概率统计-优秀课件
合集下载
《概率论与数理统计》-课件 概率论的基本概念

解 以C记事件“母亲患病”,以N1记事件“第1个 孩子未患病”,以N 2记事件“第2个孩子未患病”.
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为
《概率统计》PPT课件

后抽比先抽的确实吃亏吗?
“大家不必争先恐后,你们一个一个 按次序来,谁抽到‘入场券’的机会都 一样大.”
到底谁说的对呢?让我们用概率 论的知识来计算一下,每个人抽到“ 入场券”的概率到底有多大?
“先抽的人当然要比后抽的人抽到的机会大。”
我们用Ai表示“第i个人抽到入场券” i=1,2,3,4,5. 则 A 表示“第 i个人未抽到入场券” i 显然,P(A1)=1/5,P( A1)=4/5
P(A2)=0.4×0.5×(1-0.7)+0.5×0.7×(1-0.4)+ 0.4×0.7×(1-0.5)=0.41, P(A3)=0.4×0.5×0.7=0.14 P(B|A0)=0, P(B|A1)=0.2, P(B|A2)=0.6, P(B|A3)=1, 根据全概率公式有
P( B) P( B | Ai )P( Ai ) 0.458
P(Ai|B),表示症状B由Ai引起的概率 若P(Ai|B), i=1,2,…,n中,最大的一个是P(A1|B),
我们便认为A1是生病的主要原因,下面的关键是:
计算 P(Ai|B), i=1,2,…,n
P( Ai B) P( B | Ai ) P( Ai ) P( Ai | B) n Bayes公式 P( B) P( B | Ai ) P( Ai )
也就是说,
第1个人抽到入场券的概率是1/5.
由于 由乘法公式
A2 A1 A2
因为若第2个人抽到 了入场券,第1个人 肯定没抽到.
P ( A2 ) P ( A1 ) P ( A2 | A1 )
也就是要想第2个人抽到入场券,必须第1个人未 抽到, 计算得:
P(A2)= (4/5)(1/4)= 1/5
统计与概率ppt课件

占总数的百分比。
从图中能清晰地看出 作用 各数量的多少,便于
相互比较。
从图中既能看出数量的多 从图中能清晰地看出各部
少,也能清晰地看出数量 分占总体的百分比,以及
的增减变化情况。
部分与部分之间的关系。
-
3.条形统计图绘制的步骤和方法:(1)根据纸张的大小画出两条互相垂 直的射线;(2)通常在横轴上适当分配条形的位置,确定直条的宽度和间隔 ;(3)通常在纵轴上根据数据大小的具体情况,确定单位长度;(4)按照 数据的大小画出长短不同的直条,并标明数量;(5)写上统计图的名称并标 明制图时间。
-
统计
续表
(3)扇形统计图用整个圆表示总数,用圆内的扇形表示各部分,扇形统计 图可以清楚地反映出各部分与总数之间的关系。 3.平均数:总数量÷总份数=平均数。
1.生活中,有些事件的发生是不确定的,一般用“可能”来描述,有些事件 的发生是确定的,一般用“一定”或“不可能”来描述。 2.事件发生的可能性是有大小的,事件发生的可能性的大小与物品数量的多 可能性 少有关。数量多,可能性大;数量少,可能性小。 3.体验事件发生的等可能性及游戏规则的公平性,能设计出公平的、符合指 定要求的游戏规则。
-
例 1 丽丽统计的本班20位学生体重如下。(单位:kg) 男生:37 42 39 40 46 41 40 43 44 39 女生:29 32 40 41 27 35 36 33 34 38 数一数,把下面的统计表补充完整。
体重/kg 32以下
32~35
36~39
40~43错答案:0 0 3 5 2 错因分析:错解只统计了10位男生的体重情况,而统计表是汇总的20位 同学的整体体重情况。 满分备考:根据各初始数据统计整理数据时,一定要做到不重不漏。
《概率》统计与概率PPT(频率与概率)

人教版高中数学B版必修二
第五章 统计与概率
5.3 概率
5.3.4
频率与概率
- .
-1-
课标阐释
思维脉络
1.在具体情境中,了
解随机事件发生的
不确定性和频率的
稳定性.
2.正确理解概率的
意义,利用概率知
识正确理解现实生
活中的实际问题.
3.理解概率的意义
以及频率与概率的
区别.
4.通过该内容的学
习,培养逻辑推
700÷0.95≈1 789.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率的应用——数学建模
典例为了估计水库中鱼的尾数,可以使用以下的方法:先从水库
中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.
经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕
出500尾,查看其中有记号的鱼,有40尾,试根据上述数据,估计水库
194
500
470
(1)在上表中填上优等品出现的频率;
(2)估计该批乒乓球优等品的概率.
1 000
954
2 000
1 902
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
解:
抽取球数
优等品数
优等品出
现的频率
50
45
100
92
200
194
500
470
1 000
954
2 000
1 902
0.9
0.92
0.97
A.事件 C 发生的概率为
1
10
1
B.此次检查事件 C 发生的频率为10
第五章 统计与概率
5.3 概率
5.3.4
频率与概率
- .
-1-
课标阐释
思维脉络
1.在具体情境中,了
解随机事件发生的
不确定性和频率的
稳定性.
2.正确理解概率的
意义,利用概率知
识正确理解现实生
活中的实际问题.
3.理解概率的意义
以及频率与概率的
区别.
4.通过该内容的学
习,培养逻辑推
700÷0.95≈1 789.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率的应用——数学建模
典例为了估计水库中鱼的尾数,可以使用以下的方法:先从水库
中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.
经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕
出500尾,查看其中有记号的鱼,有40尾,试根据上述数据,估计水库
194
500
470
(1)在上表中填上优等品出现的频率;
(2)估计该批乒乓球优等品的概率.
1 000
954
2 000
1 902
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
解:
抽取球数
优等品数
优等品出
现的频率
50
45
100
92
200
194
500
470
1 000
954
2 000
1 902
0.9
0.92
0.97
A.事件 C 发生的概率为
1
10
1
B.此次检查事件 C 发生的频率为10
《概率与统计初步》课件

时间序列分析的应用
时间序列分析在许多领域都有应用,如金融、经济、气象 、水文等。
06 案例分析
概率论在日常生活中的应用
概率论在保险业中的应用
保险公司在制定保费和赔偿方案时,需要利用概率论来评估风险 和计算预期损失。
概率论在赌博游戏中的应用
概率论在赌博游戏中也起着重要作用,例如在扑克牌和骰子游戏中 ,玩家需要运用概率计算胜算。
假设检验是统计推断的重要方法,它通过检验假设来决定是否接受或 拒绝某一假设。
时间序列分析在金融市场预测中的应用
移动平均线
移动平均线是一种常见的时间序 列分析工具,它通过计算过去一 段时间内的平均价格来平滑市场 波动。
指数平滑
指数平滑是一种时间序列预测方 法,它通过赋予近期数据更大的 权重来调整预测值。
感谢您的观看
THANKS
01
连续随机变量是在一定范围内可以连续取值的随机变量,其取
值是连续的。
连续随机变量的概率分布
02
连续随机变量的概率分布通常用概率密度函数(PDF)表示,
Байду номын сангаас
它给出了在任意区间内取值的概率。
常见的连续随机变量
03
常见的连续随机变量包括正态分布、均匀分布等。
随机变量的期望与方差
期望的定义与计算
期望是随机变量所有可能取值的概率加权和,用于描述随机变量的平均水平。对于离散 随机变量,期望值E(X)表示为E(X)=∑xp(x)xtext{E}(X) = sum x p(x)xE(X)=x∑p(x);对 于连续随机变量,期望值E(X)表示为E(X)=∫−∞∞xf(x)dxE(X) = int_{-infty}^{infty} x
f(x) dxE(X)=∫−∞∞xf(x)d。
时间序列分析在许多领域都有应用,如金融、经济、气象 、水文等。
06 案例分析
概率论在日常生活中的应用
概率论在保险业中的应用
保险公司在制定保费和赔偿方案时,需要利用概率论来评估风险 和计算预期损失。
概率论在赌博游戏中的应用
概率论在赌博游戏中也起着重要作用,例如在扑克牌和骰子游戏中 ,玩家需要运用概率计算胜算。
假设检验是统计推断的重要方法,它通过检验假设来决定是否接受或 拒绝某一假设。
时间序列分析在金融市场预测中的应用
移动平均线
移动平均线是一种常见的时间序 列分析工具,它通过计算过去一 段时间内的平均价格来平滑市场 波动。
指数平滑
指数平滑是一种时间序列预测方 法,它通过赋予近期数据更大的 权重来调整预测值。
感谢您的观看
THANKS
01
连续随机变量是在一定范围内可以连续取值的随机变量,其取
值是连续的。
连续随机变量的概率分布
02
连续随机变量的概率分布通常用概率密度函数(PDF)表示,
Байду номын сангаас
它给出了在任意区间内取值的概率。
常见的连续随机变量
03
常见的连续随机变量包括正态分布、均匀分布等。
随机变量的期望与方差
期望的定义与计算
期望是随机变量所有可能取值的概率加权和,用于描述随机变量的平均水平。对于离散 随机变量,期望值E(X)表示为E(X)=∑xp(x)xtext{E}(X) = sum x p(x)xE(X)=x∑p(x);对 于连续随机变量,期望值E(X)表示为E(X)=∫−∞∞xf(x)dxE(X) = int_{-infty}^{infty} x
f(x) dxE(X)=∫−∞∞xf(x)d。
《概率统计》课件

常用概率分布
正态分布
探索正态分布的特点和应用,在数据分析中发挥重要作用。
泊松分布
介绍泊松分布的概念和用途,用于计数型随机事件的建模。
二项分布
了解二项分布的性质和应用,用于描述二元随机实验的结果。
常用统计推断方法
假设检验
学习如何根据样本数据对总体参 数进行推断并做出决策。
置信区间
了解如何构建置信区间,对总体 参数进行估计。
探索数据可视化的重要性,并学 习如何使用图表和图形来传达统 计信息。
统计推断
了解统计推断的基本原理和方法, 从样本中得出总体的结论。
概率与统计的关系
1
概率理论的基础
说明概率理论是统计学建率现象中的重要性。
3
共同目标
强调概率与统计的共同目标是推断和预测未来事件。
回归分析
探索回归分析的基本概念和方法, 研究变量之间的关系。
结论及总结
通过本课程,我们希望您能够充分理解概率与统计的基本概念和应用。祝您在概率与统计的世界中取得巨大成 功!
了解事件的定义和样本空 间的概念,以及它们在概 率计算中的重要性。
2 概率的性质
探索概率的基本性质,如 加法规则、乘法规则和条 件概率。
3 随机变量
介绍随机变量的概念,了 解离散和连续随机变量以 及它们的应用。
统计的基本概念
数据收集与整理
数据可视化
学习如何有效地收集和整理数据, 并了解常见的数据类型。
《概率统计》PPT课件
PPT课件的目的 课程概述 概率的基本概念 统计的基本概念 概率与统计的关系 常用概率分布 常用统计推断方法 结论及总结
引言
欢迎来到《概率统计》的世界!在这个课程中,我们将探讨概率与统计的基 础知识,了解它们的关系以及如何应用它们来解决实际问题。
概率与概率统计PPT优秀课件

①
P(A)
5 A5 5
7
5
120 16807
②P ( B ) ③ P (C )
5 C7 51
7 7
5 A7
7
5
360 2401
2 3 C 5 6 5
2160 16807
说明:计算事件的概率时,乘法计数 原理,排列数公式及组合数公式有时 要交替使用。
例3、已知一个射击手每次击中目标 的概率为P= 53 ,求他在四次射击中下列事 件的概率。 (1)命中一次;(2)第三次击中目标; (3)命中两次;(4)第二,三两次击中 目标。 1 3 3 3 1 5) 解:(1)恰命中一次,概率为 C 4( 5)(
说明:①先判断所求概率的事件是 属于哪种事件。 ②求概率的方法一般有直接法和间 接法。 (2)的法一是间接法,即先求对立 事件的概率。 (2)的法二是直接法。
Байду номын сангаас
例2、有5个人分配到7个车厢里,分别求出 下列各种情况的概率:①某指定的5节车厢 中各有一个人。②恰有5个车厢各有1人。 ③某指定的车厢中,恰有2个人。 解:分析:每个人分配到7节车厢有7种方 法,5个人分配到7个车厢共有75种方法,为 方便计,将①②③中所述事件分别设为A、 B、C
8、会用样本频率分布去估计总体分 布。 9、了解正态分布的意义及主要性质。
10、了解线性回归的方法和简单应用。
[学习指导] 概率与概率统计是新教材中提高要求的部 分内容,这部内容约占总分的10%,解答 题中这两年都出了以概率为主的大题,概 率统计主要以小题为主。
1、本讲重点:等可能事件、互斥事件,相 互独立事件,独立重复试验的概率。离散 型随机变量的分布列,期望与方差,抽样 方法,总体分布的估计。 2、本讲难点:排列,组合的基础是否扎实 是解决概率问题的前提,因此思维能力的 提高是这部分内的难点。概率统计中的正 态分布与线性回归也是难点之一。
概率统计课件

y
4
2
x+y=4
0
2
x 图 3 .1
由 图 3 .1得
P ( X + Y 4 ) = 1
8
0 2
4 x
(6
2
x
y )d yd x
= 1
8
0 2
(0 .5
x
2
4x
6 )d x
2. 3
6 .设 随 机 变 量 ( X , Y )的 联 合 密 度 函 数 为
p(x,y)=
k e - ( 3 x + 4 y ) , x
y
( 0 . 5
0
y y )d y
9 .设 二 维 随 机 变 量 ( X , Y ) 的 联 合 随 机 密 度 为
p ( x , y ) =
6(1-y), 0<x<y<1,
0,
其他.
(1 ) 求 P ( X 0 .5 , Y 0 .5 ) ;
( 2 )求 P ( X 0 .5 )和 P (Y 0 .5 );
13.设 二 维 随 机 变 量 ( X , Y )的 联 合 密 度 函 数 为
p(x,y)=
1/2, 0<x<1,0<y<2, 0 ,其 他 .
求X与Y中至少有一个小于0.5的概率。
解 : 两 件 事 {X<0.5}与 {Y<0.5}中 至 少 有 一 个 发 生 的 概 率 为
P({X<0.5}{Y<0.5})=1-P(X 0.5,Y 0.5)=1-
行和
0.02814 0.15295 0.31891 0.31891 0.15295 0.02814 1.00000
4
2
x+y=4
0
2
x 图 3 .1
由 图 3 .1得
P ( X + Y 4 ) = 1
8
0 2
4 x
(6
2
x
y )d yd x
= 1
8
0 2
(0 .5
x
2
4x
6 )d x
2. 3
6 .设 随 机 变 量 ( X , Y )的 联 合 密 度 函 数 为
p(x,y)=
k e - ( 3 x + 4 y ) , x
y
( 0 . 5
0
y y )d y
9 .设 二 维 随 机 变 量 ( X , Y ) 的 联 合 随 机 密 度 为
p ( x , y ) =
6(1-y), 0<x<y<1,
0,
其他.
(1 ) 求 P ( X 0 .5 , Y 0 .5 ) ;
( 2 )求 P ( X 0 .5 )和 P (Y 0 .5 );
13.设 二 维 随 机 变 量 ( X , Y )的 联 合 密 度 函 数 为
p(x,y)=
1/2, 0<x<1,0<y<2, 0 ,其 他 .
求X与Y中至少有一个小于0.5的概率。
解 : 两 件 事 {X<0.5}与 {Y<0.5}中 至 少 有 一 个 发 生 的 概 率 为
P({X<0.5}{Y<0.5})=1-P(X 0.5,Y 0.5)=1-
行和
0.02814 0.15295 0.31891 0.31891 0.15295 0.02814 1.00000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)AB A;
AB
(2)A B A;
BA
(3)ABC A;
ABC
(4)A B C A.
BCA
§1.2 随机事件的概率
历史上概率的三次定义
① 古典定义
概率的最初定义
② 统计定义
在我们所生活的世界上, 充满了随机性
从扔硬币、掷骰子和玩扑克等简单的 机会游戏,到复杂的社会现象;从婴儿的 出生,到世间万物的繁衍生息;从流星坠 落,到大自然的千变万化……,我们无时 无刻不面临着随机性.
概率统计的研究对象
二.概率统计的研究内容
随机现象是不是没有规律可言? 否! 在一定条件下对随机现象进行大量
2.事件的关系和运算
随机事件的关系和运算 类同集合的关系和运算
文氏图 ( Venn diagram )
A
1. 事件的包含
A B —— A 包含于B
事件 A 发生必 导致事件 B 发生
AB
2. 事件的相等
A B AB 且 B A
3. 事件的并(和)
AB
—— A 与B 的ຫໍສະໝຸດ 事件A B 发生 事件 A与事件B 至
…………
下面我们就来开始一门“将不定 性数量化”的课程的学习,这就是
概率论与数理统计
第一章 随机事件及其概率
§1.1 随机事件及其运算
1.随机试验与样本空间 对某事物特征进行观察, 统称试验.
若它有如下特点,则称为随机试验,用E表示
可在相同的条件下重复进行 试验结果不止一个,但能明确所有的结果
分配律 (A B) C (A C) (B C)
A (BC) (A B)(A C)
反演律
AB A B
n
n
Ai Ai
i1
i1
AB A B
n
n
Ai Ai
i1
i1
运算顺序: 逆交并差,括号优先
例1 在图书馆中随意抽取一本书,
事件 A 表示数学书, B 表示中文书, C 表示平装书.
少有一个发生
AA B
B
A1, A2 ,, An 的和事件 ——
n
Ai
i1
A1, A2 ,, An , 的和事件 ——
Ai
i1
4. 事件的交(积)
A B 或 AB
—— A 与B 的积事件
A
B
A B 发生
事件 A与事件B 同时 发生
AB
A1, A2 ,, An 的积事件 ——
n
Ai
i1
A1, A2 ,, An , 的积事件 ——
Ai
i1
5. 事件的差
AB
A
—— A 与B 的差事件
B
AB
A B 发生
事件 A 发生,但
事件 B 不发生
6. 事件的互斥(互不相容)
AB —— A 与B 互斥 A
A、 B不可能同
时发生
B
A1, A2 ,, An 两两互斥
Ai Aj ,i j,i, j 1,2,,n
A1, A2 ,, An , 两两互斥
Ai Aj ,i j,i, j 1,2,
7. 事件的对立
AB , A B B A
—— A 与B 互相对立
A
每次试验 A、 B中
有且只有一个发生
称B 为A的对立事件(或逆事件),
记为 B A
注意:“A 与B 互相对立”与 “A 与B 互斥”是不同的概念
运算律 事件 对应 集合
运算
(1)A与B发生,C不发生; ABC (2)A、B、C都发生; ABC
(3)A、B、C都不发生; A BC (4)A、B、C中恰有两个发生;AC BABCABC (5)A、B、C中至少有一个不发生A;BC (6)A、B、C中不多于一个发生。
A B C A B C A B C A B C
2.指出下面式子中事件之间的关系:
运算
吸收律 A A A
A A A
A ( AB) A A (A B) A
重余律 A A
幂等律 A A A A A A
差化积 A B AB A (AB)
交换律 A B B A AB BA 结合律 (A B) C A (B C)
( AB)C A(BC)
观测会发现某种规律性.
随机现象的统计规律性
从表面上看,随机现象的每一次观察 结果都是随机的,但多次观察某个随机现 象,便可以发现,在大量的偶然之中存在 着必然的规律. 这种随机现象所呈现出的 固有规律性,称为随机现象的统计规律性.
概率统计的研究内容
三.概率统计的应用
天气预报 经济管理 保险金融 生物医药
基本事件 —— 仅由一个样本点组成的子集 它是随机试验的直接结果,每次试验必定发 生且只可能发生一个基本事件.
复合事件 ——由若干个基本事件组成的随 机事件.
必然事件——全体样本点组成的事件,记 为, 每次试验必定发生的事件.
不可能事件——不包含任何样本点的事件, 记为 ,每次试验必定不发生的事件.
则
ABC —— 抽取的是精装中文版数学书 C B —— 精装书都是中文书
A B —— 非数学书都是中文版的,且
中文版的书都是非数学书
例2 利用事件关系和运算表达多 个事件的关系
A ,B ,C 都不发生——
ABC ABC
A ,B ,C 不都发生——
ABC A B C
习题一
1.设A、B、C表示三个事件,利A用、B、C表示下列事件
概率统计-
教材:《概率论与数理统计》 内容:1至4章 参考资料:《大学数学学习指南— —概率论与数理统计》 课件下载:
http://58.194.179.4/math/gltj/jxkj/jxkj2.html
作业要求:独立完成
一. 概率统计的研究对象
确定性现象 随机现象
A. 太阳从东方升起; B.上抛物体一定下落; C. 明天的最高温度; D. 新生婴儿的体重.
试验前不能预知出现哪种结果
样本空间—— 随机试验E 所有可能的结果 组成的集合称为样本空间 记为
样本空间的元素, 即E 的直接结果, 称为 样本点(或基本事件) 常记为 , = {}
随机事件 —— 的子集, 记为 A ,B ,… 它是满足某些条件的样本点所组成的集合.
例1 给出一组随机试验及相应的样本空间
E1 : 投一枚硬币3次,观察正面出现的次数
1 {0,1,2,3}
有限样本空间
E2 :观察总机每天9:00~10:00接到的电话次数 2 {0,1,2,3,, N }
E3 : 观察某地区每天的最高温度与最低温度
3 {(x, y) T1 x y T2}
无限样本空间
其中T1,T2分别是该地区的最低与最高温度