二次函数的动点问题详解

合集下载

二次函数的动点问题(等腰、直角三角形的存在性问题)解析

二次函数的动点问题(等腰、直角三角形的存在性问题)解析

_ Q_ G_P_ O二次函数中的动点问题 三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用形式(1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; 2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进行判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况△ > 0 与x 轴 交点 方程有 的实数根△ < 0 与x 轴 交点 实数根 △ = 0与x 轴 交点方程有 的实数根3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2x 21x x +=(2)两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:221221)()(y y x x PQ -+-=练一练:已知A (0,5)和B (-2,3),则AB = 。

4、 常见考察形式1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线方法规律:平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆方法规律{平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积:(1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

中考复习:二次函数的动点问题

中考复习:二次函数的动点问题

_ Q_ G_P_ O二次函数中的动点问题 一、技巧提炼1、利用待定系数法求抛物线解析式的常用三种形式(1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解;(2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解;(3)、【交点式】已知抛物线与轴的交点的坐标时,通常设解析式为 。

2、二次函数y=ax2+bx+c 与x 轴是否有交点,可以用方程ax2+bx+c = 0是否有根的情况进行判定;3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2x 21x x +=(2)两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:221221)()(y y x x PQ -+-=(3)中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫⎝⎛++222121y y ,x x 。

4、常见考察形式1)已知A (1,0),B (0,2),请在平面直角坐标系中坐标轴上找一点C ,使△ABC 是等腰三角形;总结:两圆一线平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴上找一点C ,使△ABC 是直角三角形;总结: 两线一圆平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积:(1)直接用面积公式计算;(2)割补法;(3)铅垂高法;如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

(完整版)二次函数动点问题解答方法技巧分析

(完整版)二次函数动点问题解答方法技巧分析

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

二次函数动点问题类型

二次函数动点问题类型

二次函数动点问题类型一、求解动点坐标问题:1.已知二次函数的图像经过特定点,求该点的坐标。

例如,已知二次函数y=ax^2+bx+c的图像过点(2,5),求a、b、c的值。

解:由于(2,5)是曲线上的一点,所以满足曲线上的点的坐标满足函数的定义关系式,即:y=ax^2+bx+c代入已知点的坐标,得到:5=4a+2b+c再结合二次函数的性质,无论a、b、c取何值,都可以确定一个二次函数,因此需要再提供其他的条件才能完全确定a、b、c的值。

2.已知二次函数的顶点坐标,求顶点坐标与对称轴的方程。

例如,已知二次函数y=ax^2+bx+c的顶点坐标为(2,3),求对称轴的方程和a、b、c的值。

解:根据二次函数的性质,二次函数的顶点坐标位于对称轴上,所以对称轴的方程可以通过已知的顶点坐标得到。

对称轴的方程为x=顶点的横坐标,即x=2然后,再结合二次函数顶点坐标的性质,即顶点坐标(2,3)满足a*(2^2)+b*2+c=3,代入这个关系式,可以求解出a、b、c的值。

3.已知二次函数的零点,求函数的表达式。

例如,已知二次函数y=ax^2+bx+c的零点为x=1和x=3,求函数的表达式。

解:已知x=1和x=3是函数的零点,代入函数的定义关系式,得到a*(1^2)+b*1+c=0和a*(3^2)+b*3+c=0。

进一步整理就可以得到一个由a、b、c构成的方程组,解这个方程组就可以确定a、b、c的值,从而得到二次函数的表达式。

二、研究动点运动规律问题:1.如何通过二次函数的图像研究点的运动规律?二次函数可以表示一个抛物线的图像,通过分析二次函数的各项系数可以得到抛物线的开口方向、顶点坐标等信息,从而研究点的运动规律。

例如,当二次函数的a大于0时,抛物线开口向上,顶点坐标为最低点,点的运动趋势是从下往上;当二次函数的a小于0时,抛物线开口向下,顶点坐标为最高点,点的运动趋势是从上往下。

2.如何通过已知条件研究点的运动规律?已知的条件可以包括点的初始位置、速度、加速度等信息,将这些信息转化成数学问题,从而得到二次函数的各项系数,进而通过研究二次函数的图像研究点的运动规律。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标.需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号.或由二次函数中a,b,c 的符号判断图象的位置.要数形结合;⑷ 二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x 轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式.二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1.0)和点B (-3.0).与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M .问在对称轴上是否存在点P.使△CMP为等腰三角形?若存在.请直接写出所有符合条件的点P的坐标;若不存在.请说明理由.(3) 如图②.若点E为第二象限抛物线上一动点.连接BE、CE.求四边形BOCE面积的最大值.并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时.以C为圆心CM为半径画弧.与对称轴交点即为所求点P.②M为顶点时.以M为圆心MC为半径画弧.与对称轴交点即为所求点P.③P为顶点时.线段MC的垂直平分线与对称轴交点即为所求点P。

二次函数中的动点问题

二次函数中的动点问题

二次函数中的动点问题二次函数是高中数学课程中比较重要的一种函数类型,它的图像是一个开口朝上或朝下的抛物线,可以用来表达很多实际问题中的关系。

其中,二次函数中的动点问题是一个常见的问题,主要涉及到了抛物线上某点的运动轨迹,对于此类问题的讨论可以帮助我们深入理解二次函数以及抛物线的特点和应用。

一、动点问题的形式通过一个具体的例子来展示二次函数中的动点问题。

设有一根长60m、重量为100N的弹性绳悬挂于两个点P、Q 之间,弹性绳呈现一个U形。

现有一质量为m的物体从点P 处自由下落,然后受到弹性绳的支撑反弹,反弹高度为h,再落回原点P处。

此时,假设物体在下落或反弹的任意时刻都在弹性绳的中垂线上,我们可以通过求出物体在任意时刻的高度求解出反弹的高度h与物体的质量m的关系。

初步分析这个问题,可以列出物体所在的位置函数,即h(t)。

我们假设物体下落时时间t=0s,其高度为0m,则有:h(t) = at^2 + bt其中,a和b都是常数,t是时间。

物体在弹性绳上下运动,向下运动的时候速度会不断加快,直到反弹的时候速度为0,然后速度逐渐加快,到达下落的时候又达到最大值。

因此,可以得出物体的速度函数v(t):v(t) = 2at + b而物体的位置函数是速度函数的积分,因此可以解出:h(t) = at^2 + bt + c其中,c是一个常数,其值等于物体下落的初速度的平方除以2g(g为重力加速度,约为9.8m/s^2)。

由于物体在任意时刻都在弹性绳中垂线上,因此可以确定物体的运动轨迹为抛物线。

在上述问题中,我们可以确定抛物线的顶点V的坐标为(30,hmax),其中hmax即为物体下落时的最大高度。

二、动点问题的解法对于二次函数中的动点问题,主要通过求出抛物线的顶点来解决。

通过求解出顶点的坐标、抛物线的开口方向和方程等,可以确定抛物线的形状和运动轨迹,进而判断动点的位置、速度和加速度等物理量。

具体来说,解决二次函数动点问题的步骤如下:1. 确定抛物线的形状和开口方向。

二次函数动点问题

二次函数动点问题

二次函数动点问题二次函数是数学中的一个重要概念,也有很多实际应用。

在二次函数中,我们经常会遇到一种问题,即动点问题。

该问题要求我们根据给定的二次函数,确定函数图像上某个动点的坐标。

问题描述在二次函数动点问题中,我们通常会给出二次函数的方程和一个动点的初始位置。

我们需要通过计算,确定动点在函数图像上的位置。

具体来说,我们要求解动点的横坐标和纵坐标。

解决方法为了解决二次函数动点问题,我们可以采用以下步骤:1. 首先,我们需要根据二次函数的方程,确定函数的具体形式。

二次函数的一般形式为 $y = ax^2 + bx + c$,其中 $a$、$b$、$c$ 为已知常数。

2. 接下来,我们需要确定动点的初始位置。

动点通常以坐标的形式给出,例如 $(x_0, y_0)$。

我们将动点的初始位置代入二次函数的方程,得到动点的纵坐标 $y_0$。

3. 然后,我们需要计算动点的横坐标。

根据函数图像的对称性,动点的横坐标为二次函数的顶点的横坐标。

顶点的横坐标可以通过以下公式计算:$x_v = -\frac{b}{2a}$。

4. 最后,我们可以得到动点在函数图像上的位置。

动点的横坐标为 $x_v$,纵坐标为 $y_0$。

实例演示以下是一个示例,演示了如何解决二次函数动点问题:已知二次函数的方程为 $y = x^2 + 2x + 1$,动点的初始位置为$(2, y_0)$。

我们可以按照以下步骤求解动点的位置:1. 将动点的横坐标代入二次函数的方程,得到动点的纵坐标:$y_0 = 2^2 + 2 \cdot 2 + 1 = 9$。

2. 计算二次函数的顶点的横坐标:$x_v = -\frac{2}{2 \cdot 1} = -1$。

3. 动点的位置为 $(x_v, y_0) = (-1, 9)$。

通过以上计算,我们得到了动点在函数图像上的位置。

结论二次函数动点问题是一个常见的数学问题。

通过确定二次函数的形式和动点的初始位置,我们可以计算出动点在函数图像上的位置。

二次函数中的动点问题

二次函数中的动点问题
二次函数中的动点问题在物理、工程和经济等领域有着广泛的应用。例如,通过分析动点在时间上的变 化,我们可以预测物体的运动轨迹或市场的趋势等。
动点在二次函数图像上的轨迹
1
起点
动点的初始位置可以是抛物线上的任何一点。
2
移动
动点会按照一定的方式沿着抛物线移动,记录下其轨迹。
ቤተ መጻሕፍቲ ባይዱ
3
终点
动点的终点位置取决于运动方式和二次函数的特性。
动点运动的速度与方向
动点在二次函数图像上的运动速度和方向取决于函数的开口方向和变量的系数设置。通过观察动点的移 动,我们可以推测出函数的特点。
二次函数中的动点问题
二次函数是一种定义在实数范围内的函数,具有特殊的图像特点。通过研究 动点在二次函数图像上的轨迹、速度和方向,我们可以探索其各种实际应用。
二次函数的定义与图像特点
二次函数是由变量的平方项和一次项构成的多项式函数,其图像呈现出抛物线的形状,具有顶点、对称 轴和开口方向等特点。
二次函数的一般式表达
二次函数可以用一般的代数表达式表示:y = ax^2 + bx + c,其中a、b和c是实数常量。这个表达式描 述了二次函数的整体形状和位置。
二次函数中动点的定义
动点是指二次函数图像上的一个移动点,在图像中的位置和运动方式取决于 动点的参数设置和函数的特性。通过调整动点的位置,我们可以探索不同的 情况和现象。
动点在不同参数下的图像变化
变量系数
平移
通过修改二次函数中的变量系 数,我们可以观察到图像形状、 顶点位置和开口方向等方面的 变化。
通过移动二次函数图像,我们 可以研究动点在不同位置下的 轨迹和运动方式的变化。
缩放
通过放大或缩小二次函数图像, 我们可以观察到动点的运动速 度和开口大小等方面的变化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档