连续时间信号与系统的复频域分析
信号与系统自测题(第4章 连续时间信号与系统的复频域分析)含答案

) 。
D
、6
−t
18
( s) s 、线性系统的系统函数 H (s) = Y = ,若其零状态响应 y(t ) = (1 − e F ( s) s + 1
D B
−t
)u (t )
,则系
统的输入信号 f (t ) = (
A
) 。
−t
、 δ (t )
、e
u (t )
C
、e
−2 t
u (t )
D
、 tu(t )
C
2
、s
ω e −2 s + ω2
12
、原函数 e
1 − t a
t f( ) a
的象函数是(
B
B
) 。
C
s 1 F( + ) 、1 a a a 注:原书答案为 D
A
、 aF (as + 1)
、 aF (as + a)
D
、 aF (as + 1 ) a
t f ( ) ↔ aF (as ) a e f (t ) ↔ F ( s + 1)
A
−s s −s s
A
s 、1 F ( )e a a
−s
b a
B
s 、1 F ( )e a a
− sb
C
s 、1 F ( )e a a
t 0
s
b a
D
s 、1 F ( )e a a
sb
、 已知信号 x(t ) 的拉普拉斯变换为 X (s) ,则信号 f (t ) = ∫ λ x(t − λ )d λ 的拉普拉斯变换 为( B ) 。 1 1 1 1 A、 X ( s ) B、 X (s) C、 X ( s) D、 X (s) s s s s 注:原书答案为 C。 f (t ) = ∫ λ x(t − λ )d λ = tu(t ) ∗ x(t )u(t ) tu(t ) ∗ x(t )u(t ) ↔ s1 X (s) 9、函数 f (t ) = ∫ δ ( x)dx 的单边拉普拉斯变换 F ( s ) 等于( D ) 。 1 1 A、 1 B、 C、 e D、 e s s
精品文档-信号与系统分析(徐亚宁)-第4章

F2= s/(s^2+w0^2)
第4章 连续时间信号与系统的复频域分析
【例4-10】用MATLAB求解【例4-3】, 设τ=1 解 求解的代码如下: %program ch4-10 R=0.02; t=-2:R:2; f=stepfun(t, 0)-stepfun(t, 1); S1=2*pi*5; N=500; k=0:N; S=k*S1/N; L=f*exp(t′*s)*R; L=real(L);
本例中
和
的ROC均为
Re[s]>0,
极点均在s=0处。但
有一个s=0的零点,
抵消了该处的极点,相应地ROC扩大为整个s平面。
第4章 连续时间信号与系统的复频域分析 4.2.3 复频移(s域平移)特性
【例4-4】
, s0为任意常数 (4-12)
求e-atcosω0tU(t)及e-atsinω0tU(t)的象函数。
第4章 连续时间信号与系统的复频域分析
1. s 借助复平面(又称为s平面)可以方便地从图形上表示 复频率s。如图4-1所示,水平轴代表s Re[s]或σ, 垂直轴代表s的虚部,记为Im[s]或jω, 水平 轴与垂直轴通常分别称为σ轴与jω轴。如果信号f(t)绝 对可积,则可从拉氏变换中得到傅里叶变换:
f= exp(-t)+2*t*exp(-2*t)-exp(-2*t)
第4章 连续时间信号与系统的复频域分析
【例4-9】 用MATLAB求解【例4-2】 解 求解的代码如下:
%program ch4-9 syms w0t; F1=laplace(sin(w0*t)) F2=laplace(cos(w0*t))
(4-2)
(仅供参考)信号与系统第四章习题答案

e −sT
=
−sT
2 − 4e 2
+ 2e −sT
Ts 2
(f) x(t) = sin πt[ε (t)− ε (t − π )]
sin π tε (t ) ↔
π s2 + π 2
L[sin
πtε (t
−π
)]
=
L e jπt
− 2
e− jπt j
ε (t
−π
)
∫ ∫ =
1 2j
∞ π
e
jπt e−st dt
4.3 图 4.2 所示的每一个零极点图,确定满足下述情况的收敛域。
(1) f (t) 的傅里叶变换存在
(2) f (t )e 2t 的傅里叶变换存在
(3) f (t) = 0, t > 0
(4) f (t) = 0, t < 5
【知识点窍】主要考察拉普拉斯变换的零极点分布特性。 【逻辑推理】首先由零极点写出拉普拉斯变换式,再利用反变换求取其原信号,即可求取其收
= cosϕ eω0tj + e−ω0tj − sin ϕ eω0tj − e−ω0tj
2
2j
=
cos 2
ϕ
−
sin 2
ϕ j
e
ω0 t j
+
cosϕ 2
+
sin ϕ 2j
e −ω 0tj
F(s) =
L
cosϕ 2
−
sin ϕ 2j
eω0tj
+
cos 2
ϕ
+
sin ϕ 2j
e
−ω0
t
j
ε
(t
)
∫ ∫ =
第4章 连续信号与系统的复频域分析

式( 4.1-5 )和( 4.1-6 )称为双边拉普 拉斯变换对,可以用双箭头表示f ( t )与F(s) 之间这种变换与反变换的关系
记F (s) L [ f (t )], f (t ) L [ F (s)]
-1
f (t ) F ( s)
从上述由傅氏变换导出双边拉普拉 斯变换的过程中可以看出,f (t) 的双边 拉普拉斯变换F(s)=F( j )是把f (t)乘 以e - t之后再进行的傅里叶变换,或者 说F(s)是f ( t ) 的广义傅里叶变换。
j
1
j
st
ds
t > 0
(4.1-9)
记为£ -1[ F(s)]。即
F(s) =£ [ f (t) ]
–1 [ F (s) ] 和 f (t) = £
式(4.1-8)中积分下限用0-而不用0+, 目的是可把t = 0-时出现的冲激考虑到变换中 去,当利用单边拉普拉斯变换解微分方程时, 可以直接引用已知的起始状态f (0-)而求得全 部结果,无需专门计算0-到0+的跳变。
经过 0 的垂直线是收敛边界,或称为 收敛轴。
由于单边拉普拉斯变换的收敛域是由 Re[s] = > 0的半平面组成,因此其收敛 域都位于收敛轴的右边。
凡满足式(4.1-10)的函数f ( t )称为“指 数阶函数”,意思是可借助于指数函数的 衰减作用将函数f(t) 可能存在的发散性压下 去,使之成为收敛函数。
在收敛域内,函数的拉普拉斯变换存 在,在收敛域外,函数的拉普拉斯变换不 存在。
双边拉普拉斯变换对并不一一对应, 即便是同一个双边拉普拉斯变换表达式, 由于收敛域不同,可能会对应两个完全不 同的时间函数。
因此,双边拉普拉斯变换必须标明收 敛域。
信号与系统第四章-连续信号复频域分析

j
0
(可以用复平面虚轴上的连续频谱表示) 实际上是把非周期信号分解为无穷多等幅振荡的正
弦分量 d cost 之和。 《信号与系统》SIGNALS AND SYSTEMS
F ( )
f (t )e jt dt
ZB
3. 拉普拉斯变换
2 j f (t ) F ( s)
称 为衰减因子; e- t 为收敛因子。 返回《信号与系统》SIGNALS AND SYSTEMS
ZB
取 f(t)e- t 的傅里叶变换:
F [ f (t )e
t
]
f (t )e
t jt
e
f (t )e ( j )t dt dt
它是 j的函数,可以表示成
拉普拉斯变换(复频域)分析法 – 在连续、线性、时不变系统的分析方面十分有效 – 可以看作广义的傅里叶变换 – 变换式简单 – 扩大了变换的范围 – 为分析系统响应提供了规范的方法
返回《信号与系统》SIGNALS AND SYSTEMS
ZB
4.1 拉普拉斯变换
4.1.1 从傅里叶变换到拉普拉斯变换
单边拉氏变换的优点: (1) 不仅可以求解零状态响应,而且可以求解零输入响应 或全响应。 (2) 单边拉氏变换自动将初始条件包含在其中,而且只需 要了解 t=0- 时的情况就可以了。 (3) 时间变量 t 的取值范围为 0 ~ ,复频域变量 s 的取 值范围为复平面( S 平面)的一部分。 j S 平面 当 >0 时, f(t)e- t 绝对收敛。
ZB
按指数规律增长的信号:如 e t ,0 =
比指数信号增长的更快的信号:如 e 或t t 找不到0 , 则此类信号不存在拉氏变换。
信号与系统自测题(第4章连续时间信号与系统的复频域分析)含答案

《信号与系统信号与系统》》自测题第4章 连续时间连续时间信号与信号与信号与系统的的系统的的系统的的复复频域分析一、填空题1、由系统函数零、极点分布可以决定时域特性,对于稳定系统,在s 平面其极点位于 左半开平面(不含虚轴) 。
2、线性时不变连续时间系统是稳定系统的充分必要条件是()H s 的极点位于s 平面的 左半开平面(不含虚轴) 。
3、()H s 的零点和极点中仅 极点 决定了()h t 的函数形式。
4、()H s 是不 随系统的输入信号的变化而变换。
5、已知某系统的系统函数为()H s ,唯一决定该系统单位冲激响应()h t 函数形式的是()H s 的 极点 。
6、如下图所示系统,若221()2()()22U s H s U s s s ==++,则L = 2 H ,C =14F 。
注:2211()121/2()1()(0.5)1221/2U s Cs H s U s Ls Cs s s Ls Cs +====++++++2Ls s =222LCs s = 所以 2L = 1/4C =7、某信号2()x t t =,则该信号的拉普拉斯变换是32s。
注:1!()nn n t t sε+↔8、若信号3()t f t e =,则()F s =13s −。
9、431s s ++的零点个数是 0 ,极点个数是 4 。
10、求拉普拉斯逆变换的常用方法有 部分分式分解法 、 留数法 。
1(U s Ls+−+−2()s11、若信号的单边拉普拉斯变换为32s +,则()f t =23()t e u t −。
12、已知6()(2)(5)s F s s s +=++,则原函数()f t 的初值为 1 ,终值为 0 。
注:6(0)lim 1(2)(5)s s f s s s →∞+=×=++ 06()lim 0(2)(5)s s f s s s →+∞=×=++13、已知2()(2)(5)sF s s s =++,则原函数()f t 的初值为 2 ,终值为 0 。
第四章 连续时间信号与系统的复频域表示与分析

信号与系统 2
第四章 连续时间信号和系统的复频域表示与分析
单边指数信号 e at ut
1 e ut , sa
at
Res a
说明
知道 e at u( t ) 的 L 变换可以推导出其他许多函数 的 L 变换。
北京理工大学珠海学院信息学院
信号与系统
e
at
1 ( a j ) t costu( t ) (e e ( a j ) t )u( t ) 2 1 1 1 sa ( s a )2 2 j2 s a j s a j
北京理工大学珠海学院信息学院
北京理工大学珠海学院信息学院
信号与系统
第四章 连续时间信号和系统的复频域表示与分析
一
1
常用信号的拉普拉斯变换
t 和 t
L t 1,
L t s,
推广 :
Res Res
L n t s n
北京理工大学珠海学院信息学院
信号与系统
第四章 连续时间信号和系统的复频域表示与分析
例题
求下列信号的Laplace变换的收敛域
1ut ut 2ut 3sin0 tut 4tut , t n ut 5e 3t ut 6t t ut , e t ut
记作 f t L 1 F s
北京理工大学珠海学院信息学院
信号与系统
第四章 连续时间信号和系统的复频域表示与分析
f t F s
L
注意
信号 f(t) 必须是单边信号,即 t <0, f (t)=0。 积分下线的选取。 为了可以从 s域分析在0时刻包含冲激的信号,以 及由s域分析系统的零输入响应,所以采用 0- 定义。 习惯上把下线简写为0,其含义于 0- 相同。
信号与系统第四章 连续信号与系统的复频域分析(1)(2)

st
st
s
例4.1-4 求 t 、 ' t 的象函数。 解: t , ' t 均为时限信号,所以收敛域
为整个
L t t e dt t dt 1
st
s 平面。
0
de st se st s L ' t ' t e st dt dt t 0 0 t 0
Res
双边函数
的收敛域
如果 ,当然存在共同的收敛域 ,收敛域是带 Res 状区域 ; 如果 则没有共同的收敛域,Fb s 不存在。
因果函数 的收敛域
反因果函数 的收敛域
双边函数 的收敛域
当收敛域包含虚轴时,拉氏变换与傅氏 变换同时存在,将 s j 代入即可得其傅氏 变换。
对任意信号 f t 乘以一个衰减因子 t ,适当 选取 的值使 f t e t 当 t 时,
e
信号幅度趋于0,从而使其满足绝对可积的条件:
例如
f t e
t
dt
f t e t
2t
2t 2t
e t dt e dt
t
必然存在,这是讨论拉氏变换收敛域的出发点。 为了达到这个要求, f t 应满足:
lim f t e
t
t
0
0
0是满足 lim f t e t 0 的最小 值。 t
我们称 f t 为 0 指数阶的。 f t 可以是增长的,只要它比某些指数增长的慢, 其 拉氏变换就存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.3 常用信号的单边拉氏变换
1.单位阶跃信号 2.单位冲激信号 3.指数信号 4.正弦信号 5.t的正幂信号
1.单位阶跃信号
F(s) L u(t) est dt est 1
0
s 0 s
即:
u(t) 1 s
2.单位冲激信号
F(s) L (t)
(t) e st dt
例:已知F (s)
2s2 s2
9s 4s
18 8
, 求其拉氏反变换。
解:将F (s)表示为常用信号的拉氏变换形式,即:
s2 F (s) 2 (s 2)2 22
查表得:
2 2 (t)
s2 (s 2)2 22
e2t
பைடு நூலகம்
cos 2t u(t)
所以: f (t) L1[F (s)] 2 (t) e2t cos 2t u(t)
f1(t) f2 (t) F1(s) F2 (s)
2.复频域卷积定理
若f1(t) F1(s), f2 (t) F2 (s),则:
f1(t)
f2 (t)
1
2j
F1(s)
F2 (s)
返回本节
4.3 单边拉氏反变换
4.3.1 查表法 4.3.2 部分分式展开法
返回首页
4.3.1 查表法
s j
s2
2
即:
sin t u(t)
s2 2
5.t的正幂信号
F (s) L t nu(t) t n e st dt 0 利用分部积分法,得:
t nest dt t n
e st
n
t n1e st dt
n
t n1e st dt
0
s
s 0
s 0
0
所以:
L t nu(t) n L t n1u(t) s
第4章 连续时间信号与系统的复频域分析
4.1 拉普拉斯变换 4.2 单边拉氏变换的性质 4.3 单边拉氏反变换 4.4 连续系统的复频域分析 4.5 系统函数H(s) 4.6 系统函数的零、极点分布与时域响应特 性的关系 4.7 系统的稳定性 4.8 系统函数与系统频率特性
4.1 拉普拉斯变换
4.1.1 从傅里叶变换到拉普拉斯变换 4.1.2 拉普拉斯变换的收敛域 4.1.3 常用信号的单边拉氏变换
衰减因子 et 以后是否绝对可积,即:
f (t) eat dt
j
收 敛 轴
0
0收
敛 坐 标
收敛域
图4-1 收敛域的划分
f1 (t ) A
0
j
t
a
0
图4-2 右边指数衰减信号与其收敛域
f2 (t)
t 0
A
j
a 0
图4-3 左边指数增长信号与其收敛域
f3 (t ) 1
t 0
j
b
0
b
图4-4 双边信号与其收敛域 返回本节
则
t f ( )d F (s) f (1) (0 )
0
s
s
4.2.7 频域微分定理
若f (t) F(s) 则
tf (t) d F (s) ds
返回本节
4.2.8 频域积分定理
若f (t) F(s)
则
f (t)
F ()d
t
s
返回本节
4.2.9 初值定理
若f (t) F(s), 且f (t)连续可导,则:
表4-1 常用信号的拉氏变换
返回本节
4.2 单边拉氏变换的性质
4.2.1 线性 4.2.2 时移(延时)特性 4.2.3 尺度变换 4.2.4 频移特性 4.2.5 时域微分定理 4.2.6 时域积分定理 4.2.7 频域微分定理 4.2.8 频域积分定理 4.2.9 初值定理 4.2.10 终值定理 4.2.11 卷积定理
)
a0
4.2.4 频移特性
若f (t) F(s)
则 f (t)eat F(s a)
返回本节
4.2.5 时域微分定理
若f (t) F(s)
则 d f (t) sF (s) f (0 ) dt
f (n) (t) sn F (s) sn1 f (0 ) sn2 f ' (0 ) f n1(0 )
f (0 ) lim f (t) lim sF (s)
t 0
s
例:
4.2.10 终值定理
若f (t) F(s), 且f (t)连续可导,则:
f () lim f (t) lim sF (s)
t
s0
例:
4.2.11 卷积定理
1.时域卷积定理 2.复频域卷积定理
1.时域卷积定理
若f1(t) F1(s), f2 (t) F2 (s),则:
sin t t
0
(a) sint u(t t0 )
sin(t t0 )
sin(t t0)u(t)
t
t
0 t0
0 t0
(b)
(c)
sin(t t0 )u(t t0 )
t
t
0 t0
0 t0
(d)
(e)
图4-5 几种时移情况
4.2.3 尺度变换
若f (t) F(s)
则
f
(at)
1 a
F
(
s a
返回首页
4.2.1 线性
若f1(t) F1(s), f2 (t) F2 (s)
则对于任意常数a1和a2 , 有 a1 f1(t) a2 f2 (t) a1F1(s) a2F2 (s)
返回本节
4.2.2 时移(延时)特性
若f (t) F(s) 则对于任意实常数t0 , 有
f (t t0 )u(t t0 ) F (s)est0
返回首页
4.1.1 从傅里叶变换到拉普拉斯变换
由第3章已知,当函数f(t)满足狄里赫利条件 时,便存在一对傅里叶变换式:
F () f (t) e jt dt -
f (t) 1 F () e jt d 2
返回本节
4.1.2 拉普拉斯变换的收敛域
连续时间信号f(t)的拉普拉斯变换(以下简称 拉氏变换)式f(s)是否存在,取决于f(t)乘以
f (t)
f (1)(t)
f (2) (t)
A A
T
t
0
T
0
T
t
A (t) T
0
T
t
A (t T )
T
A (t T )
A (1) (t T )
(a)三角脉冲
(b)三角脉冲的一阶导数 (c)三角脉冲的二阶导数 图4-7 三角脉冲及其导数
返回本节
4.2.6 时域积分定理
若f (t) F(s)
(t)dt 1
0
0
即:
(t) 1
3.指数信号
F(s) L eatu(t) eat est dt 1
0
sa
即:
eatu(t) 1 sa
4.正弦信号
F(s) L
sin t u(t)
0
sin
t
e st
dt
0
e jt
e jt 2j
est dt
1 2j
s
1
j
1
返回本节
4.3.2 部分分式展开法