二次根式乘除练习题
二次根式乘除法练习题

12.6二次根式的乘除法知识回忆::1、〔1〕94⨯= = ;94⨯= = ; 〔2〕169⨯= = ;169⨯= = ;〔3〕ba ⋅〔a ≥0,b ≥0〕.2、〔1〕=949=_________;〔2〕=814=_________;〔3〕=ba 〔a ≥0,b >0〕.目标解读::1.明白得并把握二次根式乘法和除法法那么,并会进展简单的二次根式的乘除法运算.2.明白得最简二次根式的意义及条件,把所给的二次根式化为最简二次根式.3.明白得分母有理化的意义,并会进展分母有理化.根底训练:一、选择题1. 以下二次根式中是最简二次根式的是〔 〕2. 化简时,甲的解法是:==,乙的解法是:== 〕A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确 C.甲、乙的解法都正确D.甲、乙的解法都不正确3.a b ==的值为〔 〕 A.5B.6C.3D.44.=〕 A.1x <且0x ≠ B.0x >且1x ≠ C.01x <≤D.01x <<5.=x y,知足的条件为〔〕A.xy⎧⎨<⎩≥B.xy⎧⎨>⎩≤C.xy⎧⎨<⎩≤D.xy⎧⎨>⎩≥6.;结果为〔〕A.B.C.D.7. 给出以下四道算式:〔1〕4=-〔2〕114=〔3〕=〔4〕)a b=>其中正确的算式是〔〕A.〔1〕〔3〕B.〔2〕〔4〕C.〔1〕〔4〕D.〔2〕〔3〕8.〕A.-B.C.±D.309. 以下各组二次根式中,同类二次根式是〔〕,B.D.,10. 以下各式中不成立的是〔〕2x=32==54199=-=-D.4=11. 以下各式中化简正确的选项是〔〕ab==2132x y x⎫=⎪⎭b=12. 给出四个算式:〔1〕=2〕55x y =3〕36x y y x= 〔4〕=-其中正确的算式有〔 〕A.3个 B.2个 C.1个D.0个13. 以下计算正确的选项是〔 〕A.=B.5xy y =115335÷= 149=- 14. 以下根式中化简正确的选项是〔 〕6aa a = = =a b =+ 15.6a ab 等于〔 〕A.B.212a bC.aD.2二、填空题16. 直接填写计算结果:〔1=_________; 〔2〕=___________;〔3=_________; 〔4=__________.17. 计算:=_______;_________.18. 当00x y >>,=_________.19. 化简:=__________.20. 把根号外的因式移到根号内:(a -=__________.21. 与那么a =______,b =______.22. 直接填写化简结果:〔1〕152105⨯-=________;〔2〕22221251015+⨯-=________.23.00)x y ≥,≥= ;00)a b ≥,≥= .24.=_________;=________. 25._______.三、计算:26. 〔1〕⎛⎝; 〔2〕;〔3〕.246246-⨯+.27.〔1〕18322423⨯; 〔2〕⎪⎪⎭⎫⎝⎛-⨯y x 219491231. 28.〔1⎛ ⎝; 〔229. 〔1; 〔2; 〔3〔4〕.30. 22--×.能力拓展:31. 假设最简二次根式a a b ,的值.32. 5a b +=,6ab =的值.。
二次根式的乘除练习题(含答案)

第十六章 二次根式16.2 二次根式的乘除1.下列二次根式中,最简二次根式是 A 23aB 13C 153D 1432.如果mn >0,n <0,下列等式中成立的有。 mn m n =1n m m n =m m n n=1m m n mn =-.A .均不成立B .1个C .2个D .3个3.下列各组二次根式化成最简二次根式后,被开方数完全相同的是 A ab 2abB mn 11m n+ C 22m n +22m n - D 3289a b 3489a b 4.下列等式不成立的是 A .2×36B 8÷2=4C 1333D 8×2=453x x-3x x -,则x 的取值范围是A .x <3B .x ≤3C .0≤x <3D .x ≥06结果为A .B .C .D .7=x 的取值范围是__________.8.计算:=__________.9=__________.10.下列二次根式:. 其中是最简二次根式的是__________.(只填序号)11.计算:-=__________.12.200020012)2)+⋅-=__________. 13.计算:(1;(2)- 14.计算:(123)4).15.计算(1)1223452533÷⨯;(2)21123(15)3825⨯-÷; (3)282(0)aa b ab a b÷⨯>;(4)27506⨯÷.16.当x <03x y -等于A .xyB .xC .-xy -D .-xy 179520的结果是 A .32B 32C 532D .5218.计算8(223)÷-⨯的结果是A .26B .33C .32D .6219.下列运算正确的是A 222253535315⨯==⨯=B 22224343431-=-=-=C.2510 5=D.(4)(16)416(2)(4)8-⨯-=-+-=-⨯-=20.若22m n+-和3223m n-+都是最简二次根式,则m=__________,n=__________.21.一个圆锥的底面积是26cm2,高是43cm,那么这个圆锥的体积是__________.22.计算:263⨯+(3-2)2-2(2-6).23.方老师想设计一个长方形纸片,已知长方形的长是140πcm,宽是35πcm,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.24.(2018·甘肃兰州)下列二次根式中,是最简二次根式的是A.18B.13C.27D.1225.(2018·湖南益阳)123=⨯__________.26.(2018·江苏镇江)计算:182⨯=__________.1.【答案】D【解析】A a |,可化简;B ==C ==,可化简;因此只有D : =,不能开方,符合最简二次根式的条件.故选D .2.【答案】C【解析】根据题意,可知mn >0,n <0,所以可得m <0,根据二次根式的乘法的性质,可知m ≥0,n ≥0,=1,故②正确;根据二次根式除法的性质,可知m ≥0,n >0=-m ,故④正确.故选C . 3.【答案】D【解析】选项A 的被开方数不相同;选项B 的被开方数不相同;选项C ,不能够化简,被开方数不相同;选项D ,=23,23ab D .4.【答案】B【解析】选项A 、C 、D 正确;选项B 2=,选项B 错误,故选B . 5.【答案】C【解析】根据题意得:030x x ≥⎧⎨->⎩,解得:03x ≤<.故选C .6.【答案】B【解析】原式==,故选B .9.【答案】7120.091960.091960.31470.361440.361440.61212⨯==⨯=⨯.故答案为:712.10.【答案】①⑥【解析】最简二次根式是满足下列条件的二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽方的因式或因数.由此可得①⑥是二次根式,故答案为:①⑥. 11.【答案】-5【解析】原式48332731639495=÷-÷==-=-.故答案为:5-.123+2【解析】原式200020002000(32)(32)(32)[(332)]=-++⋅=⋅2000(1)32)=-⋅+⋅32)+32=32+.13.【解析】(1)25144⨯25144=512=⨯ 60=.(2)13xyz xy⋅- 13xyz xy=-⋅=-14.【解析】(1==(2==(3)====-.(4)====15.【解析】(1)原式233=⨯23=45==(2)(13()8=⨯-⨯354=-⨯ 154=-.(3)原式===(4)原式15==. 16.【答案】C【解析】∵x <0=|x -C . 17.【答案】A【解析】原式32,故选A . 18.【答案】BB . 19.【答案】A5315==⨯=,故正确;,故不正确;248==⨯=,故不正确.故选A . 20.【答案】1、2【解析】由题意,知213221m n m n +-=⎧⎨-+=⎩,解得12m n =⎧⎨=⎩,因此m 的值为1,n 的值为2.故答案为:1,2.21【解析】根据圆锥的体积公式可得,这个圆锥的体积是13⨯==故答案为24.【答案】B【解析】A1832=B13是最简二次根式,正确;C2733=不是最简二次根式,错误;D1223=B.25.【答案】6【解析】原式3×3=6.故答案为:6.26.【答案】218 2182⨯,故答案为:2.。
二次根式以及二次根式的乘除练习题

二次根式以及二次根式的乘除练习题知识点一:二次根式的概念题型一:二次根式的判定11,2)? 5,3)? x2?2,4)4,5)(?) 2,6)1? a、 7)a2?2a?131.下列方程式1)5,其中是二次根式的是_________(填序号).:2.在下列表达式中,必须是二次根的表达式是()a,AB?10c、a?1D,223,在a,AB,x中?1、1? x、 3是二次根的个数a2?1问题类型2:二次根式是有意义的x?31、使代数式x?4有意义的x的取值范围是()a、x>3b、x≥3c、x>4d、X≥ 3和X≠42、使代数式?x?2x?12有意义的x的取值范围是_________。
M如果1MN是有意义的,那么在直角坐标系中中点P(m,n)的位置是()3、如果代数式a、第一象限B、第二象限C、第三象限D、第四象限题型三:二次根式定义的运用1.若y=x?5+5?x+2021,则x+y=2.(x?y)x?1.1.X2。
如果,X-y的值为()a.-1b。
1C。
2D。
3.3、若x、y都是实数,且y=2x?3?3?2x?4,求xy的值知识点2:二次根式问题的性质类型1:二次根式的双重非负性a?2?b?3??c?4??0,a?b?c?1.若则_________。
Y、 X是已知的,X是22?1.3.Y2.0,然后是x?Y的值是()2a.3b.c3c.1d.c120223.如果a?b?1?a?b?与a?2b?4互为相反数,则_____________。
2(a)?a(a?0)的运用)题型二:二次根式的性质(公式1.简化:a?1?(a?3)2的结果为()a、4―2ab、0c、2a―4d、42.实数分解:(1)x2?3=_________;(2)m4?4m?42=_________42x?9?__________, 十、22x?2?__________ (4) 2x2-3=______3)a(a0)a2aa(a0)的应用)题型三:二次根式的性质(公式一21.已知x?2,则化简x?4x?4的结果是()a、x?2b、x?2c、?x?2d、2?x22.如果已知a<0,则│ a-2a│ 可以简化为()A.-ab.ac.-3ad。
九年级数学二次根式的乘除练习题及参考答案

九年级数学二次根式的乘除练习题及参考答案姓名_____________班级____________学号____________分数_____________一、选择题1 .的结果是( )A 、10 B、 C 、54 D 、202 .下列二次根式中,属于最简二次根式的是 ( ) A.21 B.4 C.8 D.5 3 .下列运算中,结果正确的是(A) 0(0= (B) 133-=-= (D 6)3(2-=- 4 .在下列二次根式中,( )5 .下列结论正确的是 (A)6)6(2-=--(B) 9)3(2=- (C)16)16(2±=-(D)251625162=⎪⎪⎭⎫ ⎝⎛-- 6 .若b<0,化简3ab -的正确结果是( ) (A)ab (B)b ab - (C)-b ab (D)-b ab - 7 .如果mn>0, n<0,下列等式中成立的有( )。 ①n m mn ⋅= ②1=⋅n m m n ③n m n m = ④m mnn m -=÷1 A.均不成立B.1个C.2个D.3个 二、填空题8 .49的平方根是____________,()32-=π____________。9 .计算:=⋅62__________.10.。
计算:=-⨯328 11.=-2)135(______;12.2)12(--______;13.=43943bc a ________; 14.)27()15(-⨯-=_______; 15.2)45.2(⨯-=________;16.944=______。 17.2)2(-的平方根是____________,327102- = _________ .18.比较大小:4-;19.计算:2=__________.20.m =,=_________。21.计算:=-+20072007)322()322(______________________ 22.10a (a <0)=________;23.若a 、b 、c 均为实数,且a 、b 、c 均不为0化简=23425b c a __________________。 三、解答题24 25.3121614714512⨯-⎛⎝ ⎫⎭⎪÷⎛⎝ ⎫⎭⎪ 26.化简 (1)31227 (2)(2 +3)2 (5 - 26)3.2二次根式的乘除参考答案一、选择题1 .B2 .D3 .C4 .C5 .A6 .D7 .C二、填空题8 .±-73,π9 .10.111.8;12.12-;13.2ac ;14.15.10-;1617.±4 ,-4318.<,=19.320.0.1m;21.-1;22.5a -;23.⎪⎪⎩⎪⎪⎨⎧<->时当时当0210021022b b cc a b b c c a三、解答题24.解:原式=225.-2326.(1) 1,(2)13-56。。
二次根式的乘除(2)(新编201911)

a
b
a a 0,b 0
b
例5:化简
(1) 3 100
(2) 1 3 16
3 25x
9y2
最简二次根式: 1.被开方数不含分母;
2.被开方数不含能开得尽方的因 数或因式.
例6:计算
1 3
5
2 3 2
27
3 8
2a
在二次根式的运算中, 最后结果一般 要求分母中不含有二次根式.
复习提问
1.二次根式的乘法:
a b ab a≥0,b≥0
ab a b (a 0,b 0)
2.化简二次根式:
把开得尽的因数或因式,开方后移到根号外.
计算下列各式,观察计算结果,你发现什么规律?
1.
4 9
2 3
,
2.
16 49
4 7
,
4 9
a a
b
b
a 0,b 0
2.最简二次根式: (1).被开方数不含分母;
(2).被开方数不含能开得尽方的因 数或因式.
____ (7) √___2_R__h_1__
√ 2Rh 2
2.化简
7 (1) 2
9
(2)
81 25x2
x
0
(3)
16b2c a2
a
0,
b
0
(1)-8 3 8
(3) 5a 10a
0.09 ×169 (4)
0.64 ×196
(2) 2a a+b
(4) 2y 2 4xy
小结
1.二次根式的除法利用公式:
把分母中的根号化去, 这个过程叫做分母 有理化。
二次根式的乘除专项练习60题(有答案过程)ok

1. ( 2. 3. (2 +4 )× +3) (3﹣ ) .
4. 5. .
6. 7. 8. .
9. (1)
; (2)
10.
11. (1)x(2x﹣1)﹣x (2﹣x) ; 2 3 2 3 (2) (2ab ﹣b ) ÷2b ; (3) (4) (5) (6) ; ; ; .
(2)
.
58.计算:2
×
.
59.
.
60.
.
二次根式的乘除法---
4
参考答案:
1. ( +3) (3﹣ )=3 ﹣( ) =9﹣6=3. 2 2 2. 原式=(3 ) ﹣(4 ) =54﹣32=22. 3.原式= 4.原式=( 5.原式= 6. 原式=(2 7.原式= ) ﹣3 =20﹣9=11. =2﹣9+2 = .
2
=﹣ =﹣
=﹣ ×10=﹣
.
÷ × × × ×4×
43.原式=﹣(9÷3× ) 44. 45. 46.原式=(2 47.原式=3 48.原式=27 49.原式=4 50.原式= 51.原式= ÷ ×3 = ) +2×2 ÷12= ÷ ×3 . × × =27
2
×3
×
×
=45
﹣2=24﹣2=22. = × ×3 = ×2a= . =9 . )] =[( ) ﹣( ) ] =(5﹣3) =4 +3)=(8﹣2 ) (8+2 )=64﹣60=4.
=2 . ×4
÷6
=
÷
2 2
= ÷3
×4 =
×
= ×4× × .
=1
)=a b
专题21.2 二次根式的乘除【九大题型】(举一反三)(华东师大版)(解析版)

专题21.2二次根式的乘除【九大题型】【华东师大版】【题型1求字母的取值范围】 (1)【题型2二次根式乘除的运算】 (2)【题型3二次根式的符号化简】 (3)【题型4最简二次根式的判断】 (5)【题型5化为最简二次根式】 (6)【题型6已知最简二次根式求参数】 (7)【题型7分母有理化】 (8)【题型8比较二次根式的大小】 (9)【题型9分母有理化的应用】 (10)【例1】(2022=x的取值范围是x>8.【分析】直接利用二次根式的性质进而得出关于x的不等式组求出答案.=∴≥0−8>0,则x的取值范围是:x>8.故答案为:x>8.【变式1-1】(2022秋•犍为县校级月考)已知(−3)⋅(−−2)=3−⋅+2,使等式成立的x的取值范围是﹣2≤x≤3.【分析】根据二次根式的性质得出关于x的不等式组,进而求出答案.【解答】解:∵(−3)⋅(−−2)=3−⋅+2,∴3−≥0+2≥0,解得:﹣2≤x≤3.故答案为:﹣2≤x≤3.【变式1-2】(2022=x的取值范围是()A.x>0B.x≥0C.x>2D.x≥2【分析】根据二次根式和分式有意义的条件进行解答即可.【解答】解:由题意得:−2≥0>0,解得:x≥2,故选:D.【变式1-3】(2022•宝山区校级月考)已知实数x满足22−3=x•2−,则x的取值范围是0≤x≤2.【分析】依据二次根式被开方数大于等于0和2=a(a≥0)列不等式组求解即可.【解答】解:∵原式=(2−p2=x•2−,∴x≥0且2﹣x≥0.解得:0≤x≤2.故答案为:0≤x≤2.【题型2二次根式乘除的运算】【例2】(2022•长宁区期中)计算:(1)354;(2)12.【分析】(1)利用二次根式的乘法法则计算即可.(2)根据二次根式的混合运算法则计算即可.【解答】解:(1)原式=5×8×36=(2)原式=2×15×=【变式2-1】(2022•长宁区期中)计算:83.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×=9=82.【变式2-2】(2022÷(⋅(−(x>0).【分析】根据二次根式的乘除法运算法则进行计算.【解答】解:∵x>0,xy3≥0,∴y≥0,∴原式=−=−46=−94xy•(−56x B)=1582B.【变式2-3】(2022−÷b<0).【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:∵由二次根式的性质可得a<0,b<0,∴原式=2•(﹣b)B•(32a B)÷=﹣3a2b÷=﹣3a2b×(−=a2b2×=ab B.【题型3二次根式的符号化简】【例3】(2022•安达市校级月考)已知xy>0,将式子x移到根号内的正确结果为()A.B.−C.−D.−−【分析】根据被开方数大于等于0求出y<0,再根据同号得正判断出x<0,【解答】解:∵−2>0,∴y<0,∵xy>0,∴x<0,∴=−=−−.故选:D.【变式3-1】(2022•自贡期中)把二次根式)A B C.−D.−【分析】根据二次根式的性质先判断a的符号,然后再进行计算.【解答】解:由题意可知−13>0,∴a<0,∴=a=−故选:D.【变式3-2】(2022•张家港市校级期末)将(2﹣x()A.−2B.2−C.﹣22−D.−−2【分析】根据二次根式的性质得出x﹣2的符号,进而化简二次根式得出即可.【解答】解:由题意可得:x﹣2>0,则原式=−−2.故选:D.【变式3-3】(2022春•龙口市期中)把(a﹣b根号外的因式移到根号内结果为【分析】先根据二次根式成立的条件得到−1K>0,则a﹣b<0,所以原式变形为﹣(b﹣a−(−p2•法得到−⋅【解答】解:∵−1K>0,∵a﹣b<0,∴原式=﹣(b﹣a=−(−p2•=−=−−.故答案为−−.【知识点2最简二次根式】我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式.【例4】(2022、18、2−1、0.6中,最简二次根【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.、2−1是最简二次根式,、2−1.【变式4-1】(2022春•曲靖期末)下列二次根式中属于最简二次根式的是()A.48B.14C D.4+4【分析】根据最简二次根式的定义:被开方数中不含能开得尽方的因数或因式,被开方数中不含分母,即可解答.【解答】解:A、48=43,故A不符合题意;B、14是最简二次根式,故B符合题意;C=C不符合题意;D、4+4=2+1,故D不符合题意;故选:B.【变式4-2】(2022②2+1③④0.1是最简二次根式的是②③(填序号).【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【解答】解:②2+1③是最简二次根式,故答案为:②③.【变式4-3】(2022、12、30、+2,402,2+2中,是最简二次根式的共有3个.【分析】结合选项根据最简二次根式的概念求解即可.2、12、30、+2,402,2+2中,是最简二次根式的是30、+2,2+2,故答案为:3【例5】(2022春•安阳期末)下列二次根式化成最简二次根式后,被开方数与另外三个不同的是()A.2B.58C.28D【分析】先把B、C、D化成最简二次根式,再找被开方数不同的项.【解答】解:∵2是最简二次根式,58=102,28=27,=∴化成最简二次根式后,被开方数相同的是A、B、D.故选:C.【变式5-1】(2022春•番禺区期末)把下列二次根式化成最简二次根式(1100(2)32(3【分析】(1)直接利用二次根式的除法运算法则性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的除法运算法则性质化简得出答案.【解答】解:(1=(2)32=42;(3==【变式5-2】(2022秋•合浦县月考)把下列各式化成最简二次根式:(1(2)−【分析】本题需先将二次根式分母有理化,分子的被开方数中,能开方的也要移到根号外.【解答】解:(1)原式==275×53×33;(2)当b,c同为正数时,原式=−B2×2×=−当b,c同为负数时,原式=−B2×(−2)×=−当c=0时,原式=0.【变式5-3】(2022化成最简二次根式是±or1).【分析】对被开方数的分母进行因式分解,然后约分;最后将二次根式的被开方数的分母有理化,化简求解.【解答】解:原式==①当y>0时,上式=②当y<0时,上式=−【题型6已知最简二次根式求参数】【例6】(2022春•浉河区校级期末)若二次根式5+3是最简二次根式,则最小的正整数a为2.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:若二次根式5+3是最简二次根式,则最小的正整数a为2,故答案为:2.【变式6-1】(2022春•武江区校级期末)若是最简二次根式,则a的值可能是()A.﹣4B.32C.2D.8【分析】根据二次根式有意义的条件判断A选项;根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式判断B,C,D选项.【解答】解:A选项,二次根式的被开方数不能是负数,故该选项不符合题意;B2=C选项,2是最简二次根式,故该选项符合题意;D选项,8=22,故该选项不符合题意;故选:C.【变式6-2】(2022秋•崇川区校级期末)若2rK2和33K2r2都是最简二次根式,则m =1,n=2.【分析】利用最简二次根式定义列出方程组,求出方程组的解即可得到m与n的值.【解答】解:∵若2rK2和33K2r2都是最简二次根式,∴+−2=13−2+2=1,解得:m=1,n=2,故答案为:1;2.【变式6-3】(2022春•宁都县期中)已知:最简二次根式4+与K23的被开方数相同,则a+b=8.【分析】已知两个最简二次根式的被开方数相同,因此它们是同类二次根式,即:它们的根指数和被开方数相同,列出方程组求解即可.【解答】解:由题意,得:−=24+=23解得:=5=3,∴a+b=8.【知识点3分母有理化】①分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式;②两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.【题型7分母有理化】【例7】(2022)A.4b B.2CD【解答】解:∵a>0,ab>0,即a>0,b>0;===【变式7-1】(2022•沂源县校级开学)分母有理化:=2;(2=3;(3=2.(1=【解答】解:(1==(2(3=【变式7-2】(2022春•海淀区校级期末)下列各式互为有理化因式的是()A.+和−B.−和C.5−2和−5+2D.+和+【分析】根据有理化因式定义:如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式,结合各个选项中两个代数式特征作出判断即可.【解答】解:A.+•−=(+p(−p,因此+和−不是有理化因式,故选项A不符合题意;B.−•=−a,所以−和是有理化因式,因此选项B符合题意;C.(5−2)(−5+2)=﹣(5−2)2,所以5−2和−5+2)不是有理化因式,因此选项C不符合题意;D.(x+y)•(x+y)=(x+y)2,因此x+y和x+y不是有理化因式,所以选项D不符合题意;故选:B.【变式7-3】(2022【分析】根据二次根式的性质以及运算法则即可求出答案.【解答】解:原式======【题型8比较二次根式的大小】【例8】(2022春•海淀区校级期末)设a=22−3,b=1,则a、b大小关系是()A.a=b B.a>b C.a<b D.a>﹣b【分析】本题考查二次根式,先求出b的值,再与a比较得出结果.【解答】解:∵a=22−3==−(22+3)∴b=1故选:B.【变式8-1】(2022春•金乡县期中)已知a=b=2+5,则a,b的关系是()A.相等B.互为相反数C.互为倒数D.互为有理化因式【分析】求出a与b的值即可求出答案.=5+2,b=2+5,【解答】解:∵a=故选:A.)【变式8-2】(2022B C DA【解答】解:将三个二次根式化成同分母分数比较:==故选:C.【变式8-3】(2022秋•雨城区校级期中)利用作商法比较大小【分析】根据作商比较法,看最后的比值与1的大小关系,从而可以解答本题.=1,【题型9分母有理化的应用】【例9】(2022春•大连月考)阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:(2+3)(2−3)=1,(5+2)(5−2)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法====7+43.像这样,通过分子、(1)4+7的有理化因式可以是4−分母有理化得2.(2)计算:+②已知:x =y =x 2+y 2的值.【分析】(1)找出各式的分母有理化因式即可;(2)①原式各项分母有理化,合并即可得到结果;②将x 与y 分母有理化后代入原式计算即可得到结果.【解答】解:(1)4+7的有理化因式可以是4−7,故答案为:4−7;(2)①原式=2−1+3−2+⋯+2000−1999=2000−1=205−1;②∵x ==2−3,y ==2+3,∴x 2+y 2=7﹣43+7+43=14.【变式9-1】(2022=3)=7+43;除此之外,还可以用先平方再开方的方法化简一些有特点的无理数,如要化简4+7−4−7,可以先设x =4+7−4−7,再两边平方得x 2=(4+7−4−7)2=4+7+4−7−2(4+7)(4−7)=2,又因为4+7>4−7,故x >0,解得x =2,4+7−4−7=2,根据以上方法,+8+43−8−43的结果是()A .3﹣22B .C .42D .3【分析】直接利用有理化因式以及二次根式的性质、完全平方公式分别化简得出答案.【解答】解:设x =8+43−8−43,两边平方得x 2=(8+43−8−43)2=8+43+8−43−2(8+43)(8−43)=8,∵8+43>8−43,∴x >0,∴x =22,原式=22=6−22=+22=3﹣22+22=3.故选:D.【变式9-2】(2022•普定县模拟)阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘以同一个适当的代数式,使分母不含根号.例==−1;(1(2)关于x的方程3x−12=++⋯+的解是11.【分析】(1)根据材料进行分母有理化即可;(2)先分母有理化,再根据式子的规律即可求解.==2−1【解答】解:(1(2)3x−13x−12=3x−12=(3+1)(+(5+3)(5−3)+(7+7−5)+⋯+(3x−12=12(3−1+5−3+7−5+⋯+99−97),6x﹣1=﹣1+99,6x=311,x=【变式9-3】.(2022春•九龙坡区校级月考)材料一:有这样一类题目:将±2化简,如果你能找到两个数m、n,使m2+n2=a且mm=,则将a±2将变成m2+n2±2n,即变成(m±n)2开方,从而使得±2化简.例如,5±26=3+2±26=(3)2+(2)2±22×3=(3±2)2,所以5±26= (3±2)2=3±2;=======3(三).以上这种化简的步骤叫做分母有理化.====3−1(四);请根据材料解答下列问题:(1)3−22−1;4+23+1.+⋯+(2【分析】(1)根据材料一和完全平方公式即可得出答案;(2)根据材料二将每一个式子分母有理化,并合并同类二次根式可得出答案.【解答】解:(1)∵3﹣22=2+1﹣22=(2−1)2,∴3−22=(2−1)2=2−1,∵4+23=3+1+23=(3+1)2,∴4+23=(3+1)2=3+1,故答案为:2−1,3+1;(2=(3+1)(3−1)+(5+3)(5−3)+•••2r1+2K1)(2r1−=3−1+5−3+7−5+•••+2+1−2−1=﹣1+2+1.。
二次根式的乘除法(含例题)

第十六章 二次根式16.2 二次根式的乘除1.二次根式的乘法法则(1)一般地,二次根式的乘法法则是:__________(00)a b a b =≥≥,.语言叙述:二次根式相乘,把被开方数相乘,根指数__________.在进行二次根式的乘法运算时,一定不能忽略其被开方数a ,b 均为非负数这一条件. 000)a b c abc a b c =≥≥≥,,. ②00)a b c d bd b d =≥≥,,即当二次根式前面有系数时,可类比单项式乘单项式的法则进行运算,即将系数之积作为系数,被开方数之积作为被开方数;③乘法交换律和结合律以及乘法公式(平方差公式和完全平方公式)在二次根式的乘法中仍然可应用. (2)二次根式乘法法则的逆用00)ab a b a b =≥≥,.语言叙述:积的算术平方根等于积中各因数或因式的算术平方根的积.公式中的a ,b 可以是数,也可以是代数式,但必须满足a ≥0,b ≥0.实际上,a ≥0,b ≥0是限制公式右边的,对公式的左边,只要ab ≥0即可.二次根式乘法法则的逆用也称为积的算术平方根,在进行二次根式的乘法运算时,这两个关系经常交替使用. 0000)abcd a b c d a b c d =≥≥≥≥,,,.运用这个性质可以化简二次根式:如果一个二次根式的被开方数有的因数(式)是完全平方数(式),(00)ab a b a b =≥≥,2(0)a a a =≥将这些因数(式)“开方”出来,从而将二次根式化简.利用积的算术平方根的性质化简的步骤:①将被开方数进行因数分解或因式分解;②应用积的算术平方根的性质,将能开得尽方的因数或因式开出来.2.二次根式的除法法则(1)一般地,二次根式的除法法则是:0__________0)a b =≥,. 语言叙述:二次根式相除,把被开方数__________,根指数不变.【注意】①a ≥0,b >0时,式子才成立,若a ,b 都是负数,虽然0a b >在实数范围内无意义;若b =0,a b则号无意义. ②如果被开方数是带分数,应先将其化成假分数.③二次根式的运算结果应不含能开得尽方的因数或因式,同时分母中不含二次根式.(2)二次根式除法法则的逆用00)a b =≥>, ★语言叙述:商的算术平方根等于被除式的算术平方根除以除式的算术平方根.公式中的a ,b 表示的代数式必频满足a ≥0,b >0,a ≥0,b >0是限制公式右边的,对公式的左边,只要0a b≥且0b ≠即可.利用这个公式,同样可以达到化简二次根式的目的,在化简被开方数是分数(或分式)的二次根式时,先将其化为“(a ≥0,b >0)的形式,然后利用分式的基本性质,分子和分母同乘上一个适当的因式,化去分母中的根号即可. 3.最简二次根式满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含__________;(2)被开方数中不含能开得尽方的因数或因式.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.【拓展】分母有理化:二次根式的除法可以用化去分母中的根号的方法来进行,这种化去分母中根号的变形叫做分母有理化.分母有理化的方法是根据分式的基本性质,将分子和分母都乘上分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式),化去分母中的根号.分母的有理化因式不唯一,但以运算最简便为宜.K知识参考答案:1.ab,不变2.>,相除3.分母K—重点二次根式的乘法和除法;最简二次根式的判断K—难点二次根式的乘法法则和除法法则的逆用K—易错运算顺序错误;忽视隐含条件一、二次根式的乘法1.法则中的a,b表示的代数式都必须是非负的.2.两个二次根式相乘,被开方数的积中有开得尽方的一定要开方.【例1】下列计算正确的是A.25×35=65B.32×33=36C.42×23=85D.22×63=126【答案】D⨯⨯得【例2】916144A.144 B.±144 C.±12 D.12【答案】A⨯⨯.故选A.916144⨯⨯916144=3412=144二、二次根式的除法1000)a b c ÷=≥>>,,;2.((()m n ÷=÷⋅,其中000a b n ≥>≠,,.【例3】=成立的条件是 A .a 、b 同号B .a ≥0,b >0C .a >0,b >0D .a >0,b ≥0 【答案】B【解析】由二次根式的非负性可知,a ≥0,b ≥0,由于b 是分母,故b >0.故选B .【例4】计算A .B .23xC .D x 【答案】C【解析】原式=4×C . 三、二次根式的乘除混合运算二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,整式乘除法的一些法则、公式在二次根式乘除法中仍然适用.二次根式乘除混合运算的一般步骤:(1)将算式中的除法转化为乘法;(2)利用乘法运算律将运算转化为系数和被开方数的乘法运算;(3)将系数和被开方数分别相乘;(4)化成最简二次根式.【例5】A B C D .【答案】A==.故选A.四、最简二次根式判断二次根式是不是最简二次根式的方法:一看:看被开方数中是否含有能开得尽方的因数(或因式),且被开方数中是否含有分母.二化:若被开方数是多项式,能化成因数(或因式)积的形式,要先化成积的形式.三判断:得出结论.【例6】下列根式中,是最简二次根式的是A B C D【答案】C【解析】因为:A=;B=;D||b=,所以这三项都可化简,不是最简二次根式.故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的乘除法习题课
教学设计 冯毅
教学目标:1、通过练习巩固二次根式的乘、除法法则.
2、能根据式子的特点,灵活运用乘积、商的算术平方根的性质和分
母有理化等手段进行二次根式的乘、除法运算.
3、进一步培养学生运用所学知识分析问题和解决问题的能力.
教学重点:二次根式乘除法法则及运算.
教学难点:能正确运用性质、法则灵活进行有关二次根式乘除法的计算.
教学过程:
一、 复习
1、 填空:
(1)二次根式的乘法法则用式子表示为 .
(2)二次根式的除法法则用式子表示为 .
(3)把分母中的 化去,叫做分母有理化. 将式子
22a 分母有理化后等于 .
(4)44162+⋅-=-x x x 成立的条件是 .
(5)x x -=-2)2(2成立的条件是 .
(6)2121+-=+-x x x x 成立的条件是 .
(7)化简: =24 . =⨯1259 . =-222129 . =c b a 324 .
=499 . =9
44 . =224c
b a . (8)计算: =⋅1510 . =⋅x
xy 1312 . =÷6
5321 . 2、 判断题:下列运算是否正确.
( )(1)ππ-=-14.3)14.3(2
( )(2)767372=⨯
( )(3)636)9()4(94==-⨯-=--
( )(4)5
125432516925169=⨯=⋅= ( )(5)5.045.16=
( )(6)73434342222=+=+=
+ ( )(7)22
8= ( )(8)
32
123=
3、你能用几种方法将式子m m
( m >0 )化简?
二、讲解新课:
1、运用乘法分配律进行简单的根式运算.
例1 计算 (1))2732(3+ (2)24)654(-
解: (1)原式=273323⨯+⨯ =273332⨯+⨯ =2
2932+
=6+9
=15
(2)原式=2462454⋅-⋅ =2462454⨯-⨯ =4666496⨯⨯-⨯⨯⨯ =2222226236⨯-⨯⨯ =2222226236⨯-⨯⨯
=6×3×2-6×2
=24
归纳小结:1、在有理数范围内,乘法分配律是: a (b+c )=ab+ac 这个运算律在实数范围内也适用. 2、在运律过程中要注意符号.
练习一、 计算 (1) )82(2+ (2) a a a 5)5320(+ (3) ab ab
b a a b ab ⋅--+)12( 2、比较两个实数的大小.
前面我们已经学过比较两个无理数大小的方法,就是先求无理数的近似值,转化为比较有理数的大小,从而得出两个无理数的大小.
下面我们介绍比较两个无理数大小的另一种方法.
两个正数中,较大的正数,它的算术平方根也较大,即a>b>0时,可以得出a >b . 也就是说,比较两个二次根式的大小,可以转化为先比较它们被开方数的大小,从而得出两个二次根式的大小.
例2 比较下列两个数的大小
(1)6与7 (2)23与32
解:(1) 因为6<7,所以6<7.
(2) 因为23=18232322=⨯=⋅, 32=12323222=⨯=⋅,
又因为18>12, 所以18>12.
即 23>32. 归纳小结:先应用式子)0(2≥=a a a 把根号外面的因式(或因数)移入根号内,通过比较被开方数的大小,来比较这两个根式的大小.
练习二、比较下列各组中两个数的大小:
(1)8.2与4
32 (2)67与76 (3)65-与56- (4)323
-与533- 3、二次根式的乘除混合运算.
例3 计算 (1)2
1223222330÷⨯ (2))23(62325b a a b b
a a
b b -⨯÷ 解:(1)原式=2
52383023÷⨯
=)2
5810)(223(÷⨯÷ =)52810)(2123
(⨯
⨯⨯ =244
3⨯ =23
(2)原式=)2
3())(62(352b a a b ab b a b -⨯÷÷ =)2
3(62352b a a b ab a b b -⨯÷⋅ =b a b
a a
b a b 35)23(3⨯⨯-⨯ =552b a a
b -
=ab b a a b 222⋅- =ab ab 23
-
注意:这是二次根式乘除的混合运算,与有理数的混合运算一样,按先后从左到右顺序进行.
练习三、计算 (1)2
1223151437⨯÷- (2))23()23
(3a a b ab -⨯-÷ 4、运用分母有理化进行计算.
例4 化简100991
431
321
211
++++++++
分析:当分母里二次根式的被开方数都相差1时,如果分母有理化后则变为1或-1,
就可将原式变为不含分母的二次根式.
解:原式=1
99100134123112-++-+-+- =1100-
=10-1
=9
注意:这种解题方法是一种常用的技巧,应掌握.
思考题:计算
324213-+⋅- 三、小结:
1、二次根式的乘法公式ab b a =⋅(a ≥0,b ≥0),由左到右是先乘再开方,由右到左是先开方再乘,运用此公式可以进行二次根式的化简和计算. 公式运用时, 要根据题目以简便为准.
2、在进行二次根式的乘除法混合算时, 如果没有括号, 应按从左到右的顺序进行运算, 运算结果要注意化简, 使被开方数中每个因式(或因数)的指数都小于2.
3、分母有理化的关键是找出分子与分母同乘以一个怎样的代数式, 才能使分母变为有理式(或有理数).它的理论根据是分式的基本性质.
四、五分钟测评.
五、布置作业 .
二次根式乘除运算实用技巧五则
在进行二次根式的乘除运算时,若能根据题目的特点适当选择解题方法,通常可使问题化繁为简,从而提高运算的速度。
现将其中使用较为广泛的五个技巧小结如下,供同学们学习时参考。
1、直接用公式
例1、计算:
(1) (2)
解:
(1)=1。
(2)=2。
评析:这是二次根式的乘除运算的通法,要熟练掌握。
2、逆用公式
例2、计算:
(1)(2)
解:
(1)==
==5×6=30;
(2)==2
评析:根据题目的特点,先逆用公式,有时比直接用公式进行计算效果要好。
3、先逆用公式,再约分
例3、计算:
(1)5÷4(2)2÷4
解:
(1)5÷4==;
(2)2÷4=。
评析:对于型问题,先转化成型问题,后再逆用公式,进行约分,计算的速度会大大提高。
4、变形公式:
例4、计算:
(1)(2)
解:
(1)=;
(2)=
评析:把二次根式的除法转化成被开方数的除法,然后颠倒相乘,也不失一种好方法。
5、混合运算时,有理、无理分开算
例3、计算:
÷5
解:
÷5
=(÷5×2)×(÷)
=×(
=×
=×=
评析:
当遇到乘除混合运算时,不妨分成有理数之间的运算和含根号部分的运算,这样就会减少许多不必要的环节,使运算条例而有序,从而提高解题的速度和准确率。