(全国通用)2019版高考物理一轮复习备考精炼: 第七章 静电场 微专题51 电荷守恒定律 库仑定律备考精炼-
2019高考物理一轮总复习第七章静电场专题强化5带电粒子在电场中的综合问题训练新人教版

丰富丰富纷繁第七章专题加强五带电粒子在电场中的综合问题〔专题加强训练〕1.(2017 ·山东日照二模) 图甲为两水平金属板,在两板间加上周期为T的交变电压u,电压 u 随时间 t 变化的图线如图乙所示。
质量为m、重力不计的带电粒子以初速度v0沿中线射入两板间,经时间T 从两板间飞出。
以下对于粒子运动描绘错误的选项是导学号21992509 ( B )A.t=0 时入射的粒子,走开电场时偏离中线的距离最大1B.t=4T时入射的粒子,走开电场时偏离中线的距离最大C.不论哪个时辰入射的粒子,走开电场时的速度方向都水平D.不论哪个时辰入射的粒子,走开电场时的速度大小都相等[ 分析 ]由题可知,粒子在电场中运动的时间是同样的;t =0时入射的粒子,在竖直方向上先加快,而后减速,再加快直到走开电场地区,故t =0时入射的粒子走开电场1时偏离中线的距离最大,选项 A 正确;而t=4T时入射的粒子,在竖直方向上先加快,而后减速,再反向加快,反向减速直到走开电场地区,故此时辰射入的粒子走开电场时偏离中线的距离不是最大,选项 B 错误;因粒子在电场中运动的时间等于电场变化的周期T,根据动量定理,竖直方向电场力的冲量的矢量和为零,故全部粒子走开电场时的竖直速度为零,即最后都垂直电场方向射出电场,走开电场时的速度大小都等于初速度,选项C、 D 正确。
2.(2017 ·辽宁省实验中学等五校联考) 一匀强电场的电场强度 E 随时间 t 变化的图象如下图,在该匀强电场中,有一个带电粒子在t =0时辰由静止开释,若带电粒子只受电场力作用,则以下说法中正确的选项是导学号 21992510 ( D )A.带电粒子只向一个方向运动B. 0~2s 内,电场力所做的功等于零C. 4s 末带电粒子回到原出发点D. 2.5 ~ 4s 内,速度的改变量等于零[ 分析 ]由牛顿第二定律可知,带电粒子在第1s 内的加快E0q2E0q 1度 a1=m,为第2s内加快度 a2=m 的2,所以粒子先加快1s再减速 0.5s 至速度减为零,接下来的0.5s 粒子将反向加快,v-t 图象如下图,可知 A 错误; 0~ 2s 内,带电粒子的初速度为零,但末速度不为零,由动能定理可知,电场力所做的功不为零, B 错误;v-t图象中图线与横坐标所围图形的面积表示物体的位移,由对称性可看出,前4s内粒子的位移不为零,所以带电粒子不会回到原出发点,C错误;由图象可知, 2.5s 和 4s 两个时辰粒子的速度大小相等,方向同样,所以 2.5 ~ 4s 内,速度的改变量等于零, D 正确。
【配套K12】(全国通用)2019版高考物理一轮复习备考精炼: 第七章 静电场 微专题53 电场能的

53 电场能的性质[方法点拨] (1)电势能、电势、电势差、电场力的功及电荷量是标量,但都有正负.涉及到它们的计算要注意正负号问题.(2)电场中某一点的电势等于各点电荷在该点产生的电势的代数和.1.(多选)(2017·江西省重点中学盟校第一次联考)如图1所示,在一个匀强电场中有一个三角形ABC,AC的中点为M,BC的中点为N.将一个带正电的粒子从A点移动到B点,电场力做功为W AB=6.0×10-9 J.则以下分析正确的是( )图1A.若将该粒子从M点移动到N点,电场力做功W MN可能小于3.0×10-9 JB.若将该粒子从M点移动到N点,电势能减少3.0×10-9 JC.若将该粒子由B点移动到N点,电场力做功为-3.0×10-9 JD.若被移动的粒子的电荷量为+2×10-9 C,可求得A、B之间的电势差U AB为3 V2.(多选)(2017·天津五区县模拟)空间有一与纸面平行的匀强电场,纸面内的A、B、C三点位于以O点为圆心,半径为10 cm的圆周上,并且∠AOC=90°,∠BOC=120°,如图2所示.现把一个电荷量q=1×10-5 C的正电荷从A移到B,电场力做功-1×10-4 J;从B移到C,电场力做功为3×10-4 J,则该匀强电场的场强方向和大小是( )图2A.场强大小为200 V/mB.场强大小为200 3 V/mC.场强方向垂直OA向右D.场强方向垂直OC向下3.(2018·四川成都模拟)如图3所示,孤立点电荷+Q固定在正方体的一个顶点上,与+Q 相邻的三个顶点分别是A、B、C,下列说法正确的是( )图3A.A、B、C三点的场强相同B.A、B、C三点的电势相等C.A、B、C三点所在的平面为一等势面D.将一电荷量为+q的检验电荷由A点沿直线移动到B点的过程中电势能始终保持不变4.(2017·安徽省皖南八校第二次联考)如图4所示,竖直线OO′是等量异种电荷+Q和-Q 连线的中垂线,A、B、C的位置如图所示,且都处于一矩形金属空腔内.下列说法正确的是( )图4A.A、B、C三点电势大小关系是φA=φC<φBB.A、B、C三点电势大小关系是φA=φC>φBC.金属空腔上的感应电荷在A、B、C三点形成的场强方向均水平向右D.金属空腔上的感应电荷在A、B、C三点形成的场强大小关系是E B>E C>E A5.(2018·陕西商洛模拟)如图5所示,虚线a、b、c代表电场中一簇等势面.相邻等势面之间的电势差相等,实线为一带电质点(重力不计)仅在电场力作用下通过该区域时的运动轨迹,P、Q是这条轨迹上的两点,据此可知( )图5A.a、b、c三个等势面中,a的电势最高B.电场中Q点处的电场强度大小比P点处大C.该带电质点在P点处受到的电场力比在Q点处大D.该带电质点在P点具有的电势能比在Q点具有的电势能大6.(多选)(2018·吉林公主岭一中模拟)位于正方形四角上的四个等量点电荷的电场线分布如图6所示,ab、cd分别是正方形两条边的中垂线,O点为中垂线的交点,P、Q分别为cd、ab上的点,则下列说法正确的是( )图6A.P、O两点的电势关系为φP=φOB.P、Q两点电场强度的大小关系为E Q>E PC.若在O点放一正点电荷,则该正点电荷受到的电场力不为零D.若将某一负电荷由P点沿着图中曲线PQ移到Q点,电场力做功为零7.(2017·山东滨州一模)一带电粒子在匀强电场中仅在电场力作用下运动轨迹如图7虚线所示,在粒子运动过程中,下列说法中正确的是( )图7A.粒子带负电B.粒子的速度一定减小C.任意相等时间内,初末两位置电势差相等D.任意相等时间内速度变化量相同8.(多选)如图8所示,匀强电场中的A、B、C、D点构成一位于纸面内的平行四边形,电场强度的方向与纸面平行,已知A、B两点的电势分别为φA=12 V,φB=6 V,则C、D两点的电势可能分别为( )图8A.9 V、18 V B.9 V、15 VC.0 V、6 V D.6 V、0 V9.(多选)(2017·江西省九校联考)如图9所示,已知某匀强电场方向平行正六边形ABCDEF 所在平面,若规定D点电势为零,则A、B、C的电势分别为8 V、6 V、2 V,初动能为16 eV、电荷量大小为3e(e为元电荷)的带电粒子从A沿着AC方向射入电场,恰好经过BC的中点G.不计粒子的重力,下列说法正确的是( )图9A .该粒子一定带正电B .该粒子达到G 点时的动能为4 eVC .若该粒子以不同速率从D 点沿DF 方向入射,该粒子可能垂直经过CED .只改变粒子在A 点初速度的方向,该粒子不可能经过C 点10.(2017·山东烟台一模)直线mn 是某电场中的一条电场线,方向如图10所示.一带正电的粒子只在电场力的作用下由a 点运动到b 点,轨迹为一抛物线,φa 、φb 分别为a 、b 两点的电势.下列说法中正确的是( )图10A .可能有φa <φbB .该电场可能为点电荷产生的电场C .带电粒子在b 点的动能一定大于在a 点的动能D .带电粒子由a 运动到b 的过程中电势能一定一直减小11.(2017·福建龙岩3月质检)以无穷远处的电势为零,在电荷量为q 的点电荷周围某点的电势可用φ=kq r计算,式中r 为该点到点电荷的距离,k 为静电力常量.两电荷量大小均为Q 的异种点电荷固定在相距为L 的两点,如图11所示.现将一质子(电荷量为e )从两点电荷连线上的A 点沿以电荷+Q 为圆心、半径为R 的半圆形轨迹ABC 移到C 点,质子从A 移到C 的过程中电势能的变化情况为( )图11A .增加2kQe L 2-R 2B .增加2kQeR L 2-R 2C .减少2kQeR L 2+R 2D .减少2kQe L 2+R 2 12.(2017·山东泰安一模)如图12所示,+Q 为固定的正点电荷,虚线圆是其一条等势线.两电荷量相同、但质量不相等的粒子,分别从同一点A以相同的速度v0射入,轨迹如图中曲线,B、C为两曲线与圆的交点.a B、a C表示两粒子经过B、C时的加速度大小,v B、v C表示两粒子经过B、C时的速度大小.不计粒子重力,以下判断正确的是( )图12A.a B=a C v B=v C B.a B>a C v B=v CC.a B>a C v B<v C D.a B<a C v B>v C13.(2017·山东临沂一模)A、B为两等量异种电荷,图13中水平虚线为A、B连线的中垂线.现将另两个等量异种的检验电荷a、b用绝缘细杆连接后,从离AB无穷远处沿中垂线平移到AB 的连线上,平移过程中两检验电荷位置始终关于中垂线对称.若规定离AB无穷远处电势为零,则下列说法中正确的是( )图13A.在AB的连线上a所处的位置电势φa<0B.a、b整体在AB连线处具有的电势能E p>0C.整个移动过程中,静电力对a做正功D.整个移动过程中,静电力对a、b整体做正功14.(多选)如图14所示电场,实线表示电场线.一个初速度为v的带电粒子仅在电场力的作用下从a点运动到b点,虚线表示其运动的轨迹.则( )图14A.粒子带正电B.粒子受到的电场力不断减小C.a点电势高于b点电势D.电场力一直做正功,动能增加15.(多选)如图15所示,a、b、c、d是某匀强电场中的四个点,它们是一个四边形的四个顶点,ab ∥cd ,ab ⊥bc,2ab =cd =bc =2l ,电场方向与四边形所在平面平行.已知a 点电势为24 V ,b 点电势为28 V ,d 点电势为12 V .一个质子(不计重力)经过b 点的速度大小为v 0,方向与bc 成45°,一段时间后经过c 点,则下列说法正确的是( )图15A .c 点电势为20 VB .质子从b 运动到c 所用的时间为2l v 0C .场强的方向由a 指向cD .质子从b 运动到c 电场力做功为8 eV答案精析1.BD2.AC [U AB =W AB q =-1×10-410-5 V =-10 V ;U BC =W BC q =3×10-410-5 V =30 V ;则U AC =U AB +U BC =20 V ,若设φC =0,则φA =20 V ,φB =30 V ,由几何知识得若延长AO 则与BC 的连线交于BC 的三等分点D 点,D 点的电势应为20 V ,则AD 为电势为20 V 的等势面,故场强方向垂直OA 向右,大小为E =U OC R =200.1V/m =200 V/m ,故选A 、C.]3.B4.D [空腔体内部各点的电势相同,选项A 、B 错误;金属空腔内部各点的合场强为零,即两个点电荷的场强与感应电荷的场强等大反向,因两电荷在A 、B 、C 三点形成的场强方向向右,故金属空腔上的感应电荷在A 、B 、C 三点场强方向均水平向左,选项C 错误;两电荷在A 、B 、C 三点形成的场强大小关系是E B ′>E C ′>E A ′;则金属空腔上的感应电荷在A 、B 、C 三点形成的场强大小关系是E B >E C >E A ,选项D 正确.]5.C [根据题图可知,P 点处等差等势面比Q 点处密,由电势差与电场强度的关系可知,P 点处的电场强度大小比Q 点处大,带电质点在P 点处所受的电场力比Q 点处大,选项B 错误,C 正确;根据带电质点的运动轨迹可知,带电质点所受电场力方向指向轨迹弯曲的方向,即由c 等势面指向a 等势面,由于题中没有给出带电质点所带电荷的电性,无法判断出a 、b 、c 三个等势面中哪个等势面电势最高,选项A 错误;若质点由Q 向P 运动,由题图可知质点所受电场力方向与运动方向的夹角为锐角,电场力做正功,带电质点电势能减小,故带电质点在P 点具有的电势能比在Q 点的小,若带电质点由P 向Q 运动,同理可知带电质点在P 点具有的电势能比在Q 点的小,故D 错误.]6.AD [根据等量异种电荷的电场线的特点:两点电荷连线的中垂线为等势面,由对称性知,ab 和cd 都是等势面,它们都过O 点,所以ab 上的电势和cd 上的电势相等,即P 、O 两点的电势关系为φP =φO ,A 项正确;由题图电场线的疏密程度可看出P 点电场线更密集,E Q <E P ,B 项错误;根据电场的矢量合成,O 点场强为零,不管放什么电荷受到的电场力都是零,C 项错误;由于φP =φO =φQ ,故U PQ =0,若将负电荷由P 点沿曲线移到Q 点,电场力做功为零,D 项正确.]7.D 8.BC 9.BD 10.C 11.B 12.C 13.B14.BC [由轨迹弯曲方向可判断出电场力方向,电场力方向指向弧内,则粒子带负电荷,A 项错误;电场线的疏密代表电场的强弱,从a 到b ,电场强度减小,则粒子受到的电场力不断减小,B 项正确;沿着电场线方向电势降低,则a 点电势高于b 点电势,C 项正确;电场力方向与速度方向夹角大于90°,一直做负功,动能减小,D 项错误.]15.ABD [三角形bcd 是等腰直角三角形,具有对称性,如图所示,bM =12bN =14bd ,已知a 点电势为24 V ,b 点电势为28 V ,d 点电势为12 V ,且ab ∥cd ,ab ⊥bc,2ab =cd =bc =2l ,因此根据几何关系,可得M 点的电势为24 V ,与a 点电势相等,从而连接aM ,即为等势面;三角形bcd 是等腰直角三角形,具有对称性,bd 连线中点N 的电势与c 相等,为20 V ,A 项正确;质子从b 运动到c 做类平抛运动,沿初速度方向分位移为2l ,此方向做匀速直线运动,则t =2lv 0,B 项正确;Nc 为等势线,其垂线bd 为场强方向,场强方向由b 指向d ,C 项错误;电势差U bc =8 V ,则质子从b 运动到c 电场力做功为8 eV ,D 项正确.]。
全国通用近年高考物理一轮复习第七章静电场高效演练创新预测7.3电容器与电容带电粒子在电场中的运动(

(全国通用版)2019版高考物理一轮复习第七章静电场高效演练创新预测7.3 电容器与电容带电粒子在电场中的运动编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考物理一轮复习第七章静电场高效演练创新预测7.3 电容器与电容带电粒子在电场中的运动)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考物理一轮复习第七章静电场高效演练创新预测7.3 电容器与电容带电粒子在电场中的运动的全部内容。
7.3 电容器与电容带电粒子在电场中的运动高效演练·创新预测1.(2017·江苏高考)如图所示,三块平行放置的带电金属薄板A、B、C中央各有一小孔,小孔分别位于O、M、P点.由O点静止释放的电子恰好能运动到P点。
现将C板向右平移到P′点,则由O点静止释放的电子( )A。
运动到P点返回 B.运动到P和P′点之间返回C。
运动到P′点返回 D.穿过P′点【解析】选A。
电子在A、B间加速,在B、C间减速,加速电压做功与减速电压做功相等。
现将C板向右平移到P′点,B、C板间的电场强度不变,根据U=Ed判断,由O点静止释放的电子运动到P点速度为0再返回,A项正确。
2.(2018·龙岩模拟)如图,带电粒子P所带的电荷量是带电粒子Q的5倍,它们以相等的速度v0从同一点出发,沿着跟电场强度垂直的方向射入匀强电场,分别打在M、N点,若OM=MN,则P 和Q的质量之比为(不计重力) ( )A.2∶5B.5∶2C。
4∶5D。
5∶4【解析】选D。
粒子在水平方向做匀速直线运动,在竖直方向做初速度为零的匀加速直线运动,两粒子的初速度相等,水平位移比为1∶2,由l=v0t可知运动时间比为1∶2,由y=at2得加速度之比为4∶1,根据牛顿第二定律得a=,因为电荷量比为5∶1,则质量比为5∶4,故D正确,A、B、C错误。
2019版高考物理一轮复习第七章静电场第1讲库仑定律电场力的性质学案

第1讲库仑定律电场力的性质★★★考情微解读★★★考点f展示考纲。
解读者向Q指导电荷守恒定律昨自定律L物质的俎结树.甩命守恒{1 1乱称也现象的解祥(1)工点胞荷(1)1.库仑定律([|)5.沛电场t I)氏电场强度、点心荷的场强( II)兀电场理(1)民电势优.电势f 1)乱电势差<U)IU.匀强电场个此势就与电场强1度的注系,|| )11.带电粒f件勾叠电场中的送动,n)1工示波管(]1।孔常地电容器:।)IL电容器的电用、电筒取和电容的关系3 1L ItA号中■时电场线.等鲁面.电扇门的性质.电厮能的性质及电容器学邮识主要以选挣翘府式年任.时带电忖F或带电休在血场中的运动选择哒、计笄息均有芍在*且有一定的埠合性乳复习中注意物J®思嘏的运用.如比值定,法.货比法.抽象问牌据象化笥方法S,本章中攘念较多.it议来用类比法杷他场中的物理址9量力场中的物理址讨应.方枢于记忆制理解电场的强弱梆搞绘电场打的必电蜉能电容据带业权r在t场中的玷动微知双•对点练知识梳理重温教.材夯实基础微知识1电荷守恒点电荷库仑定律1.元电荷元电荷e=1.60xio 19C,带电体的电荷量都是元电荷的整数倍,单个质子、电子的电荷量与元电荷相同。
2.电荷守恒定律(1)内容:电荷既不会创生,也不会消失,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不整(2)三种起电方式①接触起电;②摩擦起电;③感应起电。
(3)带电实质:物体带电的实质是得失电子。
3.点电荷代表带电体的有一定电荷量的点,是一种理想化模型,当带电体本身大小和形状对研究的问题影响很小时,可以将带电体视为点电荷。
点电荷的体积不一定很小,带电量也不一定很少。
4.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们之间距离的二次方成反比,作用力的方向在它们的连线上。
(2)公式:F= kqr平,式中的k叫做静电力常量,其数值是9.0 X109 Nl- m2/C2。
【配套K12】[学习]2019年高考物理一轮复习 第七章 静电场 第3讲 电容器和电容 带电粒子在电
![【配套K12】[学习]2019年高考物理一轮复习 第七章 静电场 第3讲 电容器和电容 带电粒子在电](https://img.taocdn.com/s3/m/12bd573df18583d0496459b3.png)
第3讲 电容器和电容 带电粒子在电场中的运动微知识1 电容器及电容 1.电容器(1)组成:两个彼此绝缘且又相互靠近的导体组成电容器,电容器可以容纳电荷。
(2)所带电荷量:一个极板所带电荷量的绝对值,两极板所带电荷量相等。
(3)充、放电①充电:把电容器接在电源上后,电容器两个极板分别带上等量异号电荷的过程,充电后两极间存在电场,电容器储存了电能。
②放电:用导线将充电后电容器的两极板接通,极板上电荷中和的过程,放电后的两极板间不再有电场,同时电场能转化为其他形式的能。
2.电容(1)定义:电容器所带的电荷量与两极板间电势差的比值。
(2)公式:C =Q U =ΔQΔU。
(3)物理意义:电容是描述电容器容纳电荷本领大小的物理量,在数值上等于把电容器两极板的电势差增加1 V 所需充加的电荷量,电容C 由电容器本身的构造因素决定,与U 、Q 无关。
(4)单位:法拉,符号F ,与其他单位间的换算关系: 1 F =106μF =1012pF 。
3.平行板电容器的电容平行板电容器的电容与平行板正对面积S 、电介质的介电常数εr 成正比,与极板间距离d 成反比,即C =εr S4πkd。
微知识2 带电粒子在电场中的加速和偏转 1.带电粒子在电场中的加速(1)运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一条直线上,做匀变速直线运动。
(2)用功能观点分析:电场力对带电粒子做的功等于带电粒子动能的增量,即qU =12mv 2-12mv 20。
2.带电粒子的偏转(1)运动状态:带电粒子受到恒定的与初速度方向垂直的电场力作用而做类平抛运动。
(2)处理方法:类似于平抛运动的处理方法①沿初速度方向为匀速运动,运动时间t =lv 0。
②沿电场力方向为匀加速运动,a =F m =qE m =qUmd。
③离开电场时的偏移量y =12at 2=ql 2U2mv 20d 。
④离开电场时的偏转角tan θ=v ⊥v 0=qlU mv 20d。
2019年高考物理一轮复习 专题7.13 静电场综合问题千题精练

专题7.13 静电场综合问题一.选择题1(2017辽宁重点校协作体5月模拟).如图所示,两块水平放置的平行金属板,板长为2d ,相距为d ,两板之间加有竖直向下的匀强电场。
将一质量为m 、电荷量为q 的带正电小球以大小为v0的水平速度从靠近上板下表面的P 点射入,小球刚好从下板右边缘射出。
重力加速度为g 。
则该匀强电场的电场强度大小可能为A .20mgd mv qd -B .202mgd mv qd+C .202mgd mv qd -D .20mgd mv qd+【参考答案】C2.(2016金卷押题题)如图所示,在xOy 平面有匀强电场,一群质子从P 点出发,可以到达圆O 上任一个位置,比较圆上这些位置,发现到达圆与x 轴正半轴的交点A 点时,动能增加量最大,增加了60eV ,已知圆的半径25cm ,oPAO 37=∠。
则匀强电场的电场强度是A.120V/mB. 187.5V/mC. 150V/mD. 238.5V/m【参考答案】 B二.计算题1.(2017·青海省西宁市四校高三联考)如图6所示,第一象限中有沿x 轴的正方向的匀强电场,第二象限中有沿y 轴负方向的匀强电场,两电场的电场强度大小相等。
一个质量为m ,电荷量为-q 的带电质点以初速度v 0从x 轴上P (-L ,0)点射入第二象限,已知带电质点在第一和第二象限中都做直线运动,并且能够连续两次通过y 轴上的同一个点Q (未画出),重力加速度g 为已知量。
求:图6(1)初速度v 0与x 轴正方向的夹角; (2)P 、Q 两点间的电势差U PQ ;(3)带电质点在第一象限中运动所用的时间。
【解析】(1)由题意知,带电质点在第二象限做匀速直线运动,有qE =mg且由带电质点在第一象限做直线运动,有tan θ=mg qE解得θ=45°(3)带电质点在第一象限做匀变速直线运动, 由牛顿第二定律有2mg =ma , 即a =2g ,v 0=at解得t =2v 02g带电质点在第一象限中往返一次所用的时间T =2t =2v 0g【答案】(1)45° (2)-mgL q (3)2v 0g3.(2016·四川成都一诊)(18分)如图所示,带正电的绝缘小滑块A ,被长R =0.4 m 的绝缘细绳竖直悬挂,悬点O 距水平地面的高度为3R ;小滑块B 不带电,位于O 点正下方的地面上。
【配套K12】[学习]2019年度高考物理一轮复习 第七章 静电场 第3讲 电容器 带电粒子在电场中
第3讲 电容器 带电粒子在电场中的运动一、电容器及电容 1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成. (2)带电荷量:一个极板所带电荷量的绝对值. (3)电容器的充、放电:①充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能. ②放电:使充电后的电容器失去电荷的过程,放电过程中电能转化为其他形式的能. 2.电容(1)定义:电容器所带的电荷量与两个极板间的电势差的比值. (2)定义式:C =QU.(3)单位:法拉(F)、微法(μF)、皮法(pF).1F =106μF =1012pF. (4)意义:表示电容器容纳电荷本领的高低.(5)决定因素:由电容器本身物理条件(大小、形状、相对位置及电介质)决定,与电容器是否带电及电压无关. 3.平行板电容器的电容(1)决定因素:正对面积,相对介电常数,两板间的距离. (2)决定式:C =εr S4πkd.自测1 关于电容器及其电容,下列说法中正确的是( ) A.平行板电容器一板带电+Q ,另一板带电-Q ,则此电容器不带电 B.由公式C =Q U可知,电容器的电容随电荷量Q 的增加而增大 C.对一个电容器来说,电容器的电荷量与两板间的电势差成正比 D.如果一个电容器两板间没有电压,就不带电荷,也就没有电容 答案 C二、带电粒子在电场中的运动 1.加速(1)在匀强电场中,W =qEd =qU =12mv 2-12mv 02.(2)在非匀强电场中,W =qU =12mv 2-12mv 02.2.偏转(1)运动情况:如果带电粒子以初速度v 0垂直场强方向进入匀强电场中,则带电粒子在电场中做类平抛运动,如图1所示.图1(2)处理方法:将粒子的运动分解为沿初速度方向的匀速直线运动和沿电场力方向的匀加速直线运动.根据运动的合成与分解的知识解决有关问题.(3)基本关系式:运动时间t =l v 0,加速度a =F m =qE m =qU md ,偏转量y =12at 2=qUl22mdv 02,偏转角θ的正切值:tan θ=v y v 0=at v 0=qUlmdv 02.三、示波管 1.示波管的构造①电子枪,②偏转电极,③荧光屏(如图2所示)图22.示波管的工作原理(1)YY ′上加的是待显示的信号电压,XX ′上是仪器自身产生的锯齿形电压,叫做扫描电压. (2)观察到的现象①如果在偏转电极XX ′和YY ′之间都没有加电压,则电子枪射出的电子沿直线运动,打在荧光屏中心,在那里产生一个亮斑.②若所加扫描电压和信号电压的周期相等,就可以在荧光屏上得到待测信号在一个周期内变化的稳定图象. 自测2 教材P39第3题 先后让一束电子和一束氢核通过同一对平行板形成的偏转电场.进入时速度方向与板面平行,在下列两种情况下,分别求出离开时电子偏角的正切与氢核偏角的正切之比. (1)电子与氢核的初速度相同. (2)电子与氢核的初动能相同. 答案 见解析解析 设加速电压为U 0,偏转电压为U ,带电粒子的电荷量为q 、质量为m ,垂直进入偏转电场的速度为v 0,偏转电场两极板间距离为d 、极板长为l ,则:带电粒子在加速电场中加速运动,进入偏转电场时的初动能12mv 02=qU 0,粒子在偏转电场中的加速度a =qU dm ,在偏转电场中运动的时间为t =l v 0,粒子离开偏转电场时沿电场力方向的速度v y =at =qUl dmv 0,粒子离开偏转电场时速度方向的偏转角的正切值tan θ=v y v 0=qUldmv 02.(1)若电子与氢核的初速度相同,则tan θe tan θH =m Hm e .(2)若电子与氢核的初动能相同,则tan θetan θH=1.命题点一 平行板电容器的动态分析1.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变. (2)电容器充电后与电源断开,电容器两极板所带的电荷量Q 保持不变. 2.动态分析思路 (1)U 不变①根据C =Q U =εr S4πkd先分析电容的变化,再分析Q 的变化.②根据E =U d分析场强的变化. ③根据U AB =E ·d 分析某点电势变化. (2)Q 不变①根据C =Q U =εr S4πkd 先分析电容的变化,再分析U 的变化.②根据E =U d =4k πQεr S分析场强变化.例1 (2016·全国卷Ⅰ·14)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A.极板上的电荷量变大,极板间电场强度变大B.极板上的电荷量变小,极板间电场强度变大C.极板上的电荷量变大,极板间电场强度不变D.极板上的电荷量变小,极板间电场强度不变 答案 D解析 由C =εr S4πkd 可知,当将云母介质移出时,εr 变小,电容器的电容C 变小;因为电容器接在恒压直流电源上,故U 不变,根据Q =CU 可知,当C 减小时,Q 减小.再由E =U d,由于U 与d 都不变,故电场强度E 不变,选项D 正确.变式1 (2016·天津理综·4)如图3所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地,在两极板间有一固定在P 点的点电荷,以E 表示两板间的电场强度,E p 表示点电荷在P 点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则( )图3A.θ增大,E 增大B.θ增大,E p 不变C.θ减小,E p 增大D.θ减小,E 不变答案 D解析 若保持下极板不动,将上极板向下移动一小段距离,根据C =εr S4πkd可知,C 变大;根据Q =CU 可知,在Q 一定的情况下,两极板间的电势差减小,则静电计指针偏角θ减小;根据E =U d ,Q =CU ,C =εr S4πkd 联立可得E =4πkQεr S,可知E 不变;P 点离下极板的距离不变,E 不变,则P 点与下极板的电势差不变,P 点的电势不变,故E p 不变;由以上分析可知,选项D 正确.变式2 (多选)如图4所示,A 、B 为两块平行带电金属板,A 带负电,B 带正电且与大地相接,两板间P 点处固定一负电荷,设此时两极板间的电势差为U ,P 点场强大小为E ,电势为φP ,负电荷的电势能为E p ,现将A 、B 两板水平错开一段距离(两板间距不变),下列说法正确的是( )图4A.U 变大,E 变大B.U 变小,φP 变小C.φP 变小,E p 变大D.φP 变大,E p 变小答案 AC解析 根据题意可知两极板间电荷量保持不变,当正对面积减小时,则由C =εr S 4πkd 可知电容减小,由U =QC 可知极板间电压增大,由E =Ud可知,电场强度增大,故A 正确;设P 与B 板之间的距离为d ′,P 点的电势为φP ,B 板接地,φB =0,则由题可知0-φP =Ed ′是增大的,则φP 一定减小,由于负电荷在电势低的地方电势能一定较大,所以可知电势能E p 是增大的,故C 正确. 命题点二 带电粒子在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =Ud,v 2-v 02=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02非匀强电场中:W =qU =E k2-E k1例2 如图5所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )图5A.运动到P 点返回B.运动到P 和P ′点之间返回C.运动到P ′点返回D.穿过P ′点 答案 A解析 根据平行板电容器的电容的决定式C = εr S 4πkd 、定义式C =QU和匀强电场的电压与电场强度的关系式U =Ed 可得E =4πkQεr S,可知将C 板向右平移到P ′点,B 、C 两板间的电场强度不变,由O 点静止释放的电子仍然可以运动到P 点,并且会原路返回,故选项A 正确.变式3 匀强电场的电场强度E 随时间t 变化的图象如图6所示.当t =0时,在此匀强电场中由静止释放一个带电粒子(带正电),设带电粒子只受电场力的作用,则下列说法中正确的是( )图6A.带电粒子将始终向同一个方向运动B.2s 末带电粒子回到原出发点C.3s 末带电粒子的速度不为零D.0~3s 内,电场力做的总功为零 答案 D解析 由牛顿第二定律可知带电粒子在第1s 内的加速度和第2s 内的加速度的关系,因此粒子将先加速1s 再减速0.5s ,速度为零,接下来的0.5s 将反向加速……,v -t 图象如图所示,根据图象可知选项A 错误;由图象可知2s 内的位移为负,故选项B 错误;由图象可知3s 末带电粒子的速度为零,故选项C 错误;由动能定理结合图象可知0~3s 内,电场力做的总功为零,故选项D 正确.变式4 如图7所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔.质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g ).求:图7(1)小球到达小孔处的速度大小;(2)极板间电场强度大小和电容器所带电荷量; (3)小球从开始下落到运动到下极板处的时间. 答案 (1)2gh (2)mg h +d qd C mg h +dq(3)h +dh2hg解析 (1)由v 2=2gh 得v =2gh .(2)在极板间带电小球受重力和电场力作用,加速度大小为a ,有qE -mg =ma且v 2-0=2ad ,得E =mg h +dqd,由U =Ed 、Q =CU ,得Q =C mg h +dq. (3)由v2t =h +d ,可得t =h +d h2hg命题点三 带电粒子在电场中的偏转1.运动规律(1)沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU2mdt 2,t =2mdyqU.(2)沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22mdv2.离开电场时的偏转角:tan θ=v y v 0=qUl mdv2.2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 02y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 02得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =Ud y ,指初、末位置间的电势差.例3 (2016·北京理综·23改编)如图8所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d.图8(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ; (2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102V ,d =4.0×10-2m ,m =9.1×10-31kg ,e =1.6×10-19C ,g =10m/s 2.答案 (1)2eU 0m UL 24U 0d(2)见解析 解析 (1)根据动能定理,有eU 0=12mv 02,电子射入偏转电场时的初速度v 0=2eU 0m在偏转电场中,电子的运动时间Δt =Lv 0=L m 2eU 0加速度a =eE m =eU md偏转距离Δy =12a (Δt )2=UL 24U 0d(2)只考虑电子所受重力和电场力的数量级,有重力G =mg ≈10-29N电场力F =eU d≈10-15N由于F ≫G ,因此不需要考虑电子所受的重力.1.如图1所示,一带电小球悬挂在竖直放置的平行板电容器内,当开关S 闭合,小球静止时,悬线与竖直方向的夹角为θ,则( )图1A.当开关S 断开时,若减小平行板间的距离,则夹角θ增大B.当开关S 断开时,若增大平行板间的距离,则夹角θ增大C.当开关S 闭合时,若减小平行板间的距离,则夹角θ增大D.当开关S 闭合时,若减小平行板间的距离,则夹角θ减小 答案 C解析 带电小球在电容器中处于平衡时,由平衡条件有tan θ=qEmg,当开关S 断开时,电容器两极板上的电荷量Q 不变,由C =εr S 4πkd ,U =Q C ,E =U d 可知E =4πkQεr S ,故增大或减小两极板间的距离d ,电容器两极板间的电场强度不变,θ不变,选项A 、B 错误;当开关S 闭合时,因为两极板间的电压U 不变,由E =U d可知,减小两极板间的距离d ,E 增大,θ变大,选项C 正确,D 错误.2.(多选)将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d 、U 、E 和Q 表示.下列说法正确的是( )A.保持U 不变,将d 变为原来的两倍,则E 变为原来的一半B.保持E 不变,将d 变为原来的一半,则U 变为原来的两倍C.保持d 不变,将Q 变为原来的两倍,则U 变为原来的一半D.保持d 不变,将Q 变为原来的一半,则E 变为原来的一半 答案 AD解析 由E =U d可知,若保持U 不变,将d 变为原来的两倍,则E 变为原来的一半,A 项正确;若保持E 不变,将d 变为原来的一半,则U 变为原来的一半,B 项错误;由C =Q U ,C =εr S 4πkd ,E =U d ,可得U =4Qk πd εr S ,E =4Qk πεr S,所以,保持d 不变,若Q 变为原来的两倍,则U 变为原来的两倍,C 项错误;保持d 不变,若Q 变为原来的一半,则E 变为原来的一半,D 项正确.3.两平行金属板相距为d ,电势差为U ,一电子质量为m 、电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图2所示,OA =h ,此电子具有的初动能是( )图2A.edhU h C.eU dhD.eUh d答案 D解析 由动能定理得:-e U d h =-E k ,所以E k =eUh d. 4.(2015·新课标全国Ⅱ·14)如图3所示,两平行的带电金属板水平放置.若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )图3A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动 答案 D解析 两平行金属板水平放置时,带电微粒静止,有mg =qE ,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D 正确.5.如图4所示,电容器极板间有一可移动的电介质板,介质与被测物体相连,电容器接入电路后,通过极板上物理量的变化可确定被测物体的位置,则下列说法中正确的是( )图4A.若电容器极板间的电压不变,x 变大,电容器极板上带电荷量增加B.若电容器极板上带电荷量不变,x 变小,电容器极板间电压变大C.若电容器极板间的电压不变,x 变大,有电流流向电容器的正极板D.若电容器极板间的电压不变,x 变大,有电流流向电容器的负极板 答案 D解析 若x 变大,则由C =εr S4πkd,可知电容器电容减小,在极板间的电压不变的情况下,由Q =CU 知电容器带电荷量减少,此时带正电荷的极板得到电子,带负电荷的极板失去电子,所以有电流流向负极板,A 、C 错误,D 正确.若电容器极板上带电荷量不变,x 变小,则电容器电容增大,由U =Q C可知,电容器极板间电压减小,B 错误.6.如图5所示,平行板电容器与电动势为E 的直流电源(内阻不计)连接,下极板接地.一带电油滴位于电容器中的P 点且恰好处于平衡状态.现将平行板电容器的上极板竖直向上移动一小段距离( )图5A.带电油滴将沿竖直方向向上运动B.P 点的电势将降低C.带电油滴的电势能将减少D.电容器的电容减小,极板带电荷量将增大 答案 B解析 电容器和电源相连,则电容器两端的电压不变,两极板间距离增大,可知两极板间的电场强度E 电减小,故油滴将向下运动,A 错误;下极板接地,所以电势为零,设P 点距离下极板的距离为L ,则φP =E 电L ,L 不变,E 电减小,所以P 点的电势将降低,B 正确;油滴向下运动,带负电,故电场力做负功,电势能增大,C 错误;根据公式C =εr S 4πkd 可得,d 增大,C 减小,因U 不变,根据公式C =QU 可得,C 减小,Q 减小,故D 错误.7.(2017·安徽蚌埠四校联考)如图6所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的( )图6A.2倍B.4倍C.12D.14答案 C解析 电子从负极板边缘垂直电场方向射入匀强电场,做类平抛运动.假设电子的带电荷量为e ,质量为m ,初速度为v ,极板的长度为L ,极板的间距为d ,电场强度为E .由于电子做类平抛运动,所以水平方向有:L =vt ,竖直方向有:y =12at 2=12·eE m ·(L v )2=d .因为E =U d ,可得:d 2=eUL 22mv 2,若电子的速度变为原来的两倍,仍从正极板边缘飞出,则由上式可得两极板的间距d 应变为原来的12,故选C.8.如图7所示,带正电的粒子以一定的初速度v 0沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L ,板间的距离为d ,板间电压为U ,带电粒子的电荷量为+q ,粒子通过平行金属板的时间为t (不计粒子的重力),则( )图7A.在前t 2时间内,电场力对粒子做的功为qU4B.在后t 2时间内,电场力对粒子做的功为3qU 8C.在粒子下落前d 4和后d 4的过程中,电场力做功之比为1∶2D.在粒子下落前d4和后d4的过程中,电场力做功之比为2∶1 答案 B解析 带正电的粒子以一定的初速度v 0沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,带电粒子所做的运动是类平抛运动.竖直方向上的分运动是初速度为零的匀加速直线运动,由运动学知识可知,前后两段相等时间内竖直方向上的位移之比为1∶3,电场力做功之比也为1∶3.又因为电场力做的总功为qU2,所以在前t 2时间内,电场力对粒子做的功为qU 8,A 选项错;在后t 2时间内,电场力对粒子做的功为3qU8,B 选项对;在粒子下落前d 4和后d4的过程中,电场力做功相等,故C 、D 选项错.9.(2014·山东理综·18)如图8所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v 0等于( )图8A.s22qEmhB.s2qE mh C.s 42qEmhD.s4qE mh答案 B解析 根据对称性,两粒子轨迹的切点位于矩形区域abcd 的中心,则在水平方向有12s =v 0t ,在竖直方向有12h=12·qE m ·t 2,解得v 0=s2qEmh,故选项B 正确,选项A 、C 、D 错误. 10.如图9所示,一带电荷量为+q 、质量为m 的小物块处于一倾角为37°的光滑斜面上,当整个装置被置于一水平向右的匀强电场中时,小物块恰好静止.重力加速度取g ,sin37°=0.6,cos37°=0.8.求:图9(1)水平向右电场的电场强度;(2)若将电场强度减小为原来的12,物块的加速度是多大?(3)电场强度变化后物块下滑距离L 时的动能. 答案 (1)3mg4q(2)0.3g (3)0.3mgL解析 (1)小物块静止在斜面上,受重力、电场力和斜面支持力,受力分析如图所示,则有F N sin 37°=qEF N cos 37°=mg解得E =3mg4q(2)若电场强度减小为原来的12,即E ′=3mg8q由牛顿第二定律得mg sin 37°-qE ′cos 37°=ma 解得a =0.3g(3)电场强度变化后物块下滑距离L 时,重力做正功,电场力做负功,支持力不做功,由动能定理得mgL sin 37°-qE ′L cos 37°=E k -0解得E k =0.3mgL .11.反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.如图10所示,在虚线MN 两侧分别存在着方向相反的两个匀强电场,一带电微粒从A 点由静止开始,在电场力作用下沿直线在A 、B 两点间往返运动.已知电场强度的大小分别是E 1=2.0×103N/C 和E 2=4.0×103N/C ,方向如图所示.带电微粒质量m =1.0×10-20kg 、带电荷量q =-1.0×10-9C ,A 点距虚线MN 的距离d 1=1.0cm ,不计带电微粒的重力,忽略相对论效应.求:图10(1)B 点到虚线MN 的距离d 2;(2)带电微粒从A 点运动到B 点所经历的时间t . 答案 (1)0.50cm (2)1.5×10-8s解析 (1)带电微粒由A 运动到B 的过程中,由动能定理有|q |E 1d 1-|q |E 2d 2=0,E 1d 1=E 2d 2, 解得d 2=0.50 cm.(2)设微粒在虚线MN 两侧的加速度大小分别为a 1、a 2, 由牛顿第二定律有 |q |E 1=ma 1, |q |E 2=ma 2,设微粒在虚线MN 两侧运动的时间分别为t 1、t 2,由运动学公式有d 1=12a 1t 12,d 2=12a 2t 22.又t =t 1+t 2,代入数据,联立解得t =1.5×10-8 s.12.(2017·湖北黄冈中学模拟)如图11甲所示,空间存在水平方向的大小不变、方向周期性变化的电场,其变化规律如图乙所示(取水平向右为正方向).一个质量为m 、电荷量为+q 的粒子(重力不计),开始处于图中的A 点.在t =0时刻将该粒子由静止释放,经过时间t 0,刚好运动到B 点,且瞬时速度为零.已知电场强度大小为E 0.试求:图11(1)电场变化的周期T 应满足的条件; (2)A 、B 之间的距离;(3)若在t =T6时刻释放该粒子,则经过时间t 0粒子的位移为多大?答案 见解析解析 (1)经过时间t 0,瞬时速度为零,故时间t 0为周期的整数倍,即:t 0=nT解得:T =t 0n,n 为正整数. (2)作出v -t 图象,如图甲所示.最大速度为:v m =a ·t 02n =qE 0m ·t 02nv -t 图象与时间轴包围的面积表示位移大小,为:s =12v m t 0=qE 0t 024nm,n 为正整数. (3)若在t =T6时刻释放该粒子,作出v -t 图象,如图乙所示.v -t 图象与时间轴包围的面积表示位移大小,上方面积表示前进距离,下方的面积表示后退的距离:故位移为:x =12·qE 0m ·(T 3)2·2n -12·qE 0m ·(T 6)2·2n =qE 0t 0212nm,n 为正整数.。
2019届高考物理一轮复习第七章静电场微专题七带电粒子在电场中运动问题的规范解答课件新人教版
在 N 板上,由类平抛运动的规律可得 d=vt′,(1 分)
L2=12at′2,(1 分)
联立以上各式并代入数据可解得
d=5
6
2 L.(1
分)
答案:(1)(0,1370L)
3gL 5 2 10 (2) 6 L
=12mv2-12mv02,(2 分)
解得 v=
5gL 6 .(1
分)
带电小球进入匀强电场后的受力情况如图所示.
因为 E=45mqg,所以 qE=mgcos θ,(1 分)
因此,带电小球进入该匀强电场后将做类平抛运动,其加速度
大小为
a=mgmsin θ=gsin θ,(1 分) 设带电小球在该匀强电场中运动的时间为 t′,欲使小球不打
2.(18 分)如图所示,一质量为 m、电荷 量为 q 的带正电小球(可视为质点)从 y 轴上的 A 点以初速度 v0 水平抛出,两 长为 L 的平行金属板 M、N 倾斜放置且 与水平方向间的夹角为 θ=37°.(sin 37° =0.6)
(1)若带电小球恰好能垂直于 M 板从其中心小孔 B 进入两板间, 试求带电小球在 y 轴上的抛出点 A 的坐标及小球抛出时的初速 度 v0; (2)在(1)的条件前,若该平行金属板 M、N 间有如图所示的匀强 电场,且匀强电场的电场强度大小与小球质量之间的关系满足 E=45mqg,试计算两平行金属板 M、N 之间的垂直距离 d 至少 为多少时才能保证小球不打在 N 板上.
则 t2=14·2πvR=π4Lv=π4L 2mqU④(2 分) 从释放微粒开始到微粒第一次到达 P 点经过的时间:
t1+t2=(2d+π4L) 2mqU⑤(2 分)
根据运动的对称性可知,再经过 2(t1+t2)时间微粒再一次经过 P 点,所以微粒经过 P 点的时间:
(浙江专版)2019版高考物理一轮复习第七章静电场考点强化练18电荷守恒定律与电场力的性质.doc
(浙江专版)2019版高考物理一轮复习第七章静电场考点强化练18电荷守恒定律与电场力的性质考点强化练18 电荷守恒定律与电场力的性质1.物理学引入“点电荷”概念,从科学方法上来说是属于 A.控制变量的方法 B.观察实验的方法 C.理想化模型的方法 D.等效替代的方法 2.如图所示,用毛皮摩擦过的橡胶棒靠近水流,水流会偏向橡胶棒,这是由于它们之间存在 A.摩擦力 B.静电力 C.万有引力 D.洛伦兹力 3.如图所示,两个质量和电荷量分别是m1、q1和m2、q2的带电小球,用长度不等的轻丝线悬挂起来。
当两球静止时,两丝线与竖直方向的夹角分别是α和βαβ,且两小球恰在同一水平线上,据此可知 A.两球可能带同种电荷B.q1一定大于q2 C.m1一定小于m2 D.m1所受的库仑力一定大于m2所受的库仑力 4.如图所示,悬挂在O点的一根不可伸长的绝缘细线下端有一个带电荷量不变的小球A。
在两次实验中,均缓慢移动另一带同种电荷的小球B。
当B到达悬点O的正下方并与A在同一水平线上,A处于受力平衡时,悬线偏离竖直方向的角度为θ。
若两次实验中B的电荷量分别为q1和q2,θ分别为30°和45°,则为 A.2B.3 C.2D.3 5.如图所示,真空中O点有一点电荷,在它产生的电场中有a、b两点,a点的电场强度大小为Ea,方向与ab连线成60°角,b点的电场强度大小为Eb,方向与ab 连线成30°角。
关于a、b两点电场强度大小Ea、Eb的关系,以下结论正确的是 A.EaEbB.EaEb C.EaEbD.Ea3Eb 6.如图所示,在水平向右、大小为E的匀强电场中,在O点固定一电荷量为Q的正电荷,A、B、C、D为以O为圆心、半径为r的同一圆周上的四点,B、D连线与电场线平行,A、C连线与电场线垂直,则A.A点的电场强度大小为B.B点的电场强度大小为E-k C.D 点的电场强度大小不可能为0 D.A、C两点的电场强度相同7.下列选项中的各圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各圆环间彼此绝缘。
2019版高考物理(全国通用)大一轮复习讲义文档:第七章 静电场 第3讲 Word版含答案
第3讲 电容器 带电粒子在电场中的运动一、电容器1.电容器的充、放电(1)充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能. (2)放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能. 2.公式C =Q U 和C =εr S4πkd的比较(1)定义式:C =QU ,不能理解为电容C 与Q 成正比、与U 成反比,一个电容器电容的大小是由电容器本身的因素决定的,与电容器是否带电及带电多少无关. (2)决定式:C =εr S4πkd,εr 为介电常数,S 为极板正对面积,d 为板间距离. 二、带电粒子在匀强电场中的运动 示波管1.直线问题:若不计粒子的重力,则电场力对带电粒子做的功等于带电粒子动能的增量. (1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20.(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题:(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质:类平抛运动.(3)处理方法:利用运动的合成与分解. ①沿初速度方向:做匀速直线运动.②沿电场方向:做初速度为零的匀加速运动.3.示波管的构造:①电子枪,②偏转电极,③荧光屏.(如图1所示)图1[深度思考] 带电粒子在电场中运动时一定考虑受重力吗?答案 (1)基本粒子:如电子、质子、α粒子、离子等,除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.1.(教科版选修3-1P40第9题)关于电容器的电容,下列说法中正确的是( ) A .电容器所带电荷量越多,电容越大 B .电容器两板间电压越低,其电容越大 C .电容器不带电时,其电容为零 D .电容器的电容只由它本身的特性决定 答案 D2.(人教版选修3-1P32第1题)平行板电容器的一个极板与静电计的金属杆相连,另一个极板与静电计金属外壳相连.给电容器充电后,静电计指针偏转一个角度.以下情况中,静电计指针的偏角是增大还是减小? (1)把两板间的距离减小; (2)把两板间的相对面积减小;(3)在两板间插入相对介电常数较大的电介质.答案 (1)把两极板间距离减小,电容增大,电荷量不变,电压变小,静电计指针偏角变小. (2)把两极板间相对面积减小,电容减小,电荷量不变,电压变大,静电计指针偏角变大.(3)在两极板间插入相对介电常数较大的电介质,电容增大,电荷量不变,电压变小,静电计指针偏角变小. 3. (人教版选修3-1P39第2题)某种金属板M 受到某种紫外线照射时会不停地发射电子,射出的电子具有不同的方向,其速度大小也不相同.在M 旁放置一个金属N.如果用导线将MN 连接起来,M 射出的电子落到N 上便会沿导线返回M ,从而形成电流.现在不把M 、N 直接相连,而按图2那样在M 、N 之间加一个电压U ,发现当U >12.5 V 时电流表中就没有电流.已知电子的质量m e =9.1×10-31kg.问:被这种紫外线照射出的电子,最大速度是多少?(结果保留三位有效数字)图2答案 2.10×106m/s解析 如果电子的动能减少到等于0的时候,电子恰好没有到达N 板,则电流表中就没有电流.由W =0-E km ,W =-eU ,得-eU =0-E km =-12m e v 2v =2Uem e=2×12.5×1.6×10-190.91×10-30m/s≈2.10×106m/s4.(人教版选修3-1P39第3题)先后让一束电子和一束氢核通过同一对平行板形成的偏转电场.进入时速度方向与板面平行,在下列两种情况下,分别求出离开时电子偏角的正切与氢核偏角的正切之比. (1)电子与氢核的初速度相同. (2)电子与氢核的初动能相同. 答案 见解析解析 设加速电压为U 0,偏转电压为U ,带电粒子的电荷量为q ,质量为m ,垂直进入偏转电场的速度为v 0,偏转电场两极间距离为d ,极板长为l ,则:带电粒子在加速电场中获得初动能12mv 20=qU 0,粒子在偏转电场中的加速度a =qU dm ,在偏转电场中运动的时间为t =l v 0,粒子离开偏转电场时沿静电力方向的速度v y =at =qUldmv 0,粒子离开偏转电场时速度方向的偏转角的正切值 tan θ=v y v 0=qUldmv 20.(1)若电子与氢核的初速度相同,则tan θe tan θH =m Hm e .(2)若电子与氢核的初动能相同,则tan θetan θH=1.一、两类典型问题1.电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变. 2.电容器充电后与电源断开,电容器两极所带的电荷量Q 保持不变. 二、动态分析思路 1.U 不变(1)根据C =Q U =εr S4πkd 先分析电容的变化,再分析Q 的变化.(2)根据E =Ud 分析场强的变化.(3)根据U AB =E·d 分析某点电势变化. 2.Q 不变(1)根据C =Q U =εr S4πkd 先分析电容的变化,再分析U 的变化.(2)根据E =Ud分析场强变化.例1 (2018·全国Ⅰ卷·14)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变 答案 D解析 由C =εr S4πkd 可知,当将云母介质移出时,εr 变小,电容器的电容C 变小;因为电容器接在恒压直流电源上,故U 不变,根据Q =CU 可知,当C 减小时,Q 减小.再由E =Ud ,由于U 与d 都不变,故电场强度E 不变,选项D 正确.1.(2018·天津理综·4)如图3所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地,在两极板间有一固定在P 点的点电荷,以E 表示两板间的电场强度,E p 表示点电荷在P 点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则( )图3A .θ增大,E 增大B .θ增大,E p 不变C .θ减小,E p 增大D .θ减小,E 不变答案 D解析 若保持下极板不动,将上极板向下移动一小段距离,根据C =εr S 4πkd 可知,C 变大;根据Q =CU 可知,在Q一定的情况下,两极板间的电势差减小,则静电计指针偏角θ减小;根据E =U d ,Q =CU ,C =εr S4πkd 联立可得E=4πkQεr S,可知E 不变;P 点离下极板的距离不变,E 不变,则P 点与下极板的电势差不变,P 点的电势不变,故E p 不变;由以上分析可知,选项D 正确.2.(多选)如图4所示,A 、B 为两块平行带电金属板,A 带负电,B 带正电且与大地相接,两板间P 点处固定一负电荷,设此时两极间的电势差为U ,P 点场强大小为E ,电势为φP ,负电荷的电势能为E p ,现将A 、B 两板水平错开一段距离(两板间距不变),下列说法正确的是( )图4A .U 变大,E 变大B .U 变小,φP 变小C .φP 变小,E p 变大D .φP 变大,E p 变小答案 AC解析 根据题意可知两极板间电荷量保持不变,当正对面积减小时,则由C =εr S 4πkd 可知电容减小,由U =QC 可知极板间电压增大,由E =Ud 可知,电场强度增大,故A 正确;设P 点的电势为φP ,则由题可知0-φP =Ed′是增大的,则φP 一定减小,由于负电荷在电势低的地方电势能一定较大,所以可知电势能E p 是增大的,故C 正确.1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动. 2.用动力学观点分析 a =F 合m ,E =U d ,v 2-v 20=2ad.3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 2非匀强电场中:W =qU =E k2-E k1例2 在真空中水平放置平行板电容器,两极板间有一个带电油滴,电容器两板间距为d ,当平行板电容器的电压为U 0时,油滴保持静止状态,如图5所示.当给电容器突然充电使其电压增加ΔU 1时,油滴开始向上运动;经时间Δt 后,电容器突然放电使其电压减少ΔU 2,又经过时间Δt ,油滴恰好回到原来位置.假设油滴在运动过程中没有失去电荷,充电和放电的过程均很短暂,这段时间内油滴的位移可忽略不计.重力加速度为g.求:图5(1)带电油滴所带电荷量与质量之比;(2)第一个Δt 与第二个Δt 时间内油滴运动的加速度大小之比; (3)ΔU 1与ΔU 2之比.①油滴保持静止状态;②恰好又回到原来位置.答案 (1)dgU 0(2)1∶3 (3)1∶4解析 (1)油滴静止时满足:mg =q U 0d ,则q m =dgU 0(2)设第一个Δt 时间内油滴的位移为x 1,加速度为a 1,第二个Δt 时间内油滴的位移为x 2,加速度为a 2,则 x 1=12a 1Δt 2,x 2=v 1Δt -12a 2Δt 2且v 1=a 1Δt ,x 2=-x 1 解得a 1∶a 2=1∶3.(3)油滴向上加速运动时:q U 0+ΔU 1d -mg =ma 1,即qΔU 1d=ma 1 油滴向上减速运动时:mg -q U 0+ΔU 1-ΔU 2d=ma 2即q ΔU 2-ΔU 1d=ma 2 则ΔU 1ΔU 2-ΔU 1=13解得ΔU 1ΔU 2=143.(2018·海南单科·5)如图6所示,一充电后的平行板电容器的两极板相距l.在正极板附近有一质量为M 、电荷量为q(q >0)的粒子;在负极板附近有另一质量为m 、电荷量为-q 的粒子.在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距25l 的平面.若两粒子间相互作用力可忽略.不计重力,则M∶m 为( )图6A .3∶2 B.2∶1 C.5∶2 D.3∶1 答案 A解析 设电场强度为E ,两粒子的运动时间相同,对M 有,a M =Eq M ,25l =Eqt 22M ;对m 有a m =Eq m ,35l =Eqt22m ,联立解得M m =32,A 正确.4.(2018·安徽·22)如图7所示,充电后的平行板电容器水平放置,电容为C ,极板间的距离为d ,上极板正中有一小孔.质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g).求:图7(1)小球到达小孔处的速度;(2)极板间电场强度的大小和电容器所带电荷量; (3)小球从开始下落运动到下极板处的时间.答案 (1)2gh (2)+qdC+q(3)h +dh2h g解析 (1)由v 2=2gh ,得v =2gh(2)在极板间带电小球受重力和电场力作用,由牛顿运动定律知:mg -qE =ma 由运动学公式知:0-v 2=2ad 整理得电场强度E =+qd由U =Ed ,Q =CU ,得电容器所带电荷量Q=C +q(3)由h =12gt 21,0=v +at 2,t =t 1+t 2整理得t =h +dh2hg1.运动规律(1)沿初速度方向做匀速直线运动,运动时间 ⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdyqU.(2)沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22mdv20.离开电场时的偏转角:tan θ=v yv 0=qUl mdv2.2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 2y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U d y ,指初、末位置间的电势差.例3 (2018·北京理综·23)如图8所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d.图8(1)忽略电子所受重力,求电子射入偏转电场时初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ; (2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102V ,d =4.0×10-2m ,m =9.1×10-31kg ,e =1.6×10-19C ,g =10 m/s 2.(3)极板间既有静电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”φG 的概念,并简要说明电势和“重力势”的共同特点.①由静止开始经加速电场加速;②沿平行于板面的方向射入.答案 (1)2eU 0m UL24U 0d(2)见解析 (3)见解析 解析 (1)根据动能定理,有eU 0=12mv 20,电子射入偏转电场时的初速度v 0=2eU 0m在偏转电场中,电子的运动时间Δt =Lv 0=Lm 2eU 0加速度a =eE m =eUmd偏转距离Δy =12a(Δt)2=UL 24U 0d(2)只考虑电子所受重力和电场力的数量级,有重力 G =mg≈10-29N电场力F =eU d≈10-15N由于F ≫G ,因此不需要考虑电子所受的重力.(3)电场中某点电势φ定义为电荷在该点的电势能E p 与其电荷量q 的比值,即φ=E pq ,类比静电场电势的定义,将重力场中物体在某点的重力势能E G 与其质量m 的比值,叫做“重力势”,即φG =E Gm .电势φ和重力势φG 都是反映场的能的性质的物理量,仅由场自身的因素决定.5.(多选)(2018·天津理综·7)如图9所示,氕核、氘核、氚核三种粒子从同一位置无初速地进入电场线水平向右的加速电场E 1,之后进入电场线竖直向下的匀强电场E 2发生偏转,最后打在屏上.整个装置处于真空中,不计粒子重力及其相互作用,那么( )图9A .偏转电场E 2对三种粒子做功一样多B .三种粒子打到屏上时的速度一样大C .三种粒子运动到屏上所用时间相同D .三种粒子一定打到屏上的同一位置 答案 AD6.(2018·安徽理综·23)在xOy 平面内,有沿y 轴负方向的匀强电场,场强大小为E(图中未画出),由A 点斜射出一质量为m ,带电量为+q 的粒子,B 和C 是粒子运动轨迹上的两点,如图10所示,其中l 0为常数.粒子所受重力忽略不计.求:图10(1)粒子从A 到C 过程中电场力对它做的功; (2)粒子从A 到C 过程所经历的时间; (3)粒子经过C 点时的速率. 答案 (1)3qEl 0 (2)32ml 0qE(3) 17qEl 02m解析 (1)粒子从A 到C 过程中电场力对它做的功 W =qE(y A -y C )=3qEl 0①(2)粒子只受沿y 轴负方向的电场力作用,粒子做类似斜上抛运动,粒子在x 轴方向做匀速直线运动,由对称性可知轨迹最高点D 在y 轴上,可令 t AD =t DB =T ,且t BC =T ② 由牛顿第二定律qE =ma③ 由运动学公式得y D =12aT2④从D 到C 做类平抛运动,沿y 轴方向:y D +3l 0=12a(2T)2⑤由②③④⑤式解得T =2ml 0qE⑥ 则A→C 过程所经历的时间t =3T =3 2ml 0qE⑦(3)粒子由D 到C 过程中 x 轴方向:2l 0=v D ·2T ⑧ y 轴方向:v Cy =a·2T ⑨ v C =v 2D +v 2Cy⑩由⑥⑧⑨⑩式解得v C =17qEl 02m题组1 平行板电容器的动态分析1.如图1所示,一带电小球悬挂在竖直放置的平行板电容器内,当开关S 闭合,小球静止时,悬线与竖直方向的夹角为θ,则( )图1A .当开关S 断开时,若减小平行板间的距离,则夹角θ增大B .当开关S 断开时,若增大平行板间的距离,则夹角θ变小C .当开关S 闭合时,若减小平行板间的距离,则夹角θ增大D .当开关S 闭合时,若减小平行板间的距离,则夹角θ减小 答案 C解析 带电小球在电容器中处于平衡时,由平衡条件有tan θ=qEmg,当开关S 断开时,电容器两极板上的电荷量Q 不变,由C =εr S 4πkd ,U =Q C ,E =U d 可知E =4πkQεr S ,故增大或减小两极板间的距离d ,电容器两极板间的电场强度不变,θ不变,选项A 、B 错误;当开关S 闭合时,因为两极板间的电压U 不变,由E =Ud 可知,减小两极板间的距离d ,E 增大,θ变大,选项C 正确,D 错误.2.如图2所示,电容器极板间有一可移动的电介质板,介质与被测物体相连,电容器接入电路后,通过极板上物理量的变化可确定被测物体的位置,则下列说法中正确的是( )图2A .若电容器极板间的电压不变,x 变大,电容器极板上带电荷量增加B .若电容器极板上带电荷量不变,x 变小,电容器极板间电压变大C .若电容器极板间的电压不变,x 变大,有电流流向电容器的正极板D .若电容器极板间的电压不变,x 变大,有电流流向电容器的负极板 答案 D解析 若x 变大,则由C =εr S4πkd ,可知电容器电容减小,在极板间的电压不变的情况下,由Q =CU 知电容器带电荷量减少,此时带正电荷的极板得到电子,带负电荷的极板失去电子,所以有电流流向负极板,A 、C 错误,D 正确.若电容器极板上带电荷量不变,x 变小,则电容器电容增大,由U =QC 可知,电容器极板间电压减小,B 错误.3.(多选)将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d 、U 、E 和Q 表示.下列说法正确的是( )A .保持U 不变,将d 变为原来的两倍,则E 变为原来的一半B .保持E 不变,将d 变为原来的一半,则U 变为原来的两倍C .保持d 不变,将Q 变为原来的两倍,则U 变为原来的一半D .保持d 不变,将Q 变为原来的一半,则E 变为原来的一半 答案 AD解析 由E =Ud 可知,若保持U 不变,将d 变为原来的两倍,则E 变为原来的一半,A 项正确;若保持E 不变,将d 变为原来的一半,则U 变为原来的一半,B 项错误;由C =Q U ,C =εr S 4πkd ,E =U d ,可得U =4Qk πd εr S ,E =4Qk πεr S ,所以,保持d 不变,若Q 变为原来的两倍,则U 变为原来的两倍,C 项错误;保持d 不变,若Q 变为原来的一半,E 变为原来的一半,D 项正确.4.如图3所示,M 、N 是平行板电容器的两个极板,R 0为定值电阻,R 1、R 2为可调电阻,用绝缘细线将质量为m 、带正电的小球悬于电容器内部.闭合开关S ,小球静止时受到悬线的拉力为F.调节R 1、R 2,关于F 的大小判断正确的是( )图3A .保持R 1不变,缓慢增大R 2时,F 将变大B .保持R 1不变,缓慢增大R 2时,F 将变小C .保持R 2不变,缓慢增大R 1时,F 将变大D .保持R 2不变,缓慢增大R 1时,F 将变小 答案 B解析 据题图可知电容器两端电压U MN 即R 0两端电压,而R 0和R 2是串联关系,两者电压的和为电源的电动势,因此R 2↑→UR 0↓U MN ↓→电场强度E↓→F 电↓→F↓,A 错误,B 正确;R 2不变,缓慢增大R 1时,R 0两端电压不变,电容器两端电压不变,故F 不变,C 、D 均错.题组2 带电粒子在电场中的直线运动5.两平行金属板相距为d ,电势差为U ,一电子质量为m 、电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图4所示,OA =h ,此电子具有的初动能是( )图4A.edhU B .edUh C.eU dhD.eUh d答案 D解析 由动能定理得:-e U d h =-E k ,所以E k =eUhd.6.(2018·新课标全国Ⅱ·14)如图5所示,两平行的带电金属板水平放置.若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )图5A .保持静止状态B .向左上方做匀加速运动C .向正下方做匀加速运动D .向左下方做匀加速运动 答案 D解析 两平行金属板水平放置时,带电微粒静止有mg =qE ,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D 正确.7.反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.如图6所示,在虚线MN 两侧分别存在着方向相反的两个匀强电场,一带电微粒从A 点由静止开始,在电场力作用下沿直线在A 、B 两点间往返运动.已知电场强度的大小分别是E 1=2.0×103N/C 和E 2=4.0×103N/C ,方向如图所示.带电微粒质量m =1.0×10-20kg ,带电荷量q =-1.0×10-9C 、A 点距虚线MN 的距离d 1=1.0 cm ,不计带电微粒的重力,忽略相对论效应.求:图6(1)B 点到虚线MN 的距离d 2;(2)带电微粒从A 点运动到B 点所经历的时间t. 答案 (1)0.50 cm (2)1.5×10-8s解析 (1)带电微粒由A 运动到B 的过程中,由动能定理有|q|E 1d 1-|q|E 2d 2=0,E 1d 1=E 2d 2, 解得d 2=0.50 cm.(2)设微粒在虚线MN 两侧的加速度大小分别为a 1、a 2, 由牛顿第二定律有 |q|E 1=ma 1, |q|E 2=ma 2,设微粒在虚线MN 两侧运动的时间分别为t 1、t 2,由运动学公式有d 1=12a 1t 21,d 2=12a 2t 22.又t =t 1+t 2, 解得t =1.5×10-8s.8.如图7所示,一带电荷量为+q 、质量为m 的小物块处于一倾角为37°的光滑斜面上,当整个装置被置于一水平向右的匀强电场中时,小物块恰好静止.重力加速度取g ,sin 37°=0.6,cos 37°=0.8.求:图7(1)水平向右电场的电场强度;(2)若将电场强度减小为原来的12,物块的加速度是多大?(3)电场强度变化后物块下滑距离L 时的动能. 答案 (1)3mg4q(2)0.3g (3)0.3mgL解析 (1)小物块静止在斜面上,受重力、电场力和斜面支持力,受力分析如图所示,则有F N sin 37°=qE F N cos 37°=mg 解得E =3mg4q(2)若电场强度减小为原来的12,即E′=3mg8q由牛顿第二定律得mgsin 37°-qE′cos 37°=ma 解得a =0.3g(3)电场强度变化后物块下滑距离L 时,重力做正功,电场力做负功,由动能定理得 mgL sin 37°-qE′Lcos 37°=E k -0 解得E k =0.3mgL.题组3 带电粒子在电场中的偏转9.如图8所示,带正电的粒子以一定的初速度v 0沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L ,板间的距离为d ,板间电压为U ,带电粒子的电荷量为+q ,粒子通过平行金属板的时间为t(不计粒子的重力),则( )图8A .在前t 2时间内,电场力对粒子做的功为qU4B .在后t 2时间内,电场力对粒子做的功为3qU8C .在粒子下落前d 4和后d4的过程中,电场力做功之比为1∶2D .在粒子下落前d 4和后d4的过程中,电场力做功之比为2∶1答案 B解析 带正电的粒子以一定的初速度v 0沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,带电粒子所做的运动是类平抛运动.竖直方向上的分运动是初速度为零的匀加速直线运动,由运动学知识可知,前后两段相等时间内竖直方向上的位移之比为1∶3,电场力做功之比也为1∶3.又因为电场力做的总功为qU2,所以在前t 2时间内,电场力对粒子做的功为qU 8,A 选项错;在后t 2时间内,电场力对粒子做的功为3qU8,B 选项对;在粒子下落前d 4和后d4的过程中,电场力做功相等,故C 、D 选项错.10.(2018·山东理综·18)如图9所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h.质量均为m 、带电量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v 0等于( )图9A.s 2 2qEmh B.s 2 qE mh C.s 42qEmhD.s 4qE mh答案 B解析 根据对称性,两粒子轨迹的切点位于矩形区域abcd 的中心,则在水平方向有12s =v 0t ,在竖直方向有12h=12·qE m ·t 2,解得v 0=s 2qEmh.故选项B 正确,选项A 、C 、D 错误. 11.如图10所示,区域Ⅰ、Ⅱ分别存在着有界匀强电场E 1、E 2,已知区域Ⅰ宽L 1=0.8 m ,区域Ⅱ宽L 2=0.4 m ,E 1=10 2 V/m 且方向与水平方向成45°角斜向右上方,E 2=20 V/m 且方向竖直向下.带电荷量为q =+1.6×10-3C .质量m =1.6×10-3 kg 的带电小球(可视为质点)在区域Ⅰ的左边界由静止释放.g 取10 m/s 2,求:图10(1)小球在电场区域Ⅰ中运动的加速度大小和时间; (2)小球离开电场区域Ⅱ的速度大小和方向.答案 (1)10 m/s 20.4 s (2)5 m/s 速度方向与水平方向夹角为37°斜向右下方解析 (1)小球在电场Ⅰ区域受到电场力F1=qE 1,小球在电场Ⅰ区域受到的电场力和重力的合力方向水平向右,大小为F 合=F 1 cos 45°=1.6×10-2 N ,则小球向右做匀加速直线运动,其加速度a 1=F 合m =10 m/s 2,小球运动时间t 1=2L 1a 1=0.4 s. (2)小球离开电场Ⅰ区域的水平速度v 0=a 1t 1=4 m/s ,小球在电场Ⅱ区域中受到电场力和重力的合力竖直向下,其加速度a 2=g +qE 2m =30 m/s 2,小球在电场Ⅱ区域中做类平抛运动,其运动时间t 2=L 2v 0=0.1 s .小球在竖直方向的分速度v y =a 2t 2=3 m/s ,小球离开电场Ⅱ区域的速度v =v 20+v 2y =5 m/s ,设小球离开电场Ⅱ区域的速度方向与水平方向夹角为θ,则tan θ=v y v 0=34,得θ=37°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
51 电荷守恒定律 库仑定律
[方法点拨] (1)注意库仑力的大小与两点电荷间的距离平方成反比.(2)库仑力作用下的物体平衡问题,要注意整体法、隔离法的应用.
1.(2018·黑龙江双鸭山一中月考)两个相同的可视为点电荷的带异种电荷的导体小球所带电荷量的比值为1∶3,相距为r 时相互作用的库仑力的大小为F ,今使两小球接触后再分开放到相距为2r 处,则此时库仑力的大小为( ) A.
112F B.16F C.14F D.13
F 2.(2018·河北邢台质检)如图1所示,带电物体P 、Q 可视为点电荷,电荷量相同.倾角为θ、质量为M 的斜面体放在粗糙水平面上,将质量为m 的物体P 放在粗糙的斜面体上.当物体Q 放在与P 等高(PQ 连线水平)且与物体P 相距为r 的右侧位置时,P 静止且受斜面体的摩擦力为0,斜面体保持静止,静电力常量为k ,则下列说法正确的是( )
图1
A .P 、Q 所带电荷量为mgktan θ
r
2
B .P 对斜面的压力为0
C .斜面体受到地面的摩擦力为0
D .斜面体对地面的压力为(M +m)g
3.如图2所示,光滑平面上固定金属小球A ,用长为l 0的绝缘弹簧将A 与另一个金属小球B 连接,让它们带上等量同种电荷,弹簧伸长量为x 1;若两小球电荷量各漏掉一半,弹簧伸长量变为x 2,则有( )
图2
A .x 2=12x 1
B .x 2>14x 1
C .x 2=14x 1
D .x 2<1
4
x 1
4.(2018·福建三明一中模拟)如图3所示,在光滑的绝缘水平面上,有两个质量均为m 、带电荷量分别为+q 和-q 的甲、乙两个小球,在力F 的作用下做匀加速直线运动,则甲、乙两球之间的距离r 为( )
图3
A.
q k
F
B .q 2k
F
C .2q k
F
D .2q F k
5.(多选)如图4所示,在光滑绝缘的水平桌面上有四个小球,带电荷量分别为-q 、Q 、-q 、Q.四个小球构成
一个菱形,-q 、-q 的连线与-q 、Q 的连线之间的夹角为α.若此系统处于平衡状态,则正确的关系式可能是( )
图4
A .cos 3
α=q
8Q
B .cos 3
α=q
2
Q
2
C .sin 3α=Q
8q
D .sin 3
α=Q
2
q
2
6.(2018·湖南株洲一模)套有三个带电小球的圆环放在水平桌面上(不计一切摩擦),小球的电荷量保持不变,整个装置平衡后,三个小球的一种可能位置如图5所示.三个小球构成一个锐角三角形,三角形的边长大小关系是AB>AC>BC ,可以判断图中( )
图5
A .三个小球电荷量的代数和可能为0
B .三个小球一定带同种电荷
C .三个小球所受环的弹力大小为F NA >F NB >F NC
D .三个小球带电荷量的大小为Q A >Q C >Q B
7.(多选)如图6所示,a 、b 、c 、d 四个质量均为m 的带电小球恰好构成“三星拱月”之形,其中a 、b 、c 三个完全相同的带电小球在光滑绝缘水平面内的同一圆周上绕O 点做半径为R 的匀速圆周运动,三小球所在位置恰好将圆周等分.小球d 位于O 点正上方h 处,且在外力F 作用下恰处于静止状态,已知a 、b 、c 三小球的电荷量大小均为q ,小球d 的电荷量大小为6q ,h =2R.重力加速度为g ,静电力常量为k.则( )
图6
A .小球a 一定带正电
B .小球b 的周期为
2πR
q
mR k
C .小球c 的加速度大小为3kq
2
3mR
2
D .外力F 竖直向上,大小等于mg +26kq
2
R
2
8.(2018·湖北黄冈模拟)如图7所示,足够大的光滑绝缘水平面上有三个带电质点M 、O 、N ,质点O 能保持静
止,质点M 、N 均围绕质点O 做匀速圆周运动.已知质点M 、N 与质点O 的距离分别为L 1、L 2(L 1<L 2).不计质点间的万有引力作用.下列说法正确的是( )
图7
A .质点M 与质点O 带有同种电荷
B .质点N 的线速度小于质点M 的线速度
C .质点N 与质点M 所带电荷量之比为(L 2L 1)2
D .质点M 与质点N 的质量之比为(L 1L 2
)
2
答案精析
1.A [设其中一个小球所带电荷量为-Q ,另一个带电荷量为3Q ,根据库仑定律可知,两球接触前F =k 3Q
2
r 2,
接触后再分开,两球带电荷量为Q 1=Q 2=
3Q -Q 2=Q ,由库仑定律得F′=kQ×Q (2r )=F
12
,故A 正确.] 2.D [设P 、Q 所带电荷量为q ,对物体P 受力分析,受到水平向左的库仑力F =k q
2
r 2、竖直向下的重力mg 、支
持力F N ,由平衡条件可得tan θ=F
mg
,解得q =
mgr 2
tan θ
k
,选项A 错误;斜面对P 的支持力F N =mgcos θ+Fsin θ,由牛顿第三定律可知,P 对斜面的压力为F N ′=mgcos θ+Fsin θ,选项B 错误;对P 和斜面体整体受力分析,可知水平方向受到Q 对P 向左的库仑力F =k q
2
r 2和地面对斜面体水平向右的摩擦力,由平衡条件可
知,斜面体受到水平向右的摩擦力大小为F f =k q
2
r 2,选项C 错误;对P 和斜面体整体受力分析,竖直方向受到竖
直向下的重力(M +m)g 和水平面的支持力,由平衡条件可得,水平面支持力等于(M +m)g ,根据牛顿第三定律,斜面体对地面的压力大小为(M +m)g ,选项D 正确.]
3.B [电荷量减少一半,根据库仑定律知若两个球之间的距离保持不变,库仑力减小为原来的1
4,库仑力减
小,弹簧的弹力减小,弹簧的伸长量减小,两球间的距离减小,所以实际的情况是小球之间的库仑力会大于原来的14,此时弹簧的伸长量也大于原来的1
4
,B 正确.]
4.B [选甲、乙整体为研究对象,由牛顿第二定律得,加速度a =F
2m .选乙为研究对象,由牛顿第二定律得,
kq
2
r
2=ma ,联立得r =q 2k F
.] 5.AC [设菱形边长为a ,则两个Q 之间距离为2asin α,两个-q 之间距离为2acos α.选取-q 作为研究对象,由库仑定律和平衡条件得2k Qq a 2cos α=k q 2
(2acos α)2,解得cos 3
α=
q 8Q ,选项A 正确,B 错误.选取Q 作为研究对象,由库仑定律和平衡条件得2k Qq a 2sin α=k Q 2
(2asin α)2,解得sin 3
α=
Q 8q ,选项C 正确,D 错误.] 6.B [对小球A 分析,弹力过圆心,根据平衡条件,要么小球B 与C 对小球A 同时为引力,要么对小球A 同时为斥力,小球A 才能处于平衡状态,因此小球A 不可能受到一个斥力一个引力,所以小球B 、C 带同种电荷,分析小球B ,由平衡条件可得小球A 、C 带同种电荷,可得三个小球带同种电荷,所以三个小球电荷量的代数和不可能为0,A 错误,B 正确;小球A 受到两个斥力,设圆心为O ,AB>AC ,同时∠OAB<∠OAC,可得小球A 受小球B 的力更大,且小球A 离小球B 更远,可得小球B 所带电荷量大于小球C 所带电荷量,同理小球A 的带电荷量大于小球B 带的电荷量,Q A >Q B >Q C ,D 错误;根据相似三角形可得F NA BC =F NB AC =F NC
AB
,故可得F NC >F NB >F NA ,C 错误.]
7.CD [小球a 、b 、c 均做半径相同的匀速圆周运动,且受力情况相同,故三个小球的各运动参量大小均相等.以小球a 为例,小球a 做圆周运动的向心力由小球d 对小球a 的引力的水平分力及小球b 、c 对小球a 斥力的合力提供,仅可以判断四个小球所带电荷电性的异同,不能确定小球a 是否带正电,A 项错误;由牛顿第二定律得,-2k q 2
(2Rcos 30°)2cos 30° +k 6q 2
h 2+R 2·R R 2+h 2
=ma n ,其中h =2R ,解得a n =3kq
2
3mR 2,C 项正确;向心加速度公式a n =3kq 2
3mR 2=4π2
T 2R ,得T =
2πR
q
3mR
k
,B 项错误;对小球d 受力分析,由平衡条件可知:F =mg +3k 6q 2
R 2+h 2·h R 2+h
2=mg +26kq 2
R 2
,D 项正确.] 8.C [要满足题目要求,则M 、N 电性相同,且和O 电性相反,A 项错误;M 、N 绕O 做匀速圆周运动,则三质点共线,角速度相等,线速度之比等于做圆周运动的半径之比,v N >v M ,B 项错误;对O 点受力分析,知k q M q O
L 12=
k
q N q O L 2,q N q M =(L 2L 1)2,C 项正确;分别对M 、N 受力分析,合力提供向心力,m M L 1ω2=k q M q O L 1-k q M q N (L 1+L 2),m N L 2ω2
=k q N q O L 2
-k
q M q N (L 1+L 2)2,m M L 1ω2=m N L 2ω2
,即m M m N =L 2L 1
,D 项错误.]。