复变函数第三章练习题

合集下载

复变函数练习册(全套)

复变函数练习册(全套)

第一章 复数与复变函数一、选择题1.当iiz -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z ( )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数( )(A )2 (B )i 31+ (C )i -3 (D )i +3 4.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 5.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周6.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续 (D )),(),(y x v y x u +在),(00y x 处连续学号:____________ 姓名:______________ 班级:_____________二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为4.方程i z i z +-=-+221所表示的曲线是连接点 和 的线 段的垂直平分线5.=+++→)21(lim 421z z iz三、将下列复数化为三角表达式和指数表达式:(1)i (2)13i -+四、求下列各式的值: (1)5(3)i - (2)100100(1)(1)i i ++- (3)1i +五、解方程:5()1z i +=六、设复数1≠z ,且满足,1||=z ,试证21]11Re[=-z .七 、证明复平面上的直线方程可写成:0,(0a z a z c a ++=≠其中为复常数,c 为实常数)八、证明复平面上的圆周方程可写成:0,(z z a z az c a +++=其中为复常数,c 为实常数)九 、函数1w z=把下列z 平面上的曲线映成w 平面中的什么曲线? (1) yx = (2) 224x y +=十、)0(),(21)(≠-=z zzz z i z f 试证当0→z 时)(z f 的极限不存在。

复变函数期末考试分章节复习题

复变函数期末考试分章节复习题

第一章复习题1. 设z=1+2i ,则Im z 3=( ) A. -2 B. 1 C. 8 D.142. z=2-2i ,|z 2|=( ) A. 2 B.8 C. 4 D. 83. z=(1+cost)+i(2+sint),0≤t<2π所表示的曲线为( ) A.直线B.双曲线C.抛物线D.圆4. 设z=x+iy,则(1+i )z 2的实部为( ) A.x 2-y 2+2xyB.x 2-y 2-2xyC.x 2+y 2+2xyD.x 2+y 2-2xy5. arg(2-2i)=( ) A.43π-B.4π-C.4πD.43π 6.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=w C .6arg π-=wD .3arg π-=w7.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )A .等于0B .等于1C .小于1D .大于18.设11z i=-+,则z 为( ) A .21i +- B .21i -- C .21i - D .21i + 9. 设z=x+iy ,则|e 2i+2z |=( )A. e 2+2xB. e |2i+2z|C. e 2+2zD. e 2x 10. Re(e 2x+iy )=( )A. e 2xB. e yC. e 2x cosyD. e 2x siny11. 包含了单位圆盘|z|<1的区域是( ) A.Re z<-1 B.Re z<0 C.Re z<1D.Im z<012. 复数方程z=3t+it 表示的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线13 .下列集合为无界多连通区域的是( )A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.π<<π2z arg 2314.复数方程z=cost+isint 的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线15.下列集合为有界单连通区域的是( ) A.0<|z-3|<2 B.Rez>3 C.|z+a|<1D.π≤<πargz 2116.下列集合为有界闭区域的是( ) A .0< arg (z+3)≤2πB .Re (z-i)<1C .1≤Imz ≤2D . 1≤||z i -≤417. arg(3-i)=___________.18. arg (-1+3i )= .19. 若i3i1z -+=,则z =___________.20.设i z 101103+-=,则=_z ____________.21. 若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.22. 复数1-3i 的三角表达式是_________________.23. 求方程z 3+8=0的所有复根. 24. 解方程z 4=-1.25 计算复数z=327-的值.26.求z =(-1+i )6的共轭复数z 及共轭复数的模|z |.27.设复数)2)(1(--=i i iz(1)求z 的实部和虚部;(2)求z 的模;(3)指出z 是第几象限的点. 28. 设t 为实参数,求曲线z=re it +3 (0≤t <2π的直角坐标方程. 29.设iy x z +=.将方程1Re ||=+z z 表示为关于x ,y 的二元方程,并说明它是何种曲线.30.用θcos 与θsin 表示θ5cos .第二章复习题1. ln(-1)为( ) A.无定义的B.0 C .πi D.(2k+1)πi(k 为整数)2.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +3.Ln(-4+3i)的主值是( ) A .ln5+i(-π-arctg 43) B .ln5+i(π-arctg 43) C .ln5+i(-π-arctg 34)D .ln5+i(π-arctg 34)4. 设z=x+iy ,解析函数f(z)的虚部为v=y 3-3x 2y ,则f(z)的实部u 可取为( ) A.x 2-3xy 2B.3xy 2-x 3C.3x 2y-y 3D.3y 3-3x 35. 设f(z)=e x (xcosy+aysiny)+ie x (ycosy+xsiny)在Z 平面上解析,则a=( ) A. -3 B. -1 C. 1 D. 36. 设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( ) A. -3 B. 1 C. 2 D. 37. 若f(z)=u(x,y)+iv(x,y)在Z 平面上解析,u(x,y)=x 2-y 2+x ,则v(x,y)=( ) A.xy+x B.2x+2y C.2xy+y D.x+y 8. 若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=( )A. e x (ycosy-xsiny)B. e x (xcosy-xsiny)C. e x (ycosy-ysiny)D. e x (xcosy-ysiny)9. 设v(x,y)=e axsiny 是调和函数,则常数a=( )A. 0 B. 1 C.2 D.310. 设f(z)=z 3+8iz+4i ,则f ′(1-i)=( ) A. -2i B. 2i C. -2D. 211.正弦函数sinz=( )A .i e e iz iz 2-- B .2iziz ee --C .i e e iz iz 2-+D .2iziz e e -+12. 对数函数w=ln z 的解析区域为___________. 13.已知f(z)=u+iv 是解析函数,其中u =)ln(2122y x +,则=∂∂yv. 14. 若sinz=0,则z=___________. 15. 若cosz=0,则z=________. 16.方程i z 31ln π+=的解为____________. 17. tgz 的所有零点为_________________.18. 设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.19.设)()(2323y cx y i bxy ax z f +++=为解析函数,试确定a,b,c 的值. 20. 设f(z)=my 3+nx 2y+i(x 3-3xy 2)为解析函数,试确定m 、n 的值.21.函数f(z)=x2-y2-x+i(2xy-y2)在复平面上何处可导?何处解析?22. 已知调和函数v=arctg xy,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设),(),()(y x iv y x u z f +=是解析函数,其中xy x y y x u 2),(22--=,求),(y x v .24.设u=x 2-y 2+xy 是解析函数f(z)的实部,其中z=x+iy.求f ′(z)并将它表示成z 的函数形式. 25.设v=e ax siny ,求常数a 使v 成为调和函数.26.已知调和函数u=(x-y)(x 2+4xy+y 2),求f ′(z),并将它表示成z 的函数形式.27. 设u=e 2x cos 2y 是解析函数f(z)的实部,求f(z).28.已知z ≠0时,22x yu x y -=+为调和函数,求解析函数()f z u iv =+的导数f ′(z),并将它表示成z 的函数形式.29.求方程sin z +cos z =0 的全部根.第三章复习题1.设C 为正向圆周|z|=1,则⎰=C2zdz ( )A. 0 B. 1 C.πiD. 2πi2.设C 为从-i 到i 的直线段,则⎰=Cdz |z |( )A. i B. 2i C.-i D. -2i3.设C 为正向圆周|z|=1,则⎰=-Czdz 1e z sin ( )A.2πi ·sin 1B.-2πiC.0D.2πi4.⎰==-2|z |2)i z (dz ( ) A. 0 B. 1 C. 2π D. 2πi5.⎰=-=2|1z |dz z zcos ( ) A. 0 B. 1 C. 2π D. 2πi 6.⎰+=i220zdz ( ) A. i B. 2i C. 3i D. 4i7.设C 为正向圆周|z-a|=a(a>0),则积分⎰-Ca z dz22=( )A. a i 2π-B. ai π- C. a i2πD. ai π8.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( )A.0 B.πiC.2πiD.6πi9.设C 为正向圆周|z |=1,则⎰=c z d z co t ( )A. -2πi B. 2πi C.-2π D.2π10.⎰=-3|i z |z dz=( ) A. 0 B. 2π C. πi D. 2πi 11.⎰=---11212z z sinzdz |z |=( )A. 0 B. 2πisin1 C. 2πsin1 D.1sin 21i π 12.⎰32dz zcosz =( ) A.21sin9 B.21cos9 C.cos9D.sin913.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6 B .i π4 C .iπ2D .014.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2π D .i e 22π-15.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( )A .i e 3π B .e6πC .ei π2D .i e3π 16.复积分iizedz ⎰的值是( )A . 1(1)e i ---B .1e i -C .1(1)e i --D .1e i --17.复积分|1|2zz i e z i --=-⎰ dz 的值是( )A .i e B .i e - C .2πi ieD .2πi ie -18.设C为正向圆周⎰=ξ-ξξ=<=ξC 3d )z (2sin )z (f 1|z |1||时,,则当___________.19.设⎰==ζ<ζ-ζζ=L )z (f 3|:|L ),3|z (|,d zsin )z (f ,则___________. 20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 21.设C 为正向圆周|z |=1,则=-⎰dz ie cz22π. 22. 设C 为正向圆周|z|=1,则积分⎰=Cdz z1___________.23.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.24.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C3_)(____________.25.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.26.|3|1cos z z i e zdz -=⎰=______________.27. 设C 为正向圆周|z|=1,计算积分⎰+-=C 2.dz )2z )(21z (zsin I28. 计算积分⎰-=C3z dz )a z (e I ,其中C 为正向圆周|z|=1,|a|≠1.29. 计算积分⎰+-=C2dz z)i 1(z 1I ,其中C 为正向圆周|z|=2.30. 求积分⎰++-Cdz i z 22z 3I )(=的值,其中C:|z|=4为正向. 31. 求积分⎰-C4z dz z 3e I =的值,其中C:|z|=1为正向.32.设C 为正向圆周|z|=1,求I=dz zec z ⎰21.33.设C 为正向圆周|z-i |=21,求I =⎰+c z z dz )1(2.34.设C 为正向圆周|z|=1,求I=⎰C zdz ze 5.35. 求积分I=⎰+Cdz z i 的22值,其中C :|z|=4为正向. 36. 求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向.37.设C 为正向简单闭曲线,a 在C 的内部,计算I =.)(213dz a z ze izC-⎰π 38.计算积分I=2()cx y ix dz -+⎰,其中C 为从0到1+i 的直线段.39.计算积分I=221(1)(1)Cdz z z -+⎰ ,其中C 为正向圆周2220x y x +-= 第四章复习题1. 复数列i 2n n e z π=的极限为() A.-1 B.0 C.1D.不存在2. 设∑∞==0n n!n z )z (f ,则f (10)(0)为( )A.0B.!101C.1D.10!3.z-21的幂级数展开式∑∞=0n nnza 在z =-4处( )A .绝对收敛B .条件收敛C .发散D .收敛于61 4.幂级数∑∞=+0)1(1n nn z i 的收敛半径为( ) A .2 B .1 C .21 D .05. 下列级数中绝对收敛的是( )A.∑∞=+1!)43(n nn i B.nn i∑∞=+1)231( C. ∑∞=1n nni D.∑∞=+-11)1(n n n i6. 1e 1)z (f z -=在z=πi 处的泰勒级数的收敛半径为( )A. πiB. 2πiC. πD. 2π7. 处在0z )i z )(2z (1)z (f =--=泰勒展开式的收敛半径是( ) A. 0 B. 1 C. 2 D. 38. f(z)=211z+在z=1处的泰勒展开式的收敛半径为( ) A.23B. 1C.2D.3 9. f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( )A.0B.1C.2D.310. z=2i 为函数222z )4z (z e )z (f +=的( )A.可去奇点B.本性奇点C.极点D.解析点11. 以z=0为本性奇点的函数是( )A.z zsin B.)1z (z 1- C.2z z cos 1- D.z1sin12.点z=-1是f(z)=(z+1)5sin)1(1+z 的( )A.可去奇点B.二阶极点C.五阶零点D.本性奇点13. z=0为函数cos z1的( )A.本性奇点B.极点C.可去奇点D.解析点14.z=0是函数2zcos 1z-的( )A .本性奇点B .可去奇点C .一阶极点D .二阶极点15. 2)1z (z 1)z (f -=在0<|z-1|<1内的罗朗展开式是( )A.∑∞=-0n nnz )1( B.∑∞=-0n n2z )1z (1 C.∑∞=--0n nn )1z ()1(D. ∑∞=---0n 2n n)1z ()1(16. 可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B. 0<|z|<+∞ C. 0<|z-2|<2 D. 0<|z-2|<+∞17. f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( )A.∑∞=-01n nn z )( B.∑∞=-021n nz )z ( C.∑∞=-02n n )z (D.∑∞=---0121n n n)z ()(18. 设i 1a a lim n 1n n +=+∞→,则幂级数∑∞=+0n nn z 1n a 的收敛半径为___________.19. 幂级数∑∞=0n n nz 3n的收敛半径是___________.20. 幂级数∑∞=1n n nz n!n 的收敛半径是________.21.若在幂级数∑∞=0n nn z b 中,i b bn n n 43lim 1+=+∞→,则该幂级数的收敛半径为____________.22.幂级数∑∞-12n nn nz 的收敛半径是____________.23.设n z z f nn n2)1()(0∑∞=-=,则)0()10(f =___________.24. z =0是f(z)=zz )1ln(+的奇点,其类型为 . 25. f(z)=21z z -在圆环域0<|z|<1内的罗朗展开式为 . 26.设zz f -=11sin )(的幂级数展开式为∑∞=0n nnza ,求它的收敛半径,并计算系数a 1,a 2.27. 求f(z)=ln z 在点z=2的泰勒级数展开式,并求其收敛半径.28 将函数0z )2z )(1z (1)z (f =++=在展开为泰勒级数. 29.求)2)(1(1)(--=z z z f 在z =0处的泰勒展开式.30. 将函数f(z)=ln(3+z)展开为z 的泰勒级数.31.将函数f(z)=ln(z2-3z+2)在z=0处展开为泰勒级数.32. (1)求z 1在圆环域1<|z-1|<+∞内的罗朗级数展开式; (2)求2z1在圆环域1<|z-1|<+∞内的罗朗级数展开式.33. 将函数)1z (z 1)z (f -=在圆环域1<|z-1|<+∞内展开为罗朗级数.34. 将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数.35.求)2)(4(2)(---=z z z f 在圆环域3|1|1<-<z 内的罗朗级数展开式.36.将函数)1(1)(2-+=z z z z f 在圆环域0<z <1内展开为罗朗级数.第五章复习题1. 设函数22iz )1z (e )z (f +=,则Res[f(z),-i]=( )A.0 B.4ie-C.4ie D.4e 2. 设f(z)=1z z22-,则Res[f(z),1]=( ) A.0 B.1 C.πD.2π3. 若f(z)=tgz ,则Res[f(z),2π]=( ) A. -2π B. -π C. -1 D. 04.函数z z tan 在z =0点的留数为( ) A .2 B .i C .1 D .05.函数2z e e ibziaz -(a 、b 为实数,a ≠b)在z=0点的留数为( )A .)(a b i -B .a b -C .b a -D .)(b a i -6.Re [cot ,1]s z π=( ) A .1π- B .1πC .-2iD .2i7.设f(z)= +--++--+---nn z z z z )1()1()1(1)1(1)1(12,则Res[f(z),1]= . 8.利用留数计算积分⎰=+-=2|z |4zdz )4z )(1z (e I9.(1)求)4z )(1z (1)z (f 22++=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数; (3)利用以上结果计算积分⎰+∞∞-++=)4x )(1x (dx I 22.10.(1)求2z2i z 4e)z (f +=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分⎰+∞∞-+=.dx 4x x2cos I 211.(1)求f(z)=12+z z在上半平面内的孤立奇点,并指出其类型; (2)求f(z)e iz 在以上奇点的留数; (3)利用以上结果,求I=⎰+∞∞-+dx x xx 1sin 2. 12. 利用留数计算积分I=⎰C zsinzdz,其中C 为正向圆周|z|=1.13.(1)求f(z)=iz e zz21+在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分I=⎰+∞∞-+x d x 1xsinx214.求)(1)(3i z z z f -=在各个孤立奇点处的留数.15.利用留数计算积分⎰+∞∞-++=dx x x x I )9)(1(222. 16.利用留数计算积分I=22(1)zc e dz z -⎰ ,其中C 为正向圆周||z =2.17.(1)求242()1z f z z z =++在上半平面内的所有孤立奇点.(2)求)(z f 在以上各孤立奇点的留数. (3)利用以上结果计算积分I=2421x dx x x +∞-∞++⎰.第六章复习题1. 把点z=1,i,-1分别映射为点w=∞,-1,0的分式线性映射为( )A.1z 1z w +-=B.z 1)1z (i w -+=C.z 11z w -+= D.1z )1z (i w +-=2. w=e z 把带形区域0<Im z<2π映射成W 平面上的( ) A.上半复平面B.整个复平面C.割去负实轴及原点的复平面D.割去正实轴及原点的复平面3. 线性变换z1z2+=ω( )A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<14. 线性变换ω=iz zi +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0 B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<15.3z =ω把Z 平面上区域0<θ<π映射成W 平面上的区域( )A .-3π<ϕ<0B .3π-<ϕ<0 C .0<ϕ<3πD .0<ϕ<3π6. 映射z1=ω是关于___________的对称变换.7. 线性映射ω=z 是关于________的对称变换.8.分式线性映射i z i z +---=11ω把上半平面Imz>0映射成___________. 9. 设D 是上半单位圆:Im z>0,|z|<1,求下列保角映射: (1)w 1=f(z)把D 映射为第Ⅱ象限D 1,且f(1)=0; (2)w 2=g(w 1)把D 1映射为第Ⅰ象限D 2; (3)w=h(w 2)把D 2映射为上半平面D 3; (4)求把D 映射为D 3的保角映射w=F(z).10. 设D 是Z 平面上的带形区域:10<Imz<10+π,试求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Im ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的上半平面D 2:Im ω2>0; (3)ω=f 3(ω2)把D 2映射成ω平面上的单位圆域D 3:|ω|<1,且f 3(i)=0; (4)综合以上三步,试用保角映射ω=f(z)把D 映射成单位圆域D 3. 11.设D 为Z 平面的单位圆盘去掉原点及正实轴的区域. 求下列保角映射: (1)w 1=f 1(z)把D 映射成W 1平面的上半单位圆盘D 1;(2)w=f 2(w 1)把D 1映射成W 平面的第一象限;(3)w=f(z)把D 映射成W 平面的第一象限..12. 设D 是Z 平面上的带形区域:1<Rez<1+π,求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Re ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的带形区域D 2:0<Im ω2<π; (3)ω=f 3(ω2)把D 2映射成ω平面上的上半平面D 3:Im ω>0; (4)综合以上三步,求把D 映射成D 3的保角映射ω=f(z). 13.设D 为Z 平面上的扇形区域.1||,3arg 0<<<z z π求下列保角映射:(1))(11z f w =把D 映射为W 1平面的上半单位圆盘D 1; (2))(12w f w =把D 1映射为W 平面上的第一象限; (3))(z f w =把D 映射为W 平面上的第一象限.14.设Z 平面上区域D :||z <2且||z i ->1.试求以下保角映射:(1))(11z f =ω把D 映射成W1平面上的带形域D1:41<Im 1ω<21;(2))(122ωωf =把D1映射成W2平面上的带形域D2:0<Im 2ω<π; (3))(23ωωf =把D2映射成W 平面上的区域D3:Im ω>0;(4)综合以上三步,求保角映射)(z f =ω把D 映射成Im ω>0.第二篇复习题1.δ函数的傅氏变换F )]t ([δ为( )A.-2B.-1C.1D.22. 函数f(t)=t 的傅氏变换F [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω) 3.函数f(t)=π2122t e -的傅氏变换F [])(t f 为( )A . 2ω-eB . 22ω-eC .22ωeD . 2ωe4.求函数)t (f 3)t (2-δ的傅氏变换,其中⎩⎨⎧≤>=-.0t ,00t ,te )t (f t5.求函数3f(t)+2sint 的付氏变换,其中 f(t)=⎩⎨⎧>≤1||,01||,1t t6. (1)求e -t 的拉氏变换F [e -t ];(2)设F(p)=F [y(t)],其中函数y(t)二阶可导,F [y ′(t)]、F [y ″(t)]存在,且y(0)=0,y ′(0)=1,求F [y ′(t)]、F [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==-'+''-1)0(y ,0)0(y e 2y 3y 2y t7.(1)求e t 的拉氏变换L [e t ];(2)设F (p )=L [y(t)],其中函数y(t)二阶可导,L [y ′(t)]、L [y ″(t)]存在,且y(0)=0,y ′(0)=0,求L [y ′(t)]、L [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==+'-''.)(y ,)(y e y y y t000028.求函数222)4(4)(-+=p p p F 的拉氏逆变换9.(1)求sint 的拉氏变换(sint ); (2)设F (p )=[])(t y ,其中函数)(t y 可导,且1)0(-=y ,求[])(t y '.(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧-==+'1)0(sin y ty y全国2009年4月自考复变函数与积分变换试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z =1-i ,则Im(21z )=( )A .-1B .-21C .21D .12.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π3.设n 为整数,则Ln (-ie )=( )A .1-2πi B .)22(πn π-i C .1+)i π(n π22-D .1+i π(n π)22+4.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =15.积分⎰=2i iπz dz e ( )A .)1(1i +πB .1+iC .πi2 D .π26.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( ) A .i π23-B .i π3-C .i π43D .i π23 7.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i π D .2i π 8.点z =0是函数)1(sin )1()(2--=z z ze zf z 的( )A .可去奇点B .一阶极点C .二阶极点D .本性奇点9.函数)3)(2()(-+=z z zz f 在1=z 的泰勒展开式的收敛圆域为( )A .z <2B .1-z <2C .z <3D .1-z <3 10.设)1(sin )(2z z zz f -=,则Res[f (z ),0]=( )A .-1B .-21 C .21D .1 二、填空题(本大题共6小题,每小题2分,共12分) 11.复数-1-i 的指数形式为__________.12.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 13.区域0<arg z<4π在映射w =z 3下的像为__________.14.设C 为正向圆周,2=z 则⎰=-Czdz z e 12__________. 15.函数)1(1)(2z z z f -=在圆环域0<z <1内的罗朗展开式为__________.16.设)1()(1-=ze z zf ,则Res[f (z ),0]=__________.三、计算题(本大题共8小题,共52分)17.(本题6分)将曲线的参数方程z =3e it +e -it (t 为实参数)化为直角坐标方程.18.(本题6分)设C 是正向圆周⎰+-=-C zdz z z e z .23,2112计算19.(本题6分)求0)2)(1()(=-+=z z z zz f 在处的泰勒展开式,并指出收敛圆域.20.(本题6分)求)2)(1(12)(+-+=z z z z f 在圆环域1<z <2内的罗朗展开式.21.(本题7分)计算z =(1+i )2i 的值.22.(本题7分)设v (x ,y )=arctan )(),0(z f x xy>是在右半平面上以v (x ,y )为虚部的解析函数,求f (z ).23.(本题7分)设C 是正向圆周2=z ,计算.)1(dz z z e I Cz⎰-=24.(本题7分)设C 是正向圆周1=z ,计算⎰+=C dz zz I .2sin )1(2四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

《复变函数》第三章 复变函数的积分

《复变函数》第三章 复变函数的积分
上任意取一点 k ,
y
Bቤተ መጻሕፍቲ ባይዱ
C zn1
1 A
2
z1
z2
k zk zk 1
o
x
4
n
n
作和式 Sn f ( k ) (zk zk1 ) f ( k ) zk ,
k 1
k 1
这里 zk zk zk1, sk zk1zk的长度,
记 m1kaxn{sk }, 当n 无限增加且 0 时,
如果不论对C 的分法及 k 的取法如何, Sn 有唯
情况二 : 若 C 包围 点,
由上节例4可知, c (z )ndz 0.
31
四、小结与思考
通过本课学习, 重点掌握柯西-古萨基本定 理:
并注意定理成立的条件.
32
思考题
应用柯西–古萨定理应注意什么?
33
思考题答案
(1) 注意定理的条件“单连通域”.
反例: f (z) 1 在圆环域 1 z 3内;
线的限制, 必须记作 f (z)dz.
C
放映结束,按Esc退出.
24
第二节 柯西-古萨基本定理
一、问题的提出 二、基本定理 三、典型例题 四、小结与思考
一、问题的提出
观察上节例1, 被积函数 f (z) z 在复平面内处处解析,
此时积分与路线无关. 观察上节例4, 被积函数当 n 0时为 1 ,
根据本章第一节例4可知,
1 dz 2i.
z 2 z 1
由此希望将基本定理推广到多连域中.
38
二、复合闭路定理
1. 闭路变形原理 设函数 f (z) 在多连通域内解析,
C 及 C1 为 D内的任意两条简 单闭曲线(正向为逆时针方向), A A

(完整)《复变函数》练习题

(完整)《复变函数》练习题

(完整)《复变函数》练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)《复变函数》练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)《复变函数》练习题的全部内容。

福师12秋《复变函数》练习题注:1、本课程练习题所提供的答案仅供学员在学习过程中参考之用,有问题请到课程论坛提问。

一、单项选择题1.2sin i =( )A . B. C . D .答案:D2.函数在复平面上( ) A .处处不连续B.处处连续,处处不可导C 。

处处连续,仅在点z =0可导 D.处处连续,仅在点z =0解析 答案:C3.设C 是绕点的正向简单闭曲线,则 ( )A .B .C .D .0答案:C 4.,分别是正向圆周与,则( )A .B .cos2C .0D .sin2答案:D二、填空题1()e ei--1()e ei-+1()e e i --1e e-+2()f z z =00z ≠530()C z dz z z =-⎰2iπ3020z iπ502z i π1C 2C 1z =21z -==-+-⎰⎰dz z zi dz z e i c c z212sin 21221ππ2i π1. 设,则________。

考核知识点:复数代值。

2.设是解析函数.若,则______. 考核知识点:解析函数的导数.3. 设C 为正向圆周,则 。

考核知识点:柯西积分公式.4.幂级数的收敛半径为_________.考核知识点:幂级数的收敛半径。

5. = .考核知识点:复数的乘幂。

提示:6.设为的极点,则____________________.考核的知识点:函数的极点。

复变函数(3.3.4)--原函数与不定积分

复变函数(3.3.4)--原函数与不定积分

= ie1+i
= ie(cos1+ i sin1).
￲ 例 5、 试沿区域 Im(z) ￲ 0, Re(z) ￲ 0 内的圆弧 z = 1,求 i ln(z +1) dz 的值.
1 z +1

函数
ln(z +1) z +1
在所涉区域内解析,
它的一个原函数为
ln 2
(z 2
+
1)
,
￲i ln(z +1) dz
￲i 0
z cos
zdz
= [z sin
z
+ cos z]i0
= i sin i + cos i -1
=
i
e-1 2i
e
+
e-1 + 2
e
-1
=
e-1
-1.
￲ 例 3、 求 i z cos zdz 的值. 0
￲ ￲ 另解 i z cos zdz = i zd(sin z)
0
0
第三章 复变函数的积分
第三章 复变函数的积分
第二节 原函数与不定积分
例题
￲ 例 1、 求 z1 zdz 的值. z0

因为
z
是解析函数,它的原函数是
1 2
z
2
.
由牛顿-莱布尼兹公式知,
￲z1 zdz z0
=
1 2
z2
z1 z0
=
1 2
( z12
-
z02 ).
￲ 例 2、 求 pi z cos z2dz 的值. 0
￲ ￲ 解
pi 0ห้องสมุดไป่ตู้
z cos

复变函数论第三版钟玉泉PPT第三章

复变函数论第三版钟玉泉PPT第三章

k 1
k 1
o
1 A
2
z1
z2
C zn1
k zk zk 1
x
这里 zk zk zk1 , sk zk1zk的长度,
记 m1kaxn{sk }, 当n 无限增加且 0 时,
如果不论对C 的分法及 k 的取法如何, Sn 有唯
一极限, 那么称这极限值为函数f (z) 沿曲线C
n
的积分, 记为 C f (z)dz
AEBBEAA
AAF BBFA
f (z)dz f (z)dz f (z)dz f (z)dz f (z)dz f (z)dz 0
C

C1
f (z)dz
AA
AA
f (z)dz 0,
BB
BB
或 f (z)dz
f (z)dz.
C
C1
17
C
C1
复变函数
如果我们把这两条简单闭曲线C 及 C1 看 成一条复合闭路, 的正方向为:
xdx ydy i
C
C
ydx
xdy
这两个积分都 与路线C 无关
所以不论C 是怎样从原点连接到点3 4i 的
曲线,
zdz (3 4i)2 / 2.
C
例2 计算 z dz, 其中C 为 : 圆周 z 2.
解 积分路径C 的参数方程为 z 2ei (0 2π ),
z dz 2π 2 2iei d ( 因为 z 2 ) dz 2iei d
C 及 C1 为 D内的任意两条简
C
单闭曲线(正向为逆时针方向), A A
C 及 C1 为边界的区域D1
D1
全含于D.
︵ ︵D
作两段不相交的弧段 AA 和 BB,

复变函数第三章习题解答

复变函数第三章习题解答

习题三解答1、解:it i tdt i idt it dz z i i I t it :z i i =⋅==-=-=≤≤-=-⎰⎰⎰12/21201211,11,)1( 于是的直线段的参数方程为到 ie de idt e e dz z i i I ,t e z it it it it it 2/232232223,)2(223===⋅=-==⎰⎰⎰ππππππππ于是到从方程为单位圆的左半圆的参数ie e d e dz z I ,t e z itit it iiit 2/)(20,)3(2222=====---⎰⎰πππππ到从方程为单位圆的右半圆的参数2、解()()()πππππππi i i t t i dt t i t i dtt i t i dte t i zdz I ,t e z it l it =++=⎪⎭⎫ ⎝⎛⋅++=⎪⎭⎫⎝⎛++=+====⎰⎰⎰⎰00/sin 21sin 4121cos sin 2cos 1sin cos )(cos Re 20,12222222到从单位圆的参数方程为()()[]()()()()()22112112122211221121122112121Re ,Re 2121/2121)(11Re Re 10,1)2(z x z x x x z z x t t t x z z dt x t x z z dt z z t z t z zdz I t t z t z z z z l ==⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--=+--=-+-==+-=⎰⎰⎰其中到从的直线段的参数方程为到从3、证明()0)(lim|)(|lim )(02)(2)()(0==∴+∞→→⋅=⋅≤≤=-〉⎰⎰⎰∞→∞→rrrK r K r K dz z f dz z f r r rM r r M dzz f ,r z z z ,f r r 即从而可积上连续在时当ππ4、证明:)(z f 在r z z >- 内解析,从而连续由上题可知0)(lim=⎰+∞→rK r dz z f因此要证明⎰=,0)(dz z f rK 只需证明⎰>rK r r dz z f )()(0与r 无关.对任意的 r r r >21,,不妨设21r r <,则由题的条件()z f 在r z z r ≤-≤ 1上解析由复围线的Cauchy 积分定理dz z f dz z f r r K K )()(21⎰⎰=从而证明了⎰> r r dz z f rK 当)(时积分值与r 无关5、⎰=-〉〉-==01141111)(42||4dz z r ,z z z f z 知由题且内解析在6、证明:()()z g z f , 在单连通区域D 内解析,βα,是D 内两点()()()dz z g z f dz z g z f '+'∴⎰⎰βαβα)( ()()()()[]dz z g z f z g z f '+'=⎰βα()()[]()()()()()()()()dzz g z f z g z f dz z g z f z g z f dz z g z f '-='∴='=⎰⎰⎰βαβαβαβαβα//7、解:()()()()()4/2,,14/2/)arg ,0(,1120,:)(1,0,arg 0122222222222222222222=====-========≤≤==〈〈-=∞---+-+-+⎰⎰⎰⎰⎰ππθπθπθπθππθπθθπθθπθθπθθθθθπθππiii iciiii i cii k atgz iked ed e ie zdz ez C ii e d e i d e ie zdz z k e z ,e z c i k z ez z :z ,z ,于是上的值为的那支在取则的那支为上在分支就能分成两个单值解析平面割开沿负实轴()()()()()ii d ie e i de i Lnzdz I i z i Lnz c i Ln ii d i i e i zddz i Lnzdz I z i ,Lnze z c i i i c i c i ππθπθπθπθππππθθθθπθθππθθπππθππθ202/2222arg ,21202/arg arg 20,:,0ln 22222222=-=-+=+==+=+===-=-=====≤≤==⎰⎰⎰⎰⎰⎰⎰ 上在任意固定的是上在支割正实轴8、证明:Ek k k k :,k ,k i z k ,k z arctgx x dx z dz i i ,∈+=-=--====+=+±±⎰⎰,44,,4|1121221110210210ππππππππ积分值为故在一般情况下则积分值为圈转若绕则积分值为圈转若积分绕则由柯西定理得且不绕过如果积分路径不经过E k k zdz ∈+=+⎰,41210ππ即 9、()()()()()21111111111110,)1()1(::)3(2|sin cos 1max 1sin cos 22,sin ,cos :)2(221max 21,11,:1222222222222222222222222222222〈=-≤∴=≤+=+=+=≤≤+=++-=<==⋅=⋅+≤+∴=+=+≤+≤≤-===⋅=⋅+≤+∴=≤=+≤++≤≤-=⎰⎰⎰⎰⎰--dz zl c t t i t i z c t t i t i t i z c d dyiy x dy iy x y x iy x c y x c l iy x dz iy x l c t y x iy x c i y x t it z c :cccccc的长度上在证明上则在证明:的长度为而上的模在证明πθθθθθπθπθθππππ10、证明:()()()()()()()()()()()()()()020020000002lim 2lim 22f re f d f re f d f re f f re f ,r ,,,z f d f re f ir i r i i i a πθπεθεδδεθθπθπθπθθ=∴=-∴≤∴〈-〈〈〉ℑ〉∀∴-⎰⎰⎰⎰→→有时当在原点邻域内连续考虑11、解:()()()()()()()()()iz z i dzz z z z z zdzdz z dzi i idz i z dz iz i z dz i ie ie dz z e z z z z z z z z zz z 5|222)21(222024023022212121212222/2121112122222210πππππππ=-=+-=-+=+=-=⎪⎪⎭⎫⎝⎛+--=+===-========⎰⎰⎰⎰⎰⎰⎰=12、证明:()()ξξξπππξξπξξξπξξξξξd n e z i n z n z e n i n z i d e n z i d n e z i n z n c n nz n n z c n n z n c⋅=⎪⎪⎭⎫ ⎝⎛∴⎪⎪⎭⎫ ⎝⎛==⋅⋅=⋅=⋅⎰⎰⎰+!21!!0|!2!21!21!21222113、解:{}()()()()(){}()()()i i i i f z z i z i z f z zi zi d zz f z z z 13627162)81(3/17621732/1732173,3/2223+-=++=+'∴〈∈++='++==++=-++=〈∈∀⎰=ππππξξξπξξξξξ有14、证明:()()()()()()()()()[]()()()()[]()()()[]()()[]()()()()()!!2!!122!2!2!22cos !121222cos 21,!1212221!2!121220!12122!2122210!221,1220220221212424222122n n n n n d n n n n n i d i zdz z z e z n n n n n i z dzz z n n n n n n f z z n n n n n z n n nz z f f n i z dz z z Candy z z f n nn n n nz i nz n nnn nz n-⋅==∴---⋅=⋅⋅=⋅⎪⎭⎫ ⎝⎛+=---=⋅⎪⎭⎫ ⎝⎛+---=∴++---++-++==⎪⎭⎫ ⎝⎛++=⎰⎰⎰⎰⎰===ππθθπθθππππθ 则令故由二项式公式有积分公式由令15、证明:()()()()()())()()()()()(),2,111110,11122010,2011111111=+<⎪⎭⎫ ⎝⎛++≤+=-=-≤≤∴〈〈==+=+=⎰⎰⎰n n e n n f n nr r r n zz dzn dz zz f n f,r dz zz f i n f candhg nn n n rz n rz n n r z n 有取得由积分不等式积分公式由πππ16、证明:()时当时当即可只要证明积分定理由复围线111lim lim ,,0,0)()(21r r r z A z zf ,r z r Az A dz z f i,Canhy r kr r 〉=∴〈-〉〉∃〉∀∴==∞→+∞→⎰εεπ()()()()A dz z f idz zAz zf dz zdz z f i A dz z f i kr krkrkr =∴〈-≤-=-⎰⎰⎰⎰πεπππ21211212117、证明:()()()()()()()()()()()()()()()()()。

第三章 复变函数的积分-part B

第三章 复变函数的积分-part B

A
D1
F E
E
21
C1
B
B
D

f ( z )dz f ( z )dz . C C
1
3.3 基本定理的推广——复合闭路定理
如果我们把这两条简单 闭曲线 C 及 C1 看
的正方向为 : 外面的闭曲线C 按逆时针进行,

成一条复合闭路 ,
内部的闭曲线C1 按顺时针进行 ,
(即沿 的正向进行时, 的 内部总在 的左手边),
根据积分的计算方法,有

C
f ( z )dz


C
udx vdy i vdx udy
C
其中C为B内任何一条简单闭曲线。
12
3.2 柯西 -,古萨基本定理 设函数 P x, y y 在D内连续可微,在D = D C上连续,则 和Q x
Q P Pd x Q d y dxdy C D x y
但此区域已不是单连通域.
它在以 z0 为中心的圆周C 的内部不是处处解析的 ,
9
3.2 柯西-古萨基本定理
观察上节例3,
被积函数 f ( z ) z x iy,
由于不满足柯西-黎曼方程, 故而在复平面内 处处不解析.
此时积分值 zdz 与路线有关.
c
由以上讨论可知, 积分的值与路线无关, 或沿封闭曲线的积分值为零的条件, 可能与被 积函数的解析性及区域的单连通性有关.
格林公式:设D是有界区域,边界C是逐段光滑的简单闭曲线。
从格林公式与柯西-黎曼方程(路线C取正向)得

C C
udx vdy vx u y d 0
D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数 第三章自测题
适用班级 电子信息工程1701、通信工程1701 教师:鱼翔
一、填空题(每题4分,共24分)
(1)如果函数fz在单连通域B内处处解析,那么函数fz沿B内
的任何一条闭曲线C的积分,cfzdz 。
(2)解析函数在圆心处的值等于它在圆周上的 。
(3)如果fz在区域D内处处解析,C为D内的任何一条正向简单
闭曲线,它的内部完全含于D,0z为C内的任意一点,那么0fz 。
(4)解析函数的导数仍为解析函数,它的n阶导数为 。
(5)若函数32,uxyxaxy为某一解析函数的虚部,则常数a 。
(6)调和函数,xyxy共轭调和函数为 。
二、计算题(共64分)
1、分别沿yx与2yx算出积分120ixiydz的值。
2、求下列各式的值
1)122zdzizz 2)1sin21zzdzz 3)31zzedzz

4)2124zdzzz 5)32iziedz 6)0cosizzdz
3、计算221zdzzz,是包含圆周1z在内的任何正向简单闭曲线。
三、(12分)已知调和函数22uxyy,求解析函数fzuiv。

相关文档
最新文档