以直观地看出不等式的解集。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以绘制出一元二次函数y = x^2 - 4x + 3的图像,并找出图像上y > 0的部分,即为不等式的解集。
2. 代数法代数法同样是一种常用和通用的方法,通过对不等式进行代数运算,可以得到不等式的解集。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以通过求解二次方程x^2 - 4x + 3 = 0,并分析二次函数的凹凸性质来得到解集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学不等式的分
类、解法
高中数学简单不等式的分类、解法 一、知识点回顾
1.简单不等式类型:一元一次、二次不等式,
分式不等式,高次不等式,指数、对数不等
式,三角不等式,含参不等式,函数不等式,
绝对值不等式。
2.一元二次不等式的解法
解二次不等式时,将二次不等式整理成首
项系数大于0的一般形式,再求根、结合图像
写出解集
3三个二次之间的关系:
二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228)
二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法
法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法
法一:转化为不等式组;法二:数轴标根法
6.指数与对数不等式解法
a>1时)()()()(x g x f a a x g x f >⇔>;
0)()()(log )(log >>⇔>x g x f x g x f a a
0<a<1时,)()()()(x g x f a a x g x f <⇔>;
)
()(0)(log )(log x g x f x g x f a a <<⇔>
7.三角不等式解法
利用三角函数线或用三角函数的图像求解
8.含参不等式解法
根据解题需要,对参数进行分类讨论
9.函数不等式解法
利用函数的单调性求解,化为基本不等式
(有时还会结合奇偶性)
10.绝对值不等式解法(后面详细讨论)
二、练习:
(1)23440x x -++>解集为
(2
23x -<< )(一化二算三写)
(2)213
022
x x ++>解集为
(R ) (变为≤,则得∅)(无实根则配方) 三、例题与练习
例1已知函数)()1()(b x ax x f +•-= ,若不等式0)(>x f 的解集为)3,1(-,则不等式
0)2(<-x f 的解集为 ),2
1
()23,(+∞--∞Y
解法一:由根与系数关系求出3,1-=-=b a ,得32)(2++-=x x x f ,再得出新不等式,求解
解法二:由二次不等式0)(>x f 的解集为
)3,1(-得0)(<x f 解集为),3()1,(+∞--∞Y ,再
由
∈-x 2),3()1,(+∞--∞Y 得解集
变式1. 已知关于x 的不等式20x mx n -+≤的解集是{|51}x x -≤≤,则不等式0>+n mx 的解集为
(m, n )=(-4,-5),解集为)4
5
,(--∞
例2:不等式22
32
x x x -++≥0的解集是_____.
答案:(-2,-1)∪[2,+∞)
法一:化为不等式组 法二:数轴标根法 法三:化为整式不等式(注意等价性) 变式2:不等式03323<+--x x x 的解集为 . 答案:)1,()3,1(--∞Y
例3:解关于x 的不等式ax x ax -≥-222 分析:化为02)2(2≥--+x a ax ,考虑分类标准:①a 与0的关系②
a
2
与-1的关系 变式3:①解关于x 的不等式ax 2-(a +1)x +1<0
解:原不等式可化为(ax-1)(x-1)<0
当a<0时,原不等式解集为),1()1
,(+∞-∞Y a
当a=0时,x-1>0, 原不等式解集为(1,+ ∞)
当0<a<1时,原不等式解集为)1
,1(a
当a=1时,0)1(2<-x ,原不等式解集为φ
当a>1时,原不等式解集为)1,1
(a
②.解关于x 的不等式0)1(log 12<--x a a
答案:当a>1时,解集为)2log 21
,0(a
当0<a<1时,解集为)2log 2
1
,(a -∞
(总结指数与对数不等式解法) 思维点拨:含参数不等式,应选择恰当的讨论标准对所含字母分类讨论,要做到不重不漏.
例4:已知函数⎩
⎨⎧≤≥+=)0(,1)
0(,1)(2x x x x f ,则不等式
)2()1(2x f x f >-的解集为
分析:考虑解题思路,有两种方向---函数不等式或分段解不等式
画出函数图像,结合图像易得不等式组
⎩⎨⎧>-<01022x x 或⎩
⎨⎧≥-≥x x x 210
22
得解集为)12,1(-- 变式4:定义在R 上的偶函数,当0≥x 时,x x x f 4)(2-=,则不等式x x f ≥)(的解集为
法一:结合图像求解;法二:化为不等式组 解集为{}),5[0]3,(+∞--∞Y Y
例5:)(x f 是定义在R 上的偶函数,当0≥x 时,
a x e x f x --=sin )(,解不等式)2()1(f x f >-
分析:0≥x 时,0cos )(>-='x e x f x
,)(x f 在),0[+∞上单调增,又它为偶函数,所以,不等式
转化为)2()1(f x f >-,化为21>-x ,得解集为
),3()1,(+∞--∞Y
探究:改为奇函数,解集为
变式5:函数f (x )的定义域为R ,f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如右图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为__________________.
答案:(2,3)∪(-3,-2)
解析 由导函数图象知f (x )在(-∞,0)上为增函数;在(0,+∞)上为减函
数,故不等式f (x 2-6)>1等价于-2<x 2-6<3,解得x ∈(2,3)∪(-3,-2) 四、小结
1.含参不等式求解要先考虑分类标准,做到不漏不重
2.要善于转化,化为不等式组或整式不等式或代数不等式,注意数形结合。
五、课后思考题
1.已知函数)(x f 的大致图像如图,则不等式
0)
1)((>-x
x x f 的
解集为
分析:化为不等式组⎪⎩⎪⎨⎧>>-0)(01x f x x 或⎪⎩⎪⎨⎧<<-0
)(0
1x f x x
进而得解集为),3()0,1(+∞-Y
2. 已知⎩⎨⎧<-≥=)
0(2)
0(2)(2x x x x x f x ,解不等式
8))((<x f f
分析:换元,设t x f =)(,先解不等式8)(<t f ,得02<<-t 或30<≤t ,再转化为关于x 的不等式求解, 解集为)3log ,1(2-
3.已知f (x )是定义域为实数集R 的偶函数,对任意x 1,x 2≥0,若x 1≠x 2,则
0)
()(2
121<--x x x f x f ,如果
f ⎝⎛⎭⎫13=34,且 3)(lo
g 48
1>x f ,那么x 的取值范围为
( )
A.⎝⎛⎭⎫0,12
B.⎝⎛⎭⎫12,2
C.⎝⎛⎦⎤1
2,1∪(2,+∞) D.⎝⎛⎭⎫0,18∪⎝⎛⎭⎫1
2,2 答案 B 解析:4
3
)(log 8
1>
x f ,由已知可得当x ≥0时,f (x )是减函数.
又
f (x )
为
偶
函
数
,
∴)log ()(log 8
18
1x f x f =,
由)31(43)log (8
1f x f =>
得31log 8
1<x ∴31log 318
1<<-
x ∴1
2<x <2. 4.已知)0,2(-A 、)0,2(B 、),2(a a C -,且
ABC ∆是锐角三角形,求a 的取值范围。
分析:由题意可得⎩
⎨⎧>+-<-<-4)2(2222
2a a a ,解得 )4,2(∈a
教后记:知识点回顾用时较多,可简略(5分钟内)。