212二次根式的乘除
新人教版九年级数学二次根式212二次根式的乘除

新人教版九年级数学第二十一章二次根式21.2二次根式的乘除教学设计教学时间课题21.2二次根式的乘除(第1课时)课型新授教学媒体多媒体教学目标知识技能1.会运用二次根式乘法法则进行二次根式的乘法运算.2.会利用积的算术平方根性质化简二次根式.过程方法1.经历观察、比较、概括二次根式乘法公式,通过公式的双向性得到积的算术平方根性质.2.通过例题分析和学生练习,达成目标1,2,认识到乘法法则只是进行乘法运算的第一步,之后如果需要化简,进行化简,并逐步领悟被开方数的最优分解因数或因式的方法.情感态度培养学生观察、猜想的习惯和能力,勇于探索知识之间内在联系.学习者分析本节首先介绍二次根式的乘法运算。
教科书从具体例子出发,有特殊到一般的归纳给出二次根式的乘法法则,探究中的两个问题是两个不同层次的探究活动。
第一步是让学生通过计算发现规律,第二步是让学生对发现的规律进行验证,因此第一步中的被开方数都是完全平方数,这样有利于学生发现规律,第二步中的被开方数不是完全平方数,要求用计算器检验,已验证规律是否正确。
二次根式的乘法法则是利用从特殊到一般的方法归纳给出的,考虑到学生的年龄特征和知识水平,对法则的合理性没有给出一般的说明。
教学重点双向运用abba=⋅(a≥0,b≥0)进行二次根式乘法运算.教学难点被开方数的最优分解因数或因式的方法.教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语设计:上节课学习了二次根式的定义和三个性质,这节课开始学习二次根式的运算,先来学习乘法运算。
二、探究新知(一)二次根式乘法法则活动1、1.填空,完成课本探究1 点题,板书课题.学生计算,观察对比,找规律结合探究内容师生总结教师组织学生小组交流,进行讨论.让学生经历从特殊到一般的认知过程,培养数感.使学生理解二次根式乘法的前提是二次根式有意义.乘法法则推广使学2.用1中所发现的规律比较大小36×4436⨯;2×36活动2、给出二次根式的乘法法则 活动3、思考下列问题:① 公式中为什么要加a ≥0, b ≥0?② 两个二次根式相乘其实就是不变,相乘 ③ c b a ⋅⋅(a ≥0, b ≥0,c ≥0)=练习:课本例1,在(1)(2)之后补充 (3)a a 4⋅ 归纳:运算的第一步是应用二次根式乘法法则,最终结果尽量简化.(二)积的算术平方根性质活动4.将二次根式乘法公式逆用得到积的算术平方根性质 完成课本例2,在(1)(2)之间补充48归纳:化简二次根式实质就是先将被开方数因数分解或因式分解,然后再将能开的尽方的因数或因式开方后移到根号外. 例3. 计算:(1)714⨯ (2)10253⨯;(3)xy x 313⋅分析:(1)第一步被开方数相乘,不必急于得出结果,而是先观察因式或因数的特点,再确定是否需要利用乘法交换律和结合律以及乘方知识将被开方数的积变形为最大平方数或式与剩余部分的积,最后将最大平方数或式开方后移到根号外.(2)运用乘法交换律和结合律将不含根号的数或式与含根号的数或式分别相乘,再把这两个积相乘.,之后同(1). 三、课堂训练 完成课本练习.补充:1.1112-=-⋅+x x x 成立,求x 的取值范围.2.化简:()03≤-x y x四、小结归纳1.二次根式乘法公式的双向运用;2.进行二次根式乘法运算的一般步骤,观察式子特点灵活选取最优解法. 五、作业设计必做:P12:1、3(1)(2)、4 补充作业: 1.计算:学生板演 利用它就可以将二次根式化简教师归纳总结,学生边听边作笔记.找学生说明解题过程,引导学生先观察、分析,解题后养成说明理由的反思习惯.指导学生交流,教师总结学生独立练习,巩固新知组织学生交流,讨论,达成共识. 师生共同归纳生初步掌握如何计算二次根式乘法.使学生学会化简二次根式双向使用公式,熟练进行计算形成运用技巧,便于解题速度与正确率的 深化理解公式及运用,提高解题能力.纳入知识系统(1)57⨯; (2)2731⨯; (3)155⨯; (4)8423⨯. 2.化简:(1)3227y x ; (2)ab a1832⋅. 3.等边三角形的边长是3,求这个等边三角形的面积 教 学 反 思。
《212二次根式的乘除》课件

$sqrt{frac{a}{b}} = frac{sqrt{a}}{sqrt{b}}$ ($a geq 0, b > 0$)
二次根式的化简原则
02
01
03
化简为最简二次根式,即被开方数中不含能开得尽方的 因数或因式。 化简时,注意运用二次根式的性质进行变形。
化简后,结果应化为最简形式,即分母中不含根号。
除法运算技巧与实例分析
技巧一
在除法运算中,要注意观察被除数和除数的形式, 尽量将其化为最简形式。
技巧三
在运算过程中,要注意保持数学表达式的简洁性 和准确性。
技巧二
当被除数和除数不是同类二次根式时,需要寻找 它们之间的“通分”形式,即化为同类二次根式。
实例分析
$frac{sqrt{18} + sqrt{8}}{sqrt{2}} = frac{3sqrt{2} + 2sqrt{2}}{sqrt{2}} = 5$。在这个例子中,我们 首先将分子中的每一项都化为最简形式,然后寻 找它们之间的通分形式,最后进行除法运算。
减少运算次数
通过合并计算步骤、减少 不必要的运算等方式,降 低误差累积的可能性。
注意事项和常见问题解答
01
02
03
04
避免大数吃小数现象
在运算过程中,要注意保持数 值的稳定性,避免大数吃掉小 数现象的发生。
注意运算顺序
遵循数学运算的优先级和结合 性规则,确保计算的正确性。
处理溢出和下溢问题
当计算结果超出计算机所能表 示的范围时,需要采取相应措 施(如使用更大范围的数据类 型、进行数值缩放等)来处理 溢出和下溢问题。
除法法则
$sqrt{a} div sqrt{b} = sqrt{frac{a}{b}}$($a geq 0, b > 0$)
212二次根式的乘除

v'b\b
例1.计算:
(1)塑;(2)启虫丄.
雷3V2\'18
解:(1)率
=J24=*'8=砧4汉2=2v'2;
四、谈谈你的收获
1•商的算术平方根的性质式的化 简.
五、作业:
必做题:
第12页习题21.2
教学设计
二次备课
备课人
罗田
课型
新授课
时间
9.6
课题
21.2二次根式的乘除(第2课时)
教 学 目 标
1•会进行简单的二次根式的除法运算.
2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.
3.引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题.
教 学 重 难 占 八、、
重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二
第2、—、6题
选做题:第7、8题
教 学 反 思
注意了二次根式乘除法的计算公式的逆用。总结了乘法公式的逆用就是用 来使“被开方数中不含能开的尽方的因数或因式”,除法公式的逆用就是 用来使“被开方数不含分母”,从而保证了结果是最简二次根式。注重方 法的传授。
次根式的除法运算.
难点:二次根式的除法与商的算术平方根的关系及应用.
一、复习提问
1.请同学们回忆ja'Jb=jab(a>0,b>0)是如何得 到的?
2.两个基本性质?
二、新知探索
学生观察下面的例子,并计算:
矗馬€
V164
=
底5
由学生总结上面两个式的关系得:
陋V16
W"V25
类似地,请每个同学再举一个例子,然后由这些特殊 的例子,得出:
二次根式的乘除运算

二次根式的乘除运算二次根式是指具有形式$\sqrt{a} $的数。
其中,$a$为一个非负实数。
二次根式的乘除运算可以通过简化根式的形式来实现。
在本文中,我们将重点讨论二次根式的乘法和除法运算。
一、二次根式的乘法运算二次根式的乘法运算可以使用分配律来进行简化。
具体而言,当我们要计算两个二次根式相乘时,可以按照以下步骤进行操作:Step 1:将两个二次根式的根号内的数相乘;Step 2:将两个二次根式的根号外的系数相乘;Step 3:将上述两个结果合并在一起,得到最终的乘积。
举个例子,让我们计算$\sqrt{2} \times \sqrt{3}$。
Step 1:$\sqrt{2} \times \sqrt{3} = \sqrt{2 \times 3} = \sqrt{6}$;Step 2:根号外的系数为1,可以省略;Step 3:最终结果为$\sqrt{6}$。
由此可见,$\sqrt{2} \times \sqrt{3} = \sqrt{6}$。
在进行乘法运算时,我们通过简化根号内的数来得到结果。
二、二次根式的除法运算二次根式的除法运算通常需要利用有理化的方法,即通过乘以适当的有理化因子,将除数的分母中的根号消去,从而将除法转化为乘法。
具体而言,在计算两个二次根式相除时,可以按照以下步骤进行操作:Step 1:将除数的分母有理化;Step 2:将除法转化为乘法,即将除号改为乘号;Step 3:按照乘法运算的方法进行简化。
让我们通过一个例子来说明如何计算$\frac{\sqrt{5}}{\sqrt{2}}$。
Step 1:有理化除数的分母。
我们将分母$\sqrt{2}$有理化为$\sqrt{2} \times \sqrt{2}$,即$2$。
Step 2:将除号改为乘号,得到$\frac{\sqrt{5}}{\sqrt{2}} = \sqrt{5}\times \frac{1}{\sqrt{2}}$。
Step 3:进行乘法运算并简化。
全面剖析二次根式的乘除及化简

全面剖析二次根式的乘除及化简1.二次根式的乘法法则(1)二次根式的乘法法则(性质3): a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立. ②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根.③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4×3.6;(2)545×3223.分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法.解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230.2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a≥0,b≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a,b是限制公式右边的,对公式的左边,只要ab≥0即可.②公式中的a,b可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab=a·b(a≥0,b≥0)可以推广为abc=a·b·c(a≥0,b≥0,c≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简:(1)300;(2)21×63;(3)(-50)×(-8);(4)96a3b6(a>0,b>0).分析:根据积的算术平方根的性质:ab=a·b(a≥0,b≥0)进行化简.解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a3b6=42·6·a2·a·(b3)2=4ab36a.3.二次根式的除法法则对于两个二次根式a,b,如果a≥0,b>0,那么ab=ab.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a≥0,b>0,则有a b =ab.②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a≥0,b>0与二次根式乘法的条件a≥0,b≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =mnab (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用 通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =ab,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用: (1)数学表达式:如果a ≥0,b >0,则有a b =ab;(2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握) 【例4】把下列各式中根号外的因数(式)移到根号内. (1)535; (2)-2a 12a ;(3)-a-1a ; (4)xyx (x <0,y <0).分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15.(2)∵12a >0,∴a >0. ∴-2a 12a =-(2a )2·12a =-(2a )2·12a =-2a .(3)∵-1a >0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a )=-a .(4)∵x <0,y <0, ∴x y x=-(-x )2y x=-(-x )2·y x =-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式. ①被开方数的因数是整数,因式是整式; ②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式; ②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +bb 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎨⎧ a +b =2,3a +b =b ,解得⎩⎨⎧a =0,b =2.所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算 (1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用. (3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件; ②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上; ④误认为形如a 2+b 2的式子是能开得尽方的二次根式. 【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a ).分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除.解:(1)9145÷(3235)×12223=(9÷32×12)145÷35×83 =(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12aba 2b ·a b·a =-12ab a 4=-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式.a与a;a+b与a-b;a+b与a-b;a b+c d与a b-c d.③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab<0时,化简ab2,得__________.(2)把代数式x-1x根号外的因式移到根号内,化简的结果为__________.(3)把-x3(x-1)2化成最简二次根式是__________.(4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是().A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙的解法都正确D.甲、乙的解法都不正确解析:(1)在ab2中,因为ab2≥0,所以ab·b≥0.因为ab<0,b≠0,所以b<0,a>0.原式=b2·a=-b a.(2)因为-1x≥0,又由分式的定义x≠0,得x<0.所以原式=-(-x)-1x=-(-x)2(-1x)=--x.(3)化简时,需知道x,x-1的符号,而它们的符号可由题目的隐含条件推出.∵(x-1)2>0(这里不能等于0),∴-x3≥0,即x≤0,1-x>0.故原式=(-x)2·(-x)(1-x)2=-x1-x-x.(4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a(2)--x(3)-x1-x-x(4)C8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用. 如:借助于计算器可以求得 42+32=__________, 442+332=__________, 4442+3332=__________, 4 4442+3 3332=__________, ……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55, 4442+3332=308 025=555, 4 4442+3 3332 =30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.分析:式子a b =ab ,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎨⎧ 9-x ≥0,x -6>0,即⎩⎨⎧x ≤9,x >6.∴6<x ≤9.∵x 为偶数,∴x =8. ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6. 【例8-2】观察下列各式: 223=2+23,338=3+38.验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23;338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38.(1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用.解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415.(2)猜想:nnn2-1=n+nn2-1(n≥2,n为正整数).证明:因为nnn2-1=n3n2-1=n3-n+nn2-1=n(n2-1)+nn2-1=n+nn2-1,所以nnn2-1=n+nn2-1.11 / 11。
21.2.1二次根式的乘除

目录
退出
1.化简二次根式 (-5)2 × 3得(
)
A.-5 3
B.5 3
C.± 3 5
D.30
解析: (-5)2 × 3 = 52 × 3=5 3,故选 B. 答案:B
目录
退出
2.下列各式中,与 12的积为有理数的是( A. 2 答案:B 3.下列计算正确的是( A.3 2×4 2=12 2 B. (-9) × (-25) = C.-3
1 =-2 ������������ 1 ; ������������
������·������·
1 =-2; ������������
(6) ������ + 2������· 2������ + 4������ =
2(������ + 2������)2 = 2(x+2y).
目录
退出
7.一个包装盒是底面积为 24cm2,且长、宽、高的比为 4∶2∶1 的长方体, 请回答下列问题: (1)这个长方体的长、宽、高分别是多少? (2)该长方体的体积是多少? 分析:(1)根据比值设出长方体的长、宽、高分别为 4x cm,2x cm,x cm,再根据 底面积为 24cm2 列出方程,求出 x,从而求出长、宽、高;(2)利用长方体的体 积公式求出体积. 解:(1)设这个长方体的长、宽、高分别为 4x cm,2x cm,x cm,则 4x·2x=24, 解之得 x= 3, ∴4x=4 3,2x=2 3,即长方体的长为 4 3cm,宽为 2 3cm,高为 3cm. (2)该长方体的体积 V=4 3×2 3 × 3=24 3(cm3).
目录
退出
目录
退出
解:(1) 3 × 12 = 3 × 12 = 36=6; (2) ������ 2 y·
21.2二次根式的乘除法3

b
b
b
b
把分母中的根号化去,使分母变成有理数,这
个过程叫做分母有理化。
1.被开方数不含分母
2.被开方数不含开的尽方的因数 或因式
4. 8 x 8 x 成立,则 X 的 x5 x5
取值范围是____________
5.完成引言的问题
思考题:
1、等式
m-3 = m-5
mm--53成立的条件是____________ 。
2、已知实数a、b满足 4a-b+11+ 1 b-4a-3=0, 3
求2a a •( b ÷ 1)的值。 b ab
1、化简
5a
(1)
10a
2b
(2)
3a b3
(3)
x 6 3
22
(4)
2 1
x 2
2、比较下列各组数的大小:
(1)3 5和2 6
(2) 1 1和 1 1 33 27
(3) x2 1和 x2
2002
32
2003
32 .
2.已知a b 3 2,b c 3 2, 求a2 b2 c2 ab bc ac的值. 3.已知a2 b2 4a 2b 5 0,
求 a b 的值. 2 b ab
a 0,b 0
两个二次根式相除,等于把被开方数
相除,作为商的被开方数
练习一:
(1) 2 7 9
(2)
81 25x2
x
0
(3)
16b2c a2
a
0,
b
0
0.09 ×169 (4)
0.64 ×196
a a a 0,b 0
b
b
商的算术平方根等于被除式的算术平方根 除以除式的算术平方根。
二次根式的乘除课件

乘法运算规则
01
两个二次根式相乘,其结果是被 开方数相乘,根号不变。
02
例如:$\sqrt{3} \times \sqrt{4} = \sqrt{3 \times 4} = \sqrt{12}$
实例解析
计算实例
$\sqrt{5} \times \sqrt{10} = \sqrt{5 \times 10} = \sqrt{50}$
在进行乘法运算时,需要将二次根式 进行相乘,并化简为最简二次根式。 具体来说,如果两个二次根式的被开 方数相同,则它们可以进行相乘;如 果两个二次根式的被开方数不同,则 需要先进行换元,将它们都转换为被 开方数相同的二次根式,再进行相乘 。
除法运算规则
在进行除法运算时,需要将被除式进 行分母有理化,并化简为最简二次根 式。具体来说,如果被除式的分母是 一个完全平方数,则可以将被除式转 换为有理分式;如果被除式的分母不 是一个完全平方数,则需要先进行换 元,将被除式转换为分母为完全平方 数的有理分式,再进行分母有理化。
在几何图形中的应用
计算面积和周长
在几何图形中,二次根式可以用 来计算图形的面积和周长。例如 ,在矩形、三角形等图形中,可 以通过二次根式计算其面积和周
长。
求解最值问题
在几何图形中,可以利用二次根 式来求解一些最值问题,如最大
值、最小值等。
判断形状
通过比较不同图形的面积或周长 ,可以利用二次根式来判断图形
将除法转化为乘法
将除法问题转化为乘法问题,利用乘法的性质进行计算。
分子分母同时平方
将除数和被除数分别平方,然后进行约分,得到最终结果。
实例解析
实例1
实例3
$\frac{4}{\sqrt{3}}$ 的计算过程及结 果解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算;
2.会进行简单的二次根式的乘法运算.
数学思考
让学生进一步了解数学知识之间是相互联系的.
解决问题
使学生能联系几何课中学习的勾股定理解决实际问题.
情感态度
培养学生努力探索事物之间内在联系的学习习惯.
(2)
活动三比一比谁最强
1.化简:
(1) ;
(2) ;
(3) .
2.化简:
(1) ;
(2) ;
(3) ;
(4) .
3.一个矩形的长和宽分别是 cm和 ,求这个矩形的面积.
活动四总结收获
1. ( ≥0,b≥0)
的正反两方向在计算和化简中的应用;
2.注意,运算的结果,应该尽量化到最简形式.
注意公式的逆用,经常会帮助我们解决很多问题.
( ≥0,b≥0)
例1 计算:
(1) × ,
(2) × ;
解:(1) × = ;
(2) ×
= = =5.
练习1.计算:
(1) × ;
(2) × .
解:(1) × = ;
(2) × = =6.
请学生自己计算出结果,并力争独立发现规律.
与学生一起应用 ( ≥0,b≥0)计算二次根式乘法.
学生自我检验二次根式乘法的掌握情况.
使学生了解到探索规律一般都是从特殊到一般
使学生初步掌握如何计算二次根式乘法.
注意,运算的结果,应该尽量化简.
问题与情境
师生行为
设计意图
活动二举一反三
把 反过来,就
得到 利用它
就可以将二次根式化简.
今后题中若不说明 中的 ≥0.
例2 化简:
(1) ;
(2) ( ≥0,b≥0).
解:
(1) =
=6×9=54;
再给上题出现错误的学生一次改正的机会,使他们对自己充满信心,坚信自己一定能学好.
充分调动学生的学习积极性和爱护集体的心理,促使人人发言,人人有收获.
问题与情境
师生行为
设计意图
作业:
1.计算:
(1) ;
(2) ;
(3) ;
(4) .
2.化简:
(1) ;
(2) .
3.等边三角形的边长是3,
求这个等边三角形的面积.
与学生一起写全步骤.
学生独自做,然后小组作答案,并使他们记录下自己的错误之处,以便下边交流.
学生自己写出过程和答案,在集体交流.
请学生小组交流本节课的收获和体会,并记录在笔记本上,再由小组代表分别说出本组的收获,比一比哪一组说得好.
使学生进一步记住化简是将能够开方的部分从根号中开出来.
使学生亲身经历二次根式的化简过程,找出自己还不太理解的知识点.
重点
会利用积的算术平方根的性质化简二次根式,会进行简单的二次根式的乘法运算.
难点
二次根式的乘法与积的算术平方根的关系及应用.
课题: 21.2二次根式的乘除
引例 练习:化简1,2
例题 总结
问题与情境
师生行为
设计意图
活动一探索发现
观察下面的例子:
于是可得到:
又如:
类似地可以得到:
.
由上面的特殊例子引导学生得出