8.1幂的运算(第5课时)-教案
【最新沪科版精选】沪科初中数学七下《8.1《幂的运算》幂的乘方教案.doc

(六)提高练习:
计算(-P2)3+2[(-P)2]4·(-P5) 2
[(-1)m]2n+1m-1+02002―(―1)1990
若(x2)m=x8,则m=______
若[(x3)m]2=x12,则m=_______
若xm·x2m=2,求x9m的 值。
(4)(x2)5(5)-(a2)7(6)-(as)3
练习:
例:判断题,错误的予以改正。
(1)a5+a5=2a10()
(2)(s3)3=x6()
( 3)(-3)2·(-3)4=(-3)6=-36()
(4)x3+y3=(x+y)3()
(5)[(m-n)3]4-[(m-n)2]6=0()
【巩固刚刚学习的新知识。在此基础上加深知识的应用.】
若a2n=3,求(a3n)4的值。
已知am=2,an=3,求a2m+3n的值 .
(七)附加练习
[-(x+y)3]4(an+1)2×(a2n+1)3(-32)3a3×a4×a+(a2)4+2(a4)2(xm+n)2×(-xm-n)3+x2m-n×(-x3)m
(八)小结:会进行幂的乘方的运算。
作业
(五)新旧综合
在上节课我们讲到,同底数幂相乘在不同底数时有两个特例可以进行运算,上节我们讲了一种情况:底数互为相反数,这节我们研究第二种情况:底数之 4·x22(x2)n-(xn)2[(x2)3]7
【1】利用乘方的知识探索新课的内容,要引导学生观察,推测(62)4与(a2)3的底数、指数。
(二)自主探索,感知新知【1】
沪科版数学七年级下册8.1《幂的运算》教学设计

沪科版数学七年级下册8.1《幂的运算》教学设计一. 教材分析《幂的运算》是沪科版数学七年级下册第8.1节的内容,主要介绍了同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。
这部分内容是初中学段数学的重要基础,也是后续学习代数式、函数等知识的前提。
教材通过具体的例子引导学生掌握幂的运算规律,培养学生的逻辑思维能力和运算能力。
二. 学情分析七年级的学生已经掌握了整数、分数和小数的四则运算,对于幂的概念和简单的幂运算可能还比较陌生。
因此,在教学过程中,需要通过生动的例子和生活中的实际问题,激发学生的学习兴趣,引导学生理解和掌握幂的运算规律。
同时,七年级学生的抽象思维能力正在发展,需要通过大量的练习和操作活动,来巩固和提高幂的运算能力。
三. 教学目标1.理解幂的运算概念,掌握同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。
2.培养学生的逻辑思维能力和运算能力。
3.能够运用幂的运算知识解决生活中的实际问题。
四. 教学重难点1.重点:同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等幂的运算规则。
2.难点:理解幂的运算规律,能够灵活运用幂的运算知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过设置问题和情境,引导学生探究幂的运算规律。
2.运用直观教具和多媒体辅助教学,帮助学生形象地理解幂的运算概念。
3.采用分组讨论和合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重练习和操作活动,提高学生的运算能力和解决问题的能力。
六. 教学准备1.准备相关的教学材料和课件,如PPT、教案、练习题等。
2.准备一些实际问题,用于引导学生运用幂的运算知识解决实际问题。
3.准备一些直观教具,如幂的运算图表、幂的运算模型等。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,如“一个正方形的边长是2,求这个正方形的面积”,引导学生思考如何计算面积。
然后引出幂的运算概念,告诉学生,面积可以表示为边长的平方,即2的平方。
8.1幂的运算(5)

课题:8.1 幂的运算(5)第五课时 同底数幂的除法(2)主备人:王刚喜 审核人: 杨明 使用时间:2011年3月 日年级 班 姓名:学习目标:1.理解零指数幂的意义和负整数指数幂的意义. 2.会进行零指数幂和负整数指数幂的运算.3.能准确地用科学记数法表示一个数,•且能将负整数指数幂化为分数或整数.学习重点:a 0 = 1(a≠0), 1n na a-=(a≠0 ,n 是负整数)公式规定的合理性. 学习难点:零指数幂、负整数指数幂的意义的理解.一、学前准备【回顾】1.同底数幂的除法法则是什么?(1)符号语言:a m ÷a n =____ ____(a ≠0 ,m 、n 是正整数 ,且m >n) (2)文字语言:同底数幂相除,______不变,指数______2.计算:① 35)()(c c -÷- ②23)()(y x y x m +÷++ ③3210)(x x x ÷-÷【预习】1.看课本P51—P522.零指数幂: a 0 = 1(a≠0) 负整数指数幂:1n na a-=(a≠0,n 是整数)二、探究活动【探究一:零指数幂】1. 想一想:① 32÷32 = ②103÷103 = ③a m ÷a m (a≠0)= ● 观察上述各式,你能发现什么规律? ● 你能否用语言表述上述结论?※零指数幂公式 符号语言:a 0 = 1(a≠0)2. 学有所用:(2010台州市)计算:)1()2010(40---+3. 若0(2)1a b -=成立,则b a ,满足的条件是 ? 【探究二:负整数指数幂】1.想一想: ① 32÷34 = ②103÷107 = ③a m ÷a n (a≠0)= ● 观察上述各式,你能发现什么规律? ● 你能否用语言表述上述结论? ※负整数指数幂公式 1n na a-=(a≠0 ,n 是负整数)例1.计算:用分数或整数表示下列各负整数指数幂的值. (1)10-3; (2)(-0.5)-3; (3)(-3)- 4例2.计算:(1)38m m ÷ (2)7()()q q -÷-(3)3()()x xab ab -÷- (4)214yyxx-÷例3.(2010年眉山第19题)计算:1021()2)(2)3--+-【探究三:较小数的科学记数法】1.回顾:科学记数法: 2.练习:把下列各数表示成科学记数法的形式:①325000000 ②2738600000(保留3个有效数字)3.想一想:5110= ;0.000000001= (写成分数)3. 小结:绝对值小于1的数也可以写成 10na -±⨯(其中1≤a <10,n 是正整数)4.例题分析例1. 用科学记数法表示下列各数: (1)0.76 (2)-0.00000159【课堂自测】 1.填空:(1)当a≠0,p 为正整数时,a -p = (2)510÷510= 103÷106= 72÷78= (-2)9÷(-2)2= 2.用科学记数法表示下列各数:(1)360 000 000= ; (2)-2730 000= ; (3)0.000 00012= ; (4)0.000 1= ;(5) -0.000 00091= ; (6)0.000 000 007=3.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.000 00156m ,则这个数用科学记数法表示是 ( ) A .0.156×10-5 B.0.156×105 C .1.56×10-6 D.15.6×10-7三、自我测试一、填空题:1.=÷49x x ;=÷-332)(a a ;=+÷+1011)()(n m n m . 2.=÷331010 ;=-0)14.3(π ;2022005-÷= . 3.用科学记数法表示0000128.0-= ;3104.2-⨯所表示的小数是 . 二、选择题:4.下列算式中,结果正确的是( );A .236xx x =÷ B .z z z =÷45 C .33aa a =÷ D .224)()(cc c -=-÷-5.若1+÷n x a a 的运算的结果是a ,则x 为( );A .n -3B .1+nC .2+nD .3+n 6.下列算式正确的是( ).A .0)001.0(0=-B .01.01.02=-C .1)1243(0=-⨯D .4)21(2=-- 三、解答题: 7.计算:(1)1028)(b b ÷; (2)n n n x x x ÷-÷++2243)(.四、应用与拓展1.已知1312=-x ,则=x ;若3)42(--x 有意义,则x 不能取的值是 .。
幂的运算—幂的乘方教案设计

幂的运算—幂的乘方教案设计幂的运算—幂的乘方教案设计「篇一」幂的运算的小结与思考教案课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2。
②(-x3)=-(-x)3。
③(x-y)2=(y-x)2。
④(x-y)3=(y-x)3。
⑤x-a-b=x-(a+b)。
⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25。
所以103m+2n=103m102n=6425=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1。
y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<1324>=2,则<210>=______.解 210=(24)222=1624。
<210>=<64>=4例5 1993+9319的个位数字是A.2 B.4 C.6 D.8解1993+9319的个位数字等于993+319的`个位数字.∵ 993=(92)469=81469.319=(34)433=81427.993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
数学f1初中数学第八章幂的运算全部教案共7课时联合备课

本文为自本人珍藏版权所有仅供参考课题第八章幂的运算课时分配本课(章节)需课时本节课为第课时为本学期总第课时8.1同底数幂的乘法教学目标1.掌握同底数幂的乘法运算法则。
2. 能运用同底数幂的乘法运算法则熟练进行有关计算。
重点1.同底数幂的乘法运算法则的推导过程。
2. 会用同底数幂的乘法运算法则进行有关计算。
难点在导出同底数幂的乘法运算法则的过程中,培养学生的归纳能力和化归思想。
教学方法讲练结合、探索交流课型新授课教具投影仪教师活动学生活动一.情景设置:1.实例P46数的世界充满着神奇,幂的运算方便了“大”数的处理。
2.引例P47光在真空中的速度约是3×108 m/s,光在真空中穿行 1 年的距离称为1光年。
请你算算:⑴.1 年以3×107 s计算,1 光年约是多少千米?⑵.银河系的直径达10 万光年,约是多少千米?⑶.如果一架飞机的飞行速度为1000km/h,那么光的速度是这架飞机速度的多少倍?3.问题:太阳光照射到地球表面所需的时间大约是5×102 s,光的速度约是3×108 m/s,地球与太阳之间的距离是多少?问:108×102 等于多少?(其中108 ,10是底数,8是指数,108 叫做幂)板书:同底数幂的乘法学生回答由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.二.新课讲解:1.做一做 P48学生板演教师引导学生回到定义中去,进而得出结果,如果学生有困难,不妨重点强调一下乘方定义(求n个相同因数的积的运算),a n =a﹒a﹒a﹒﹒﹒an个a2.法则的推导当m 、n是正整数时,a m .a n = (a﹒a﹒﹒﹒﹒a)〃(a﹒a﹒﹒﹒﹒a)m个a n个a=a﹒a﹒﹒﹒﹒a(m+n)个a=a m+n所以a m .a n =a m+n (m 、n是正整数)学生口述:同底数幂相乘,底数不变,指数相加。
3.例题解析P49例1:题略分析:⑴(-8)17 =-817幂的性质:负数的奇次幂仍是负数。
幂的运算教案

幂的运算教案一、教学目标:1、了解幂运算的定义和性质;2、能够进行幂运算的计算;3、能够解决实际问题中的幂运算应用问题。
二、教学内容:1、定义和性质:(1)幂的定义:若a是任意确定的非零实数,n是任意确定的正整数,则a^n表示a连乘n次的结果,称为a的n次幂。
(2)幂的性质:- a^m × a^n = a^(m + n)- (a^m)^n = a^(m × n)- (a × b)^n = a^n × b^n- (a / b)^n = a^n / b^n- (a^n)^m = a^(n × m)- a^0 = 1 (a ≠ 0)2、幂的计算:(1)同底数相乘、相除:保持底数不变,指数相加或相减。
(2)幂的乘方:底数相同,指数相乘。
(3)幂的分数指数:底数不变,指数根据分数定义进行计算。
(4)幂的零指数:任何非零数的零次幂都等于1。
3、幂运算应用:(1)计算面积和体积:用幂运算计算方形、长方形和立方体的面积和体积。
(2)计算利息:用幂运算计算存款的本利和。
三、教学过程:1、引入新知识:通过一个实际问题引入幂运算的概念和定义。
2、讲解幂运算的定义和性质,带入例子进行说明。
让学生根据定义和性质计算一些简单的幂运算。
3、提供一些练习题,让学生进行计算练习,巩固所学的幂运算的计算方法。
4、通过实际问题进行应用练习,让学生能够将幂运算应用到解决实际问题中。
5、总结幂运算的定义、性质和计算方法。
四、教学资源:1、教科书、课件等教学资料;2、课堂练习题;3、实际问题应用练习题。
五、教学评价方法:1、观察学生在课堂上的参与情况及练习题的完成情况;2、进行课堂讨论,评价学生对幂运算的理解和应用能力;3、布置课后作业,检查学生对幂运算的掌握情况。
七年级数学下册 8.1 幂的运算 零指数、负整数指数教案 沪科版(2021年整理)

安徽省固镇县七年级数学下册8.1 幂的运算零指数、负整数指数教案(新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省固镇县七年级数学下册8.1 幂的运算零指数、负整数指数教案(新版)沪科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省固镇县七年级数学下册8.1 幂的运算零指数、负整数指数教案(新版)沪科版的全部内容。
幂的运算教学目标知识与能力:了解零指数,负指数的意义;掌握负整数指数转化为正整数指数的方法过程与方法:利用“假设同底数幂的除法性质对于m≤n时仍成立”,再通过两种算法比较来说明零指数幂和负指数幂的合理性.情感态度与价值观:培养学生观察思考,合作交流的意识和认识知识发展的价值。
重难点重点:掌握负整数指数转化为正整数指数的方法.难点:理解负指数幂的意义。
教学过一、学习目标1,了解零指数,负指数的意义.2,掌握负整数指数转化为正整数指数的方法.3,会运用零指数.负整数指数幂的运算性质进行计算。
二、自学提纲看书本第51页到第52页内容,思考以下问题:1,根据除法运算中,一个数除以它本身商为1,口答:33÷33=_____;108108=______;a n÷a n=_____(a≠0)若按同底数幂的除法性质:a m÷a n=a m—n(a≠0)口答:33÷33=33—3=30 =____, 108÷108=108-8=100 =____ , a n÷a n=a n-n=a0 =____.你能得出什么结论?2,根据同底数幂相乘(除)运算及分数约分,填空:讨论补充记录程教学过(1),2225523333==____33___÷=⨯(2),104÷108=____=____=_____(3),若m<n,a m÷a n=_____=______=______若按同底数幂的除法运算,填空:(设p=n-m, n<m)32÷35=______=_______;104÷108=_____=_____;a m÷a n=_____=_____.你得出什么结论?3,自学例5三、合作探究1,根据除法运算中,一个数除以它本身商为1,得33÷33=1; 108÷108=1; a n÷a n=1(a≠0)若按同底数幂的除法性质,得33÷33=33-3=30; 108÷108=108-8=100; a n÷a n=a n-n=a0(a≠0)结论:30=1,100=1,a0=1(a≠0)于是约定:a0=1(a≠0)语言表述:任何一个不等于零的数的零指数幂等于1。
沪科版数学七年级下册8.1《幂的运算》教学设计

设计了针对性的课堂练习,让学生独立完成,以检验他们对幂运算的理解和应用能力。练习题包括:
1.基础题目:\(2^5 \times 2^3\),\(5^4 \div 5^2\),\((6 \times 7)^2\)等,旨在巩固幂的运算规则。
2.提高题目:解决实际问题时应用幂运算,如计算一个正方体体积的2倍,或一个细菌分裂n次后的数量。
3.幂的乘方:\((a^m)^n = a^{m \times n}\)
4.积的乘方:\((ab)^n = a^n \times b^n\)
在讲授过程中,通过数学例题和图示,让学生直观地理解每个运算法则的含义和推导过程。同时,强调每个法则在数学逻辑上的严密性,培养学生的逻辑思维能力。
(三)学生小组讨论
3.教学评价:
-采用形成性评价,关注学生在学习过程中的表现,及时发现并解决他们在幂运算中的困难。
-设计多元化的评价方式,包括课堂提问、小组讨论表现、课后作业和阶段性测试,全面评估学生的学习效果。
四、教学内容与过程
(一)导入新课
在这一阶段,我们将通过一个与学生生活密切相关的实例来导入新课。例如,我们可以讨论一个关于面积计算的问题:假设我们有一个边长为2的正方形,那么这个正方形的面积是多少?学生很快会回答是4。接着提出问题,如果我们将这个正方形沿着每条边等分成4个小正方形,那么大正方形的面积是多少?学生通过计算可以得出是16。进一步引导学生思考,如果我们将这个过程继续进行下去,每次都把小正方形沿着边等分成更小的正方形,那么在n次分割后,大正方形的面积会是多少?
(二)教学设想
1.教学方法:
-采用启发式教学,通过提问和引导学生观察数学现象,激发学生的思维活动,帮助他们自主发现幂运算的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.1 幂的运算(第5课时)-教案
滁州市第六中学柴树云周言祥
一、教学背景
(一)教材分析
在学习同底数幂的除法运算性质基础上,探究零指数幂和负指数幂的规定的意义。
教材的关键是让学生把握几两种指数幂的定义,能进行指数运算,目的是对数学的后继学习,以及学习物理和化学的奠定基础。
(二)学情分析
学生已经熟练地掌握的了同底数幂除法的性质和正指数幂的科学记数法,为学习本节内容奠定了基础。
从心理认知规律上看,学生在学习了几种指数幂的运算性质后,学习本节内容,已具备学习本节内容的能力。
二、教学目标
1. 经历探索零指数幂和负指数幂的意义过程,进一步体会零指数幂和负指数幂的存在的条件,发展推理能力和有条理的表达能力。
2. 学会利用零指数幂和负指数幂的意义进行简单的计算。
3. 学会利用负指数幂表示绝对值小于1的数。
4. 学会用科学记数法表示数进行运算,提高运算的准确性。
三、重点、难点
重点:学会利用零指数幂和负指数幂的意义进行简单的计算,并会利用负指数幂表示绝对值较小的数。
难点:深刻理解零指数幂和负指数幂的意义。
四、教学方法分析及学习方法指导
教法指导:
回顾导入新课时,将正整数指数幂的运算性质的复习插在零指数幂概念形成和它的合理性验证等过程中,明确本节课的主题.将学生的注意力吸引到如何建
立零指数幂概念上来。
零指数幂和负整数指数幂是通过规定来明确其意义的,在教学中,让学生了解做出这样规定的原因及其合理性。
学法指导:
教学中要分解成一个个小问题,让学生通过解决小问题来认识道理。
五、教学过程
(一)回顾导入
考察下列算式:
223355551010a a ÷÷÷; ;
设计意图:回顾同底数幂的除法性质,为本节课的学习奠定基础。
(二)探究新知
一方面,如果仿照同底数幂的除法公式来计算,得
2222033330
55550555510101010(0)a a a a a ---÷==÷==÷==≠
另一方面,由于这几个式子的被除式等于除式,由除法的意义可知,所得的商都等于1。
由此启发,我们规定:
.a a ===≠0005110110, ,()
这就是说:任何不等于零的数的零次幂都等于1。
我们再来考察被除数的指数小于除数的指数的情况,例如考察下列算式: 2537551010÷÷; ;
一方面,如果仿照同底数幂的除法公式来计算,得
2525337374555510101010----÷==÷==; ;
另一方面,我们可利用约分,直接算出这两个式子的结果为
223325
375233734455110101551010555510101010÷===÷===⨯+; ; 由此启发,可以得到: 3434115 10510
--==;
一般地,我们规定:
1()n n a a
a n -≠=0,是正整数 这就是说,任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数。
设计意图:引导学生主动反思问题,掌握解决问题的方法,让学生认识到零指数幂和负整数指数幂是通过规定来明确其意义的,使学生明白做出这样规定的原因及其合理性。
(三)合作学
例5 计算
()()()()()02
3566111 10102 3 2277-⎛⎫⎛⎫÷÷-÷- ⎪ ⎪⎝⎭⎝⎭ 思考:用小数表示下列各数:
()()451 10 2 2.110--⨯
想一想:现在,我们已经引进了零指数幂和负整指数幂,指数的范围已经扩大到了全体整数。
那么,在§8.1“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立。
232(3)333
32(3)22323(1) (2) ()(3) () (4) a a a a b a b a a a a a -+------⨯---⋅=⋅==÷=()
设计意图:引导学生观察,计算过程中应注意什么?既调动学生的积极性,又对零指数幂和负整数指数幂的意义进行加深理解。
(四)探究新知
做一做:
⑴ 用分数表示 123101010---、 、 。
⑵把0.1、 0.01、 0.001表示成分数。
你能看出上面的关系吗?
由上面的探究可得:
-33-552.6 2.60.0026===2.6101000103.45 3.450.0000345=== 3.451010000010
⨯----⨯ 一个绝对值很小的数可以写成只有1个一位整数与10的负整数指数幂的积的形式。
以前用科学记数法表示一个绝对值很大的数,现在还可以用科学记数法表示一个绝对值很小的数。
一般地,一个绝对值很大或很小的数都可以利用科学记数法写成±a ×10n 的形式,其中1≤a <10,n 是整数。
例6 用科学记数法表示下列各数:
(1)0.00076 (2)-0.00000159 (3)0.0000283
归纳:
用科学记数法表示一个绝对值较小的数时,数n 就等于这个数的第一个不为零的有效数字前面零的个数(包括小数点前面的零)。
(五)自主学习
1. 用科学记数法表示下列各数:
()()()()()()4456
259733221 33 2 3 4 228855--⎛⎫⎛⎫⎛⎫⎛⎫÷÷-÷--÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
2. 用科学记数法填空:
(1)1秒是1微秒的1000000倍,则1微秒=________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;
(4)1纳米=_________微米;
(5)1平方厘米=_________平方米;
(6)1毫升=_________立方米。
设计意图:通过学生自主学习,对新知进行练习巩固。
(六)课堂小结
说能出你这节课的心得和体会,让大家与你分享吗?
(七)布置作业
1. 课本P 53页练习2、3
2. 课本P54页练习1、2
3. 课本p55习题8.1第8、9题
板书设计:
预设反思:
回顾导入新课时,将正整数指数幂的运算性质的复习插在零指数幂概念形成和它的合理性验证等过程中,明确本节课的主题,将学生的注意力吸引到如何建立零指数幂概念上来。
零指数幂和负整数指数幂是通过规定来明确其意义的,作为一个新概念定义不必追究它的来源,但在教学中,让学生了解做出这样规定的原因及其合理性。
所作规定的合理性一般不容易讲清楚,教学中要分解成一个个小问题,让学生通过解决小问题来认识道理。