六年级奥数考点:不定方程问题

合集下载

六年级奥数第28讲:不定方程

六年级奥数第28讲:不定方程

简单的不定方程所谓有定方程,是指未知数的个数多于方程个数的方程(组)。

解不定方程的方法是:(1)根据整除知识,缩小未知数的取值范围,然后试算求解。

(2)分析末位数字,缩小未知数的取值范围,寻求方程的整数解。

(3)求出一个未知数用另一个未知数表示的式子,然后试算求解。

(4)直接根据方程确定未知数的取值范围,通过试算求解。

例1、马小富在甲公司打工,几个月后又在乙公司兼职。

甲公每月付给他薪金470元,乙公司每月付给他薪金350元。

年终,马小富从两家公司共获薪金7 620元。

问他在甲公司打工多少个月,在乙公司兼职多少个月。

做一做:有A、B、C三种商品若干,价值共300元,其中A商品单价为16元,B商品单价为158元,C商品单价为19元。

那么,全部C商品至少价值多少元?最多价值多少元?例2、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都损耗1毫米铜管,那么,只有当锯得的38毫米铜管和90毫米的铜管各为多少段时,所损耗的铜管才能最少?做一做:一个同学把他生日的月份乘以31,日期乘以12,然后加起来的和是170,你知道他出生于何月何日吗?例3、某单位的职工到效外植树,其中的男职工,也有女职工,并有31的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们共种了216棵树,那么其中女职工有多少人?做一做:一群猴子采摘水蜜桃。

猴王不在的时候,一只大猴子1小时可采摘15千克,一只小猴子1小时可采摘11千克;猴王在场监督的时候,大猴子的51和小猴子的51必须停止采摘,去伺候猴王,有一天采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共摘3 382千克水密桃。

问:在这个猴群中,共有大猴子多少只?例4、小明用5天时间看完一本200页的故事书。

已知第二天看的页数比第一天多,第三天看的页数是第一天、第二天看的页数之和,第四天看的页数是第五天至少看了多少页?做一做:有一堆围棋子,白子颗数是黑子颗数的3倍。

小学奥数知识点:不定方程

小学奥数知识点:不定方程

小学奥数知识点:不定方程
一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;
常规方法:观察法、试验法、枚举法;
多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;
多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;
涉及知识点:列方程、数的整除、大小比较;
解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;
技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;。

六年级奥数不定方程

六年级奥数不定方程

六年级奥数不定方程Prepared on 21 November 2021第六讲不定方程【知识要点】1、许多数学家需要用方程或方程组来求解。

要想获得未知数的唯一解,能独立列出的方程个数必须与未知数的个数相等。

如果方程个数少于未知数的个数,则称之为不定方程或不定方程组,以为此时未知数一般有无数多个解,解是不确定的。

但如果结合具体问题,增加一些对解的限制条件,如只求自然数解等,这样的不定方程的解就只有有限个或唯一一个了。

必须注意,限制条件中,有些是明显的,有些则是隐藏的。

2、求不定方程的自然数解或正整数解,关键是充分利用整除特征,尝试找出第一解;对于其他的所有解,可通过解的规律,逐一罗列出来,并不困难。

【例题精讲】例1:求下列方程的整数解(x>0,y>0)。

(1)5x+10y=14;(2)11x+3y=89.【思路点拨】5和10有公因数5,而14没有公因数5,所以原方程无整数解;y=29-3211x,11x-2能被3整除且x<9。

模仿练习:(1)求满足方程5x+3y=40的自然数解。

(2)设A 和B 都是自然数,且满足11A +7B =7757,求A+B 的值。

例2:某单位职工到郊外植树,其中31的职工各带了一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵树,他们共种了216棵树,那么其中有女职工多少人【思路点拨】设有女职工x 人,男职工y 人,那么有孩子3y x +人,这个条件说明3|x+y 。

模仿练习:某小学共有大、中、小宿舍12间,能住80人。

每间大宿舍能住8人,每间中宿舍能住7人,每间小宿舍能住5人。

问中、小宿舍共有多少间例3:有四个自然数A 、B 、C 、D ,它们的和不超过除以B 商5余5;A 除以C 商6余6;A 除以D 商7余7,这四个自然数的和是多少【思路点拨】A=5B+5=6C+6=7D+7,A 一定是5,6,7的公倍数。

模仿练习:有三张扑克牌,牌的数字各不相同,并且都小于10,把三张牌洗好后,分别发给甲、乙、丙三人,每人记下自己牌的数字,再重新洗牌、发牌、记数。

六年级奥数专题培优讲义不定方程及解析全国通用

六年级奥数专题培优讲义不定方程及解析全国通用

六年级奥数专题培优讲义——不定方程及解析知识点梳理:在列方程组解答应用题时,有两个未知数,就需要有两个方程。

有三个未知数,就需要有三个方程。

当未知数的个数多于方程的个数时,这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。

不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足轻重的地位。

而在小学阶段打下扎实的基础,无疑很重要。

不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。

不过,我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。

这种情况也不排除它的取值不止一种。

不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。

如果考虑到题中以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整数的分拆有很大关系)。

解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。

【例1】★求方程2725=+y x 的正整数解。

【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==15,63,111y x y x y x【小试牛刀】求方程4x +10y =34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 典型例题的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3,x =6时,17-2x = 5,y =1,x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩ 【例2】★ 设A ,B 都是正整数,并且满足3317311=+B A ,求B A +的值。

六年级上册奥数第八讲不定方程

六年级上册奥数第八讲不定方程

第八讲不定方程一个方程中有两个未知数,未知数的个数多于方程的个数,这样的方程叫做不定方程。

古希腊的数学家丢番图曾写过关于不定方程的书《算术》,所以不定方程又叫丢番图方程,不定方程往往有无数解,但如果有限制条件,例如求自然数解,往往会使解的个数变成有限。

例题精讲例1、一个工人将99颗弹子装入两种盒子中,每个大盒子装12颗,小盒子装5颗,恰好装完,已知盒子数大于10, 问这两种盒子各有多少?例2、甲级铅笔7块钱一支,乙级铅笔3块钱一支。

问张明用60元恰好买两种铅笔共多少支?例3、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1亳米铜管,那么,只有当锯得的38毫米的铜管和90毫米的铜管各为多少段时,所损耗的铜管才能最少?例4、小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分,小明其套了10次,每次都套中了,每个小玩具都至少被套中一次。

小明套10次共得了61分。

问:小鸡至多被套中多少次?例5、学校里共有12间宿舍,可以住80人,大宿舍住8人,中宿舍住7人,小宿舍住5人,问中宿舍和小宿舍共有多少间?例6、某地水费,不超过10度时,每度0. 45元;超过10度时,每度0.80元。

张家比李家多交水费3.30元,如果两家的用水量都是整数度,问张家、李家各交水费多少元?例7、将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管(加工损耗忽略不计),问剩余部分铝管最少是多少厘米?例8、某种考试已举行24次,共出了426道题。

每次出的题目,有25题,或者16题,或者20题,那么,其中考25题的有多少次?同步训练1、一个布袋中装有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字的和等于21,问小明摸出的球中红球最多不超过多少个?2、篮、排、足球放在一堆共25个,其中篮球个数是足球个数的7倍,求其中排球的个数。

小学奥数知识点:不定方程

小学奥数知识点:不定方程

小学奥数知识点:不定方程一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;小学奥数经典题1.两辆汽车从A,B两地同时出发相向而行,客车行完全程要8小时,货车行完全程要10小时,两车相遇后又各自往前驶去,已知出发5小时后两车相距50千米,问A,B两地相距多少千米?2.有一个箱子里放着一些黄色乒乓球,为了估计球的数量,我们把20个白色乒乓球放入箱子中,充分搅拌混合后,任意摸出30个球,发现其中有3个白球.你估计箱子里原来大约有多少个黄色乒乓球?3.工程队挖一条水渠,第一天挖了全长的多28米,第二天挖了全长的少20米,这时剩下22米没挖完.这条水渠全长多少米?4.如图,一个边长为40厘米的正方形ABCD的场地,蚂蚁和蜗牛同时从A 点出发,蚂蚁以5厘米/分钟的速度沿线路A→B→C→D行走,蜗牛以2厘米/分钟的速度沿线路A→D行走.出发18分钟时,蚂蚁走到E点,蜗牛走到F点,求三角形AEF的面积是多少平方厘米?5.运来一批水果.第一天卖出总数的15%,第二天卖出160千克,剩下的与卖出的重量的比是1:3.这批水果共有多少千克?。

小学六年级奥数 第八章 不定方程

小学六年级奥数 第八章 不定方程

第八章不定方程知识要点如果方程(组)中未知数的个数多于方程的个数,此方程(组)称为不定方程(组)。

如x+y=10,1512x ay a-=⎧⎨+=⎩,。

不定方程(组)的解是不确定的。

一般地,如果没有给不定方程的制约条件,那么它就有无限多个解。

小学阶段主要涉及整系数不定方程的整数解。

关于参数方程,就是有时题中给的条件过少,就设一个未知数参与运算,这个参数不影响结果。

例1 (第五届“希望杯”邀请赛试题)一个两位数的中间加上一个0,得到的三位数比原两位数的8倍小1,原来的两位数是。

点拨根据题意,可由原来的两位数和变化后的三位数之间的数量关系列出方程。

解设原来的两位数是ab=10a+b,则新数是0a b=100a+b。

依题意得 100a+b+1=8(10a+b)即 20a+1=7b所以 a=71 20 b-因为a,b是整数,且1≤a≤9,0≤b≤9,所以 a=1,b=3即原来的两位数是13。

说明如果方程存在的解不止一个,则要逐一解出,并检验,千万不要漏掉或出现与题意相矛盾的解。

例2 (“迎春杯”邀请赛试题)某工厂为优秀职工发奖金,一等奖每人1800元,二等奖每人1200元,三等奖每人800元。

每种奖都有人领,共有15名优秀职工领取奖金的总数为16000元,获一、二、三等奖的职工各有多少人?点拨根据题意,一、二、三等奖人数之和等于15这一等量关系显而易见,而15名职工领取奖金的总和为16000元这一等量关系也给出,可列出方程。

解设一、二、三等奖依次有x人、y人、z人,则有1800x+1200y+800z=16000即 9x+6y+4z=80又x+y+z=15,将z=15-x-y代入上式,得9x+6y+60-4x-4y=80整理得 5x+2y=20又x,y,z是正整数,解得 x=2,y=5,z=15-x-y=8。

答:获一等奖的有2人,二等奖的有5人,三等奖的有8人。

例3 100头驴驮100袋物品,一头大驴驮3袋,一头中驴驮2袋,两头小驴驮1袋。

小学六年级奥数第40讲 不定方程(含答案分析)

小学六年级奥数第40讲 不定方程(含答案分析)

第40讲不定方程一、知识要点当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。

如5x-3y =9就是不定方程。

这种方程的解是不确定的。

如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。

如5x-3y=9的解有:x=2.4 x=2.7 x=3.06 x=3.6y=1 y=1.5 y=2.1 y=3如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。

因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。

解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。

解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。

对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。

解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。

二、精讲精练【例题1】求3x+4y=23的自然数解。

先将原方程变形,y=23-3x4。

可列表试验求解:所以方程3x+4y=23的自然数解为X=1 x=5 Y=5 y=2 练习11、求3x+2y=25的自然数解。

2、求4x+5y=37的自然数解。

3、求5x-3y=16的最小自然数解。

【例题2】求下列方程组的正整数解。

5x+7y+3z=253x-y-6z=2这是一个三元一次不定方程组。

解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。

5x+7y+3z=25 ①3x-y-6z=2 ②由①×2+②,得13x+13y=52X+y=4 ③把③式变形,得y=4-x。

因为x、y、z都是正整数,所以x只能取1、2、3.当x=1时,y=3当x=2时,y=2当x=3时,y=1把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。

x=2,y=2时,z也无正整数解。

x=3时,y=1时,z=1.所以,原方程组的正整数解为 x=1y=1z=1求下面方程组的自然数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点:不定方程问题
一、知识要点
当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。

如5x-3y=9就是不定方程。

这种方程的解是不确定的。

如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。

如5x-3y=9的解有:
x=2.4 x=2.7 x=3.06 x=3.6
y=1 y=1.5 y=2.1 y=3
如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。

因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。

解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。

解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。

对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。

解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。

二、精讲精练
【例题1】求3x+4y=23的自然数解。

先将原方程变形,y=23-3x
4。

可列表试验求解:
所以方程3x+4y=23的自然数解为
X=1 x=5
Y=5 y=2
练习1
1、(课后)求3x+2y=25的自然数解。

2、求4x+5y=37的自然数解。

3、求5x-3y=16的最小自然数解。

【例题2】求下列方程组的正整数解。

5x+7y+3z=25
3x-y-6z=2
这是一个三元一次不定方程组。

解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。

5x+7y+3z=25 ①
3x-y-6z=2 ②
由①×2+②,得13x+13y=52
X+y=4 ③
把③式变形,得y=4-x。

因为x、y、z都是正整数,所以x只能取1、2、3.
当x=1时,y=3
当x=2时,y=2
当x=3时,y=1
把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。

x=2,y=2时,z也无正整数解。

x=3时,y=1时,z=1.
所以,原方程组的正整数解为x=1
y=1
z=1
练习2
求下面方程组的自然数解。

1、4x+3y-2z=7
2、7x+9y+11z=68
3x+2y+4z=21 5x+7y+9z=52
3、5x+7y+4z=26(课后)
3x-y-6z=2
【例题3】一个商人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。

如果弹子数为99,盒子数大于9,问两种盒子各有多少个?
两种盒子的个数都应该是自然数,所以要根据题意列出不定方程,再求出它的自然数解。

设大盒子有x个,小盒子有y个,则
12x+5y=99(x>0,y>0,x+y>9)
y=(99-12y)÷5
经检验,符合条件的解有:x=2 x=7
y=15 y=3
所以,大盒子有2个,小盒子有15个,或大盒子有7个,小盒子有3个。

练习3.
1、(课后)某校6(1)班学生48人到公园划船。

如果每只小船可坐3人,每只大船可坐5人。

那么需要小船和大船各几只?(大、小船都有)
2、甲级铅笔7角钱一枝,乙级铅笔3角钱一枝,小华用六元钱恰好可以买两种不同的铅笔共
几枝?
3、小华和小强各用6角4分买了若干枝铅笔,他们买来的铅笔中都是5分一枝和7分一枝的两种,而且小华买来的铅笔比小强多,小华比小强多买来多少枝?
【例题4】买三种水果30千克,共用去80元。

其中苹果每千克4元,橘子每千克3元,梨每千克2元。

问三种水果各买了多少千克?
设苹果买了x千克,橘子买了y千克,梨买了(30-x-y)千克。

根据题意得:
4x+3y+2×(30-x-y)=82
x=10-y
2
由式子可知:y<20,则y必须是2的倍数,所以y可取2、4、6、8、10、12、14、16、18。

因此,原方程的解如下表:
练习4
1、(课后)有红、黄、蓝三种颜色的皮球共26只,其中蓝皮球的只数是黄皮球的9倍,蓝皮球有多少只?
2、用10元钱买25枝笔。

已知毛笔每枝2角,彩色笔每枝4角,钢笔每枝9角。

问每种笔各买几枝?(每种都要买)
3、晓敏在文具店买了三种贴纸;普通贴纸每张8分,荧光纸每张1角,高级纸每张2角。

她一共用了一元两角两分钱。

那么,晓敏的三种贴纸的总数最少是多少张?。

相关文档
最新文档