实验五 信号与系统的复频域分析
实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告
本实验的目的是研究连续时间系统的复频域分析。
首先,构建了一个由推力继电器组
成的系统,其模型为图1所示。
再将此系统内建模,得到开环传递函数
G(s)=K/[(s+1)(s+1)(s+2)],其中1为系统参数,s为复频变量。
然后使用MATLAB编程,实现基于Laplace变换计算复频域函数和系统振型,并以一系列频率点绘制系统频率响应
曲线等曲线,从而评估系统性能。
实验结果表明,当系统参数K处于[6.5,9.2]中时,系统的复频响应表现出了各向同
性的性能(图2),表明系统具有更一致的响应特性,并且误差幅值在0.03以内保持稳定,说明系统具有良好的稳定性性能。
此外,系统振型(图3)也说明了系统的稳定性,振型
稳定时间较短,且交叉率较小,说明系统具有良好的稳定性能。
综上,连续时间系统的复频域分析中,MATLAB编程在系统参数K为[6.5,9.2]范围内时,运用Laplace变换和求和函数,成功绘制出系统的复频响应曲线,以及相应的系统振型,从而对系统的复频响应、稳定行为等做出定量性、全面性的评估,为系统运行提供了
可靠的参考。
实验5 连续时间系统的频域和复频域分析

实验5 连续时间系统的频域和复频域分析一.实验目的1.掌握和理解连续时间函数系统频率相应、系统函数的概念和物理意义。
2.学习和掌握连续时间系统频域、复频域的分析方法。
3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二.实验原理1.连续时间系统的频率响应系统的频率响应定义为:ττωωτd eh j H j -∞∞-⎰=)()(H (ωj )反映了LTI 连续时间系统对不同频率信号的相应特性,是系统内在固有的特性,与外部激励无关。
H (ωj )又可以表示为)()()(ωθωωj ej H j H =其中)(ωj H 称为系统的幅度响应,)(ωθ成为系统的相应响应。
对于由下述微分方程描述的LTI 连续时间系统∑∑===Mm m n Nn n n t xb t ya 0)(0)()()(其频率响应H (ωj )可以表示为下列式子所示的ωj 的有理多项式1110111...)()(...)()()()()(a j a j a j a b j b j b j b X Y j H N N N N M M M M ++++++++==----ωωωωωωωωωMATLAB 的信号处理工具箱提供了专门的函数freqs ,用来分析连续时间系统的频率响应,该函数有下列几种调用格式:[h,w]=freqs(b,a) 计算默认频率范围内200个频率点上的频率响应的取样值,这200个频率点记录在w 中。
h=freqs (b ,a ,w ) b 、a 分别为表示H (ωj )的有理多项式中分子和分母多项式的系数向量,w 为频率取样点,返回值h 就是频率响应在频率取样点上的数值向量。
[h ,w]=freqs (b ,a ,n) 计算默认频率范围内n 个频率点上的频率响应的取样值,这n 个频率点记录在w 中。
Freqs (b ,a ,……) 这种调用格式不返回频率响应的取样值,而是以对数坐标的方式绘出来系统的频率响应和相频响应。
实验六_信号与系统复频域分析报告

实验六_信号与系统复频域分析报告信号与系统是电子信息类专业学科中非常重要的一门基础课程,主要研究信号和系统的性质、特点、表示以及处理方法。
本实验主要是通过对信号与系统复频域分析来深入了解信号和系统的特性和性质。
实验中,我们使用了MATLAB软件进行了信号与系统复频域分析,主要涉及到以下内容:一、信号在复频域中的表达式设x(t)是一个实数信号,那么它在频域的表达式为:$$X(\omega )=\int _{-\infty }^{\infty }x(t)e^{-j\omega t}dt$$其中,$\omega $是频率,$X(\omega )$是频域中的信号,即信号的频率特性。
对于一个时不变线性系统,它在频域中的表达式为:三、信号与系统的卷积定理在时域中,两个信号$x(t)$和$h(t)$的卷积表示为:$$Y(\omega )=X(\omega )*H(\omega )$$其中,$*$表示频域中的卷积操作。
四、频域的性质频域有许多重要的性质,如频率移位、对称性、线性性、时移性、共轭对称性、能量守恒等等。
这些性质可以为信号的分析和处理提供重要的帮助。
在实验过程中,我们首先使用MATLAB绘制了一个正弦波信号及其频谱图、一个方波信号及其频谱图,以及两个不同的系统频率响应曲线。
然后,我们通过信号和系统的卷积操作,绘制了输入信号和输出信号的波形图及频谱图。
最后,我们通过MATLAB的FFT函数进行了离散频率响应分析,探究了系统的性质和特性。
实验中,我们通过理论知识和MATLAB软件的使用,深入了解了信号与系统的复频域分析。
这对于我们进一步学习和掌握信号与系统的知识,提高我们的理论水平和实践能力具有重要意义。
北京理工大学信号与系统实验 实验5 连续时间系统的复频域分析

实验5 连续时间系统的复频域分析一、实验目的1.掌握拉普拉斯变换及其反变换的定义,并掌握MATLAB 实现方法。
2.学习和掌握连续时间系统系统函数的定义及复频域分析方法。
3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法1.拉普拉斯变换连续时间信号)(t x 的拉普拉斯变换定义为 )1.....(..........)()(dt e t x s X st ⎰+∞∞--=拉普拉斯反变换定义为)2....(..........)(21)(ds e s X j t x j j st ⎰∞+∞-=σσπ 在MATLAB 中,可以采用符号数学工具箱的laplace 函数和ilaplace 函数进行拉氏变换和反拉氏变换。
L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。
L=laplace(F,t)用t 替换结果中的变量s 。
F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。
F=ilaplace(L,x)用x 替换结果中的变量t 。
除了上述ilaplace 函数,还可以采用部分分式法,求解拉普拉斯逆变换,具体原理如下: 当 X (s )为有理分式时,它可以表示为两个多项式之比:)3.(..........)()()(011011a s a s a b s b s b s D s N s X N N N N M M M M +⋯+++⋯++==---- 式(3)可以用部分分式法展成一下形式 )4.....(.............)(2211NN p s r p s rp s r s X -++-+-=通过查常用拉普拉斯变换对,可以由式(1-2)求得拉普拉斯逆变换。
利用 MATLAB 的residue 函数可以将 X (s )展成式(1-2)所示的部分分式展开式,该函数的调用格式为:[r,p,k] = residue(b,a) 其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分别为上述展开式中的部分分式系数、极点和直项多项式系数。
连续系统的频域和复频域分析

二、实验设计
1.方波的合成实验。 用 5 项谐波合成一个频率为 50Hz, 幅值为 3 的方波, 写出 MATLAB 程序, 给出实验的结果。 实验代码: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211); for n=1:2:11 plot(t,12/pi*1/n*sin(2*pi*n*f0*t),'k'); hold on; end title('信号叠加前'); subplot(212) for n=1:2:11 sum=sum+12/pi*1/n*sin(2*pi*n*f0*t); end plot(t,sum,'k'); title('信号叠加后');
实验结果:
三、思考题
1.拉普拉斯变换的定义是什么? 答:拉普拉斯变换是对于 t>=0 函数值不为零的连续时间函数 x(t)通过关系式 (式中 st 为自然对数底 e 的指数)变换为复变量 s 的函数 X(s)。它也是 时间函数 x(t)的“复频域”表示方式。 2.系统的零、极点对系统的冲激响应有何影响? 答: 冲激响应波形是指指数衰减还是指数增长或等幅振荡, 主要取决于极点位于 s 左半平面 还是右半平面或在虚轴上;冲激响应波形衰减或增长快慢,主要取决于极点离虚轴的远近; 冲激响应波形振荡的快慢,主要取决于极点离实轴的远近 3.由系统的零、极点能否确定系统的固有响应和强迫响应? 答:系统的零、极点能确定系统的固有响应,而不能确定强迫响应。 4.拉普拉斯变换和傅里叶变换的关系是什么?
实验六:连续系统的复频域分析
一、实验目的
1.了解连续系统的复频域分析的基本方法。 2.掌握相关函数的调用。
信号与系统的频域分析

信号与系统的频域分析信号与系统是电子、通信、自动控制、计算机等领域的重要基础课程,频域分析是其中的重要内容之一。
频域分析是指将信号在频域上进行分析和处理,通过分析信号的频谱特性和频率分量来了解信号的频率成分和频率响应。
一、频域分析的基本概念和原理频域分析是将时域信号转换为频域信号的过程,可以通过傅里叶变换来实现。
傅里叶变换是一种将非周期信号或有限时长的周期信号分解为一系列基础频率分量的技术,可以将信号在频域上进行表达和处理。
在频域中,信号的频率成分和相对能量分布可以清晰地呈现出来,方便人们对信号进行分析和理解。
二、傅里叶级数和傅里叶变换傅里叶级数是用来分解周期信号为一系列余弦和正弦函数的技术,适用于周期信号的频域分析。
傅里叶级数展开后,通过求解各个频率分量的振幅和相位,可以得到该周期信号在频域中的频率成分和能量分布。
傅里叶变换是对非周期信号或有限时长的周期信号进行频域分析的方法。
傅里叶变换将信号从时域转换到频域,得到信号的频谱特性。
通过傅里叶变换,可以将时域中的信号分解为一系列基础频率分量,同时还可以得到每个频率分量的相位和振幅信息。
三、频域分析的应用频域分析在信号处理和系统分析中广泛应用。
在通信系统中,频域分析可以用于信号调制、解调和信道估计等方面。
在音频和视频信号处理中,频域分析可以用于音频和视频编码、去噪和增强等技术。
在自动控制系统中,频域分析可以用于系统的稳定性和响应特性分析。
四、常见的频域分析方法除了傅里叶变换外,还有一些常见的频域分析方法,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、功率谱密度分析(PSD)等。
这些方法在不同的领域和应用中有着各自的优缺点和适用范围。
熟练掌握这些方法的原理和使用技巧,可以更好地进行频域分析和信号处理。
五、总结频域分析是信号与系统领域中重要的理论和实践内容,通过分析信号在频域上的频率成分和能量分布,可以深入理解信号的特性和系统的行为。
傅里叶变换作为频域分析的核心工具,能够将信号在时域和频域之间进行转换,为信号处理和系统分析提供了强有力的工具。
连续时间信号与系统的频域分析实验报告

《信号与系统》课程实验报告一•实验原理 1傅里叶变换实验原理如下:傅里叶变换的调用格式F=fourier(f):返回关于 W 的函数;F=fourier(f , v):返回关于符号对象V 的函数,而不是W 的函数。
傅里叶逆变换的调用格式f=ifourier(F):它是符号函数F 的fourier 逆变换,返回关于X 的函数; f=ifourier(f,u):返回关于U 的函数。
2、连续时间信号的频谱图实验原理如下: 符号算法求解如下:ft=sym('4*cos(2*pi*6*t)*(heaviside(t+1∕4)-heaviside(t-1∕4))'); FW=SimPlify(fourier(ft))subplot(121)ezplot(ft,[-0.5 0.5]),grid Onsubplot(122) ezplot(abs(Fw),[-24*pi 24*pi]),grid On波形图如下所示:当信号不能用解析式表达时,无法用换,则用MATLAB 的数值计算连续信号的傅里叶变换。
实验步骤或实验方案MATLAB 符号算法求傅里叶变F(j )f(t)ejt dt 叫nf (n )e若信号是时限的,或当时间大于某个给定值时,信号已衰减的很厉 害,可以近似地看成时限信号,设 n 的取值为N ,有4 CO$(12 I )■) (he 如引日环-IMh heaviside(t IeIXW Sin(WM ⅛)yabS(W i -144 >2)3、 用MATLAB 分析LTl 系统的频率特性当系统的频率响应H (jw )是jw 的有理多项式时,有H(S )B(W) b M (jW)Mb Mi (jW)MIL b ι(jw) b oH (jW)NN 1A(W)a N (jw)a ” ι(jw) L α(jw) a °freqs 函数可直接计算系统的频率响应的数值解,其调用格式为H=freqs(b,a,w)其中,a 和b 分别是H(jw)的分母和分子多项式的系数向量,W 定义 了系统频率响应的频率范围,P 为频率取样间隔。
信号与系统第5章-连续系统的复频域分析

0 sin 0t (t ) 2 2 s 0
s 同理可得 cos0t (t ) 2 2 s 0
收敛域为 0
衰减的正弦、余弦、双曲函数等都可用同样的方法求出
应用电子系
5、t 的正幂函数 tnε(t) (n为正整数)
1 n st L[t (t )] t e dt t de 0 s 0 1 n st n n 1 st [t e n t e dt ] L[t n 1 (t )] 0 0 s s
信号与系统 第四章 连续时间系统的复频域分析
• 拉普拉斯变换
• 拉普拉斯变换的主要性质
• 拉普拉斯反变换 • 系统的s域分析
应用电子系
第四章 连续时间系统的复频域分析
基于傅里叶变换的频域分析法引入了信号频 谱和系统频率响应的概念,具有清晰的物理意 义。但频域分析有其局限性: 1、要求函数绝对可积(狄里克雷条件)
拉普拉斯变换和傅里叶变换变换的性质有些是 相似的,而有些是有区别的,要注意它们的相似 之处和不同之处不要混淆。 这些性质都是针对单边拉普拉斯变换的。
应用电子系
1、线性 若: f1 (t ) F1 (s), f2 (t ) F2 (s) 则: a1 f1 (t ) a2 f 2 (t ) a1F1 ( s) a2 F2 ( s)
1 又如: t (t ) 2 s
1 (t ) (s )2
5、时域微分
df (t ) 若: f (t ) F ( s ) 则 sF ( s ) f (0 ) dt
df (t ) df ( t ) st st 证明: L e dt e df (t ) 0 0 dt dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五 信号与系统的复频域分析
王靖
08通信 12号
实验目的
(1)掌握利用MA TLAB 进行连续时间信号与系统的复频域分析。
(2)掌握利用MA TLAB 进行离散系统的复频域分析。
实验环境
安装MATLAB7.0以上版本的计算机
实验内容
1. 利用help 命令了解以下命令的基本用法
residue ,roots ,pzmap ,cart2pol ,residuez ,tf2zp ,zplane
2. 部分分式展开的MATLAB 实现
用部分分式展开法求X(s)的反变换。
2321
()452s X s s s s +=+++
步骤一:建立新的m 文件,保存并命名为program1.m 。
步骤二:输入以下命令,理解每条命令的含义。
%program1,部分分式展开法求反变换
[10
1];[1452];[,,](,)
n u m d en r p k resid u e n u m d en ===
步骤三:保存程序并运行,记录得到的结果。
如右图所示
步骤四:由得到的结果可以直接获得X(s)展开表示式
25
4
2
()21(1)X s s s s =-++++:
步骤五:由此可得到X(s)反变换的原函数,记录。
X(t)=(5exp(-2*t)-4exp(-t)+2texp(-t))
思考:将其转换成极坐标形式,应该如何使用cart2pol 命令?离散系统的部分分式展开,如何使用命
令residuez ,得到的结果如何利用?
将笛卡尔坐标转化为极坐标用 [angle,mag]=cart2pol(real(r),imag(r))
[r,p,k] = residuez(nun,,den)
3. H(s)的零极点与系统特性的MATLAB 计算
假设系统函数为:
321
()221H s s s s =+++
试作出零极点分布图,求系统的单位冲激响应h(t)和系统的幅度响应|H(jw)|,并判定系统的稳定性。
步骤一:建立m 文件,保存并命名为program2.m 。
步骤二:输入以下命令,理解每条命令的含义。
%program2
[1];
[1221];
(,);
(1);();
0:0.02:10;
0:0.02:5;
(,,);
(2);(,);
('Im R e ')
(,,);
(3);(,());
('n u m d en sys tf n u m d en fig u re p zm a p sys t w h im p u lse n u m d en t fig u re p lo t t h title p u lse sp o n e H freq s n u m d en w fig u re p lo t w a b s H title M a g n i ======-=R e ')tu d e sp o n e -
步骤三:保存、运行。
记录输出波形。
判断系统的稳定性,观察冲激响应与幅度响应的波形。
4. H(z)的零极点计算
求解因果离散时间LTI 系统的零极点:
1231230.1453(133)()10.16280.34030.0149z
z z H z z z z -------+-=+++
步骤一:建立m 文件,保存并命名为program3.m 。
步骤二:将系统函数改写为z 的正幂形式,利用tf2zp 函数求解系统的零极点。
32320.1453(331)
()0.16280.34030.0149z z z H z z z z -+-=+++
步骤三:输入以下命令,理解每条命令的含义。
%program3
0.1453*[1331];
[10.16280.3403
0.0149];[,,]2(,)
n u m d en z p k tf zp n u m d en =---== 步骤四:保存、运行,记录运行结果。
由结果写出系统的零极点。
(如右图)
步骤五:使用命令:zplane(num,den),可直接在z 平面画出单位圆、零点和极点 。
比较理论值和作出图形是否一致。
相关练习:
考虑如何求解因果离散时间LTI 系统的单位脉冲响应和系统的幅度响应。
答:利用h=impz (num,den,t )求解脉冲响应利用stem(t,h)画图,用[H,w]=freqz(num,den)
求解幅度响应,利用plot(w/pi,abs(H))画出幅度响应。