南昌大学历届物理竞赛试题
南昌大学20092012历数学物理方法期末试卷A卷(附所有答案)

南昌大学 2021~2021学年第二学期期末考试试卷试卷编号:6032(A)卷课程编号:Z5502B011课程名称:数学物理方法考试形式:闭卷适用班级:物理系 08各专业姓名:学号:班级:学院:专业:考试日期:题号一 二 三 四五六七八九十总分 累分人题分484012100签名得分考生考前须知: 1、本试卷共 5页,请查看试卷中是否有缺页或破损。
如有举手报告以便更换。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题 (每题4分,共48分)得分评阅人1.设i 为虚数单位,复数1 2i/(2 i)__ ; ln(1 i3) 。
2.设i 为虚数单位,且x 和y 为实数,复变函数 f(z) xiy __ (填“是〞或“不是〞)可导的,理由是3. x 2 y 2是否有可能为某解析函数 f(z)的实部?答:__ (填“有可能〞或“不可能〞),理由是4. 1 [(x 2 1)tan(sinx)(x)]dx 。
20213e z20215. 根据柯西公式,积分z dz|z2021|3 20216. 函数f(z)z 2z 阶极点;在极点处的留数z 2有________个极点,为__________3z4为________________________。
第1页共28页7.当1|z| 2,试以原点为中心将1 做级数展开为z 2 3z21(0 t 1)8. f(t)1( 1 t0)的傅里叶变换为 。
(|t|1)9. 1t 2te t 的拉普拉斯变换为 。
数学物理方程如果没给定解条件,一般会有__________个解;数学物理方程定解问题的适定性是指解的____________,____________,__________。
一根两端(左端为坐标原点而右端xl 〕固定的弦,用手在离弦左端长为l/6处把弦朝横向拨开距离h ,然后放手任其振动。
横向位移u(x,t)的初始条件为。
12.偏微分方程u xx2u xy 4u yy 5u x 7u y 3xy 9 0的类型为 (备选答案:A.双曲型B.抛物型C. 椭圆型D. 混合型);为了得到标准形,可以采用的自变量函数变换为 。
南昌大学2018-2019大学物理期终试卷

南昌大学20 18 ~2019 学年第 1 学期期终考试试卷南昌大学2018~2019学年第1学期期终考试A(3)类A 卷解答一、1. π 、- π /2 、π/3.2. )21cos(04.0π+π=t x3. ])330/(165cos[10.0π--π=x t y (SI)4. )21100cos()21cos(30.0π+ππ=t x y (SI)5. 1.2 mm 3.6 mm6. 125 rad/s 、 338 m/s 、 17m7. 6 、 第一级明(只填“明”也可以)8. 子波 、子波干涉(或答“子波相干叠加”) 9. 一 、三 10. 2I二.、A 、B 、D 、 C 、C 、B 、B 、B 、B 、A 三、1解:设物体的运动方程为 )c o s (φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5J .当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2c o s (204.0π+=t x (SI). 2分2解: x 2 = 3×10-2 sin(4t - π/6) = 3×10-2cos(4t - π/6- π/2) = 3×10-2cos(4t - 2π/3).作两振动的旋转矢量图,如图所示. 图 2分由图得:合振动的振幅和初相分别为A = (5-3)cm = 2 cm ,φ = π/3. 4分合振动方程为 x = 2×10-2cos(4t + π/3) (SI) 2分3解:(1) 由P 点的运动方向,可判定该波向左传播. 原点O 处质点,t = 0 时φc o s 2/2A A =, 0sin 0<-=φωA v所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI) 3分由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2cos[π++π=x t A y (SI) 2分 (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 1分x Oωπ/3-2π/3A1A 2A振动速度表达式是 )45500cos(500π+ππ-=t A v (SI) 2分4解:(1) ∆x =20 D λ / a=0.11 m 2分(2) 覆盖云玻璃后,零级明纹应满足(n -1)e +r 1=r 2 2分 设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ 2分 所以 (n -1)e = k λk =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处 2分5答:由题意,(n 2 / n 1)=tg i 0.设第一界面上折射角为r ,它也等于第二界面上的入射角.若要第二界面反射光是线偏振光,r 应等于起偏角,即n 3 / n 2=tg r 3分 因为i 0是起偏角,∴i 0+r =90°.tg r =ctg i 0.由此得 n 2 / n 3=n 2 / n 1 3分 不论n 2是多少,只要n 1=n 3就能满足要求. 2分。
南昌大学大三物理专业量子力学试卷及答案

南昌大学20XX —20XX 学年度第2学期期终考试卷量子力学 试题 物理 学院 应用物理、电子科技 专业2001级( 答案及评分标准 )一、 简答题(每小题5分,共40分)1. 一粒子的波函数为()()z y x r ,,ψψ=,写出粒子位于dx x x +~间的几率。
解: ⎰⎰+∞∞-+∞∞-2)(r dz dy dxψ。
2. 粒子在一维δ势阱 )0()()(>-=γδγx x V中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。
解: )0(2)0()0(2ψγψψm -='-'-+。
3. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。
解: ()dx x x x x c n n n ⎰==)()()(,)(*ψψψψ。
4. 给出如下对易关系:[][][]?,?,?,===z xy z L Lp x p z[][]?,?,2==y zx s s σσ解: [][][]y z xyz L i L Lp x i p z-===,0,,[][]x y zx i s sσσσ2,0,2-==5. 一个电子运动的旋量波函数为 ()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。
解: ()()r d r r 3222,,2,⎰-ψψ6. 何谓几率流密度?写出几率流密度),(t r j的表达式。
解:单位时间内通过与粒子前进方向垂直的单位面积的几率称为几率流密度。
()**2),(ψψψψ∇-∇-=mi t r j7. 散射问题中,高能粒子散射和低能粒子散射分别宜采用什么方法处理?解:高能粒子散射宜采用玻恩近似方法处理;低能粒子散射宜采用分波法处理。
8. 一维运动中,哈密顿量)(22x V mp H +=,求[][]?,?,==H p H x解:[][])(,,,x V dxdi H p mpi H x-==二、计算题(共60分。
南昌大学2017年近代物理期末试卷A

e 南昌大学 2017~2018 学年第二学期期末考试试卷试卷编号: 6033 ( A )卷课程编号: Z5502B014 课程名称: 近代物理 考试形式: 闭卷 适用班级: 应物、物理学 姓名: 学号: 班级: 学院:专业:考试日期:考生注意事项:1、本试卷共 4 页,请查看试卷中是否有缺页或破损。
如有立即举手报告以便更换。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、选择题:(每题 3 分,共 30 分)得分 评阅人1. 进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:( )A. 原子不一定存在核式结构B. 散射物太厚C. 卢瑟福理论是错误的D. 小角散射时一次散射理论不成立2. 由玻尔氢原子理论得出的第一玻尔半径a 0 的数值是:( )A. 5.29⨯10-10 mB. 0.529×10-10mC. 5.29×10-12mD. 529×10-12m3. 一次电离的氦离子 H +处于第一激发态(n=2)时电子的轨道半径为:( )A.0.53 ⨯ 10-10mB.1.06 ⨯ 10-10mC.2.12 ⨯ 10-10mD.0.26 ⨯ 10-10m4.按量子力学原理,原子状态用波函数来描述,不考虑电子自旋,对氢原子当nl 确定后, 对应的状态数为:()A.n 2B.2nC. lD.2 l +15. 单个 f 电子总角动量量子数的可能值为:( )A. j =3,2,1,0B. j=±3C. j= ±7/2 , ± 5/2D. j= 5/2 ,7/2题号 一 二 三 四 五 六 七八九十总分 累分 人签名题分 302010101515100得分6.如果l是单电子原子中电子的轨道角动量量子数,则偶极距跃迁选择定则为:()A. ∆l = 0B. ∆l = 0 或±1C. ∆l =±1D. ∆l = 17.氦原子由状态1s2p 3P2,1,0向1s2s3S1跃迁,可产生的谱线条数为:()A.0B.2C.3D.18.钠黄光D2线对应着32P3/2→32S1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:()A.3 条B.6 条C.4 条D.8 条9.发生β-衰变的条件是()A.M(A,Z)>M(A,Z+1)+m eB.M(A,Z)>M(A,Z+1)-m eC.M(A,Z)>M(A,Z+1)D.M(A,Z)>M(A,Z+1)+2m e10.原子发射伦琴射线特征谱的条件是:()A.原子外层电子被激发;B.原子外层电子被电离;C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强二、简答题:(每题 4 分,共 20 分)得分评阅人1.弗兰克—赫兹实验的原理和结论。
普通物理(电磁学)_南昌大学中国大学mooc课后章节答案期末考试题库2023年

普通物理(电磁学)_南昌大学中国大学mooc课后章节答案期末考试题库2023年1.一无限长均匀带电细直线,充电后电荷线密度为λ,则离带电线距离为r处的一点的场强大小为答案:2.根据真空静电场的高斯定理,可知下述各种说法中,正确的是:答案:闭合面内的电荷代数和为零时,闭合面上各点场强不一定为零。
3.两个同心薄金属球壳,半径分别为R1和R2(R2﹥R1),若分别带上电量为q1和q2的电荷,则两者的电势分别为U1和U2(选无穷远处为电势零点)。
现用导线将两球壳相连,则它们的电势为:答案:U24.一个空气平行板电容器,充电后把电源断开,这时电容器中储存的能量为W0,然后在两极板间充满相对介电常数为εr的各向同性均匀电介质,则该电容器中储存的能量为:答案:W0/εr5.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感应强度的大小之比为:答案:1.116.A、B两个孤立导体球,它们的半径之比为2:1,A球带正电荷Q,B球不带电,若用导线将两球连接一下再分离,则当A、B两球相距为R时(R远大于两球半径,以致可认为A、B是点电荷),两球间的静电力大小为:答案:7.两长直导线与一均匀电阻丝细圆环焊成如图所示的形状,细圆环半径半径为a,如果通以电流I,则在圆心O点产生的磁感应强度的大小是:答案:8.半径为a的无限长密绕螺线管,单位长度上的匝数为n,螺线管导线中通过交变电流,则t 时刻围在管外的同轴圆形回路(半径为r)上的感生电动势为:答案:9.一载有电流I 的细导线分别均匀密绕在半径在R和r的长直圆筒上形成两个螺线管(R=2r),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小BR和Br应满足:答案:BR=Br10.一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I =3A时,则环中磁场能量密度为:答案:22.611.一半径为R 的圆盘均匀分布着电荷,电荷面密度为σ。
南昌大学大学物理期末试卷

南昌大学 20 13 ~20 14 学年第 1 学期期末考试试卷解答一、1. π 、- π /2 、π/3.2.)21cos(04.0π+π=t x 3. ])330/(165cos[10.0π--π=x t y (SI) 4. )21100cos()21cos(30.0π+ππ=t x y (SI) 5. 1.2 mm 3.6 mm6. 125 rad/s 、 338 m/s 、 17m7. 6 、 第一级明(只填“明”也可以)8. 子波 、子波干涉(或答“子波相干叠加”) 9. 一 、三 10. 2I 二.、A 、B 、D 、 C 、C 、B 、B 、B 、B 、A三、1解:设物体的运动方程为 )c o s (φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5J .当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分 A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2c o s (204.0π+=t x (SI). 2分2解: x 2 = 3×10-2 sin(4t - π/6) = 3×10-2cos(4t - π/6- π/2) = 3×10-2cos(4t - 2π/3).作两振动的旋转矢量图,如图所示. 图2分由图得:合振动的振幅和初相分别为A = (5-3)cm = 2 cm ,φ = π/3. 4分合振动方程为 x = 2×10-2cos(4t + π/3) (SI) 2分3解:(1) 由P 点的运动方向,可判定该波向左传播.原点O 处质点,t = 0 时 φcos 2/2A A =, 0sin 0<-=φωA vxO ωωπ/3-2π/3A1A 2A所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI) 3分由图可判定波长λ = 200 m ,故波动表达式为 ]41)200250(2cos[π++π=x t A y (SI) 2分 (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 1分 振动速度表达式是 )45500cos(500π+ππ-=t A v (SI) 2分4解:(1) ∆x =20 D λ / a=0.11 m 2分(2) 覆盖云玻璃后,零级明纹应满足(n -1)e +r 1=r 2 2分 设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ 2分 所以 (n -1)e = k λk =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处 2分5答:由题意,(n 2 / n 1)=tg i 0.设第一界面上折射角为r ,它也等于第二界面上的入射角.若要第二界面反射光是线偏振光,r 应等于起偏角,即 n 3 / n 2=tg r 3分 因为i 0是起偏角,∴i 0+r =90°.tg r =ctg i 0.由此得 n 2 / n 3=n 2 / n 1 3分 不论n 2是多少,只要n 1=n 3就能满足要求. 2分。
(完整版)南昌大学2011-2012历年数学物理方法期末试卷ABC套卷(附所有答案)

—南昌大学考试试卷—
【适用时间:2011 ~2012 学年第二学期试卷类型:[B]卷】
2. 考查下面的无限长弦的振动问题:
其中,。
这是一个达朗贝尔公式定解问题。
(1)首先给出达朗贝尔公式及相应定解问题的一般形式;
(2)利用达朗贝尔公式求解。
3. 已知矩形区域上的函数满足方程和
齐次边界条件,按以下步骤求解:
(1)分离变数并找到本问题中包含的本征值问题;
(2)求解此本征值问题,确定本征值和本征函数;
(3)给出满足上述方程和条件的的一般解。
—南昌大学考试试卷—
【适用时间:2011 ~2012 学年第二学期试卷类型:[C]卷】
—南昌大学考试试卷—
【适用时间:2011 ~2012 学年第二学期试卷类型:[A]卷】
—南昌大学考试试卷—
【适用时间:2011 ~2012 学年第二学期试卷类型:[A]卷】答案
—南昌大学考试试卷参考答案及评分标准—【适用时间:20 11 ~20 12 学年第二学期试卷类型:[ B ]卷】。
2022大学物理竞赛题标准版(含答案)

2022大学物理竞赛题标准版(含答案)理论竞赛卷考试形式:闭卷,允许带无存储功能的计算器入场考试时间:2022年12月10日上午8:30~11:30姓名准考证号__________所在高校__________专业___________________________密_________________封_____________线_____________密封线内不要答题题得序选分择填空计1~2计3~4计5~6计7~8总分附加题分-1-123评卷人气体摩尔常量R8.31JmolK真空介电常数0=8.8510-12C2/(Nm2)普朗克常数h=6.6310-34J真空介电常数0=8.8510-12C2/(Nm2)真空磁导率0=410-7H/m里德伯常数R1.09710m氢原子质量m=1.6710-27kg斯忒恩-波尔兹曼常数σ=5.67某10-8W/m2K4R1.09710m7-17-1玻尔兹曼常量k1.3810真空中光速c=3108m/基本电荷e=1.610-19C电子质量me=9.110-31kg真空中光速c=3108m/JK-1电子伏特1eV=1.610-19J维恩位移定律常数b=2.898某10-3mK-1-123这三项是公式编的,字号偏大。
字号改小后:R8.31JmolK,k1.3810JK,-1一、选择题:(单选题,每题3分,共30分)1.质量为m的质点在外力作用下,其运动方程为rAcotiBintj,式中A、B、都是正的常量.由此可知外力在t=0到t=/(2)这段时间内所作的功为()1m2(A2B2)B.m2(A2B2)211222222C.m(AB)D.m(BA)22A.2.一座塔高24m,一质量为75kg的人从塔底走到塔顶.已知地球的质量为61024kg,从日心参考系观察,地球移动的距离为?()(不考虑地球的转动)24A.12mB.24mC.4.0mD.3.022m3.边长为l的正方形薄板,其质量为m.通过薄板中心并与板面垂直的轴的转动惯量为()A.12111mlB.ml2C.ml2D.ml23612244.子的平均寿命为2.2106.由于宇宙射线与大气的作用,在105m的高空产生了相对地面速度为0.998c(c为光速)的子,则这些子的()A.寿命将大于平均寿命十倍以上,能够到达地面B.寿命将大于平均寿命十倍以上,但仍不能到达地面C.寿命虽不大于平均寿命十倍以上,但能够到达地面D.寿命将不大于平均寿命十倍以上,不能到达地面5.乐器二胡上能振动部分的弦长为0.3m,质量线密度为4104kg/m,调音时调节弦的理论竞赛卷第1页(共15页)张力F,使弦所发出的声音为C大调,其基频为262Hz.已知波速uF,则弦中的张力为()A.1.0NB.4.2NC.7.0ND.9.9N6.一固定的超声波探测器在海水中发出频率为30000Hz的超声波,被迎面驶来的潜艇反射回来,测得反射波频率与原来的波频率之差(拍频)为241Hz.已知超声波在海水中的波速为1500m/,则潜艇的速率为()m/A.1B.2C.6D.107.如图所示,两个相同的平板电容器1和2并联,极板平面水平放置.充电后与电源断开,此时在电容器1中一带电微粒P恰好静止悬浮着。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学第二届大学物理竞赛试卷 填空(每题3分) 1. 在x轴上作直线运动的质点,已知其初速度为v0,初位置为x0,加速度a=At2+B
(A、B为常数),则t时刻质点的速度v= ;运动方程 为 。 2.质量为m的子弹,水平射入质量为M、置于光滑水平面上的沙箱,子弹在沙箱中前进距离l而停止,同时沙箱向前运动的距离为s,此后子弹与沙箱一起以共同速度v匀速运动,则子弹受到的平均阻力F=__________________。 3.如图所示,质量为M,长度为L的刚体匀质细杆,能绕首过其端点o的水平轴无摩擦地在竖直平面上摆动。今让此杆从水平静止状态自由地摆下,当细杆摆到图中所示θ角位置时,它的转动角速度ω=__________,转动角加速度β=__________;当θ=900时,转轴为细杆提供的支持力N=__________。 4.质量为M,长度为L的匀质链条,挂在光滑水平细杆上,若链条因扰动而下滑,则当链条的一端刚脱离细杆的瞬间,链条速度大小为___________________。 5.将一静止质量为Mo 的电子从静止加速到0.8c (c为真空中光速)的速度,加速器对电子作功是__________。 6.有两个半径分别为5cm和8cm的薄铜球壳同心放置,已知内球壳的电势为2700V。外球壳带电量为8×10-9C。现用导线把两球壳联接在一起,则内球壳电势为__________V。
7.半经为R的圆片均匀带电,电荷面密度为。其以角速度
绕通过圆片中心且垂直圆平面的轴旋转,旋转圆片的磁矩mP的大小为____________。 8.用长为l的细金属丝OP和绝缘摆球P构成一个圆锥摆。P作水平匀速圆周运动时金属丝与竖直线的夹角为θ,如图所示,其中o为悬挂点。设有讨论的空间范围内有水平方向的匀强磁场,
磁感应强度为B。在摆球P的运动过程中,金属丝上P点与O点间的最小电势差为__________。P点与O点的最大电势差为__________。
9.在无限长载流导线附近有一个球形闭合曲面S,当S面垂直于导线电流方向向长直导线靠近时,穿过S面的磁通量Φm将___________;面上各点的磁感应强度的大小
O L,M θ
× × × × × × × × × B
lI M N a 2a
v将__________。(填:增大、不变、变小) 10.一根长为2a的细金属杆MN与载流长直导线共面,导线中通过的电流为I,金属杆M端距导线距离为a,如图所示。金属杆MN以速度v向上运动时,杆内产生的电动势为__________, 方向为__________。
二、计算(70分) 1.(10分)将一长为L和质量为M的均匀细杆静置于光滑的水平桌面上。在杆的一端,垂直于杆身突然加一水平冲量P。(1)在杆旋转一周时间内,杆的质心移动了多远?(2)加此冲量后,杆的总动能是多少?
2.(10分)轻型飞机连同驾驶员总质量为1.0×103kg。飞机以55.0 m/s 的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数k=5.0×102N/s ,求:(1)10s后飞机的速率;(2)飞机着陆后,10s内滑行的距离。
3. (10分)一个电子的总能量为它的静止能量的5倍,问它的速率、动量、动能各为多少?
4.(10分)圆柱形电容器由半径分别为RA和RB的两同轴圆柱导体面A和B所构成,内部充满均匀电介质ε;设内、外圆柱面均匀带电,单位长度的电荷分别为+λ和-λ,求:(1)两圆柱面之间距圆柱的轴线为r处的电场强度E的大小; (2)两圆柱面间的电势差UAB;(3)设此圆柱形电容器长度为l,求其电容C。
5.(10分)半径为R的导体球带电q,球外有一内外半径分别为R1、R2的同心 导体球壳,导体壳带电Q,求:(1)空间场强分布及导体球的电势;(2)若将球 与球壳用导线连在一起,再求导体球的电势。
A B
r
BRAR6、(10分)如图,无限大平面导体薄板,自下而上均匀通有电流,已知其面电 流密度为i (即单位宽度上通有的电流强度);有一质量为m,带正电q的粒子, 以速度v沿平板法线方向从A点开始向右运动(不考虑粒子重力及库仑力),求: (1)平面导体薄板外空间的磁感应强度的大小和方向; (2)A点与板的距离为多远时可保证粒子不与板相碰; (3)需经多长时间,粒子才会回到A点。
7. (10分) 一半径为a的小圆线圈,电阻为R,开始时与一半径为b(b>>a) 的大线圈共面且同心。固定大线圈,并在其中维持恒定电流I,使小线圈绕其直 径以匀角速度ω逆时针转动,如图所示(线圈的自感可忽略)。求: (1)小线圈中的电流; (2)为了使小线圈保持匀角速度转动,需对它施加的力矩; (3)大线圈中的感应电动势。
解答: 一、填空题 1. 0331vBtAt: 002421121xtvBtAt
2. 22)(2vmlsMmM
q A
i
v
b a I 3. Lgsin3,cos23Lg,MgN2 4. Mg2 5. 2032cm 6. 3102 7. 241R
8. 0 cossinglBl 9. 不变 增大 10. 23ln0Iv MN 二、计算题: 1
(1) wmLIwPL212121
wt2 Lvts31
(2) mPIwW232122
mPmvW22122
mPWWW22
2、 (1) 设阻力dtdvaktF ,
dtdvmkt
tvvdtmktdv
00
smmktvv/30101011055523220
(2) 0,0 00xtdtdxv时 txxdtmktvdx00)2(
0
467|610030mkttvx
3、 2025cmmc
022
051mcvm
251122cv
ccv5622524 cmvmmvp00625 202024cmcmmcEK
4、 (1)qsdD
rllD2 rDE2
(2)BABARRABRRRRdrrldEUln22 (3) ABABRRlRRlUQcln2ln2
5、(1)010213110113434rrrEQsdE 0220223
rEQsdE
arrE02103)(3 (2) (3))3(622101rRU
)3(622201rRU
)3(622221021aRRUUU
6、IldB0 IxxB02
20IB
IqmvqBmvR02 IqmqBmT042
7、(1) 20bIB 20
cos2atbIsB
tbIadtdi220sin2||
(2)tRabItBaIMBPMim2202sin)2(sin (3)12121IM tbaIMcos2202121
)sin(cos4)(222422201212121212ttRbIadtdMIdtdIMdtIMddtdii南昌大学第三届大学物理竞赛试卷 2006.6 专业班级: 学号: 姓名:
得分:
一.填空题(每空5分,共90分) 1.一质点沿半径为R的圆周运动,其路径S随时间t的变化规律为212Sbtct(S),式中b,c为大于零的常数,则质点运动的切向加速度ta= ,法向加速度na= 。
2.一质点沿抛物线2xy运动,在任意时刻13xvms,则在点mx32处质点的速度V为 ;加速度a为 。 3.如图所示,电流通过均匀的导体圆环,(32)则磁感应强度B沿L路经的线积分是 。 4.有四个质量和带电量大小都相等的粒子,在O点沿相同方
向垂直于磁力线射入均匀磁场后的偏转轨迹如图所示。(磁感应强度B的方向垂直纸面向外)。其中动能最大的带负电的粒子的轨迹是 。 5.在与速率成正比的摩擦力影响下,一质点具有加速度va2.0,则需要时间t= 秒,才能使质点的
速率减少到原来速率的一半。 6.一人从10.0m深的井中提水,起始桶中装有10.0kg的水,由于水桶漏水,每升高1.0m要漏去0.20kg的水。水桶被匀速地从井中提到井口,此人所作功A= 。
7.一个粒子的静止质量为0m,静止时其寿命为,如果它相对于实验室运动的动能为KE,则在实验室中测得其寿命为 。 8.空气的击穿场强为3000千伏·米1,直经为1.0厘米的导体球在空气中带电量最大时,其电位U= 。 9.平行板电容器两极板间充满电阻率为,相对介电常数为r的电介质,则两极板间的电阻R与电容器电容C之间的关系为 。 10.一不带电的金属球壳A,其内外半径分别为1R和2R,在球心处置一正点电荷1q,球外距球心r处置一正点电荷2q(如图所示),则1q受到的静电力
为 。