a2013第11届小机灵杯五年级决赛解析

合集下载

(详解) 2013年 第十一届 五年级 小机灵 决赛

(详解) 2013年 第十一届 五年级 小机灵 决赛

20b 65a [解析] 2013
2013 20b 65a 2013 5(13a 4b ) 2013 5 11 2068
4、在一次象棋比赛中,每两个选手恰好比赛一局,赢者每局得 2 分,输者每局得 0 分,平 局则两个选手各得1 分。今有 4 名计分者统计了这次比赛中全部的得分总数,由于有的计分 者粗心,其数据各不相同,分别为 1979 、 1980 、 1984 、 1985 。经核实,其中有 1人统计 无误。这次比赛共有 ________名选手参加。
2、商场元旦促销,将彩色电视机降价 20% 出售,那么元旦促销活动过后商场要涨价 % 才能恢复到原价。 [解析] 100% 80% 100% 125% ,即 100%是 80%的 125%,所以要涨价
125% 1 25%
3、已知 13a 4b 11 ,那么 2013 20b 65 a ______。
将 V2 V1 代入 V3 V2 3V1 ,得 V3 V1 ,即 V1 : V3 3 :13
13 3
9、如图所示,画有 15 个边长为 1cm 的正方形共产生 24 个顶点,选择其中的 3 个点用线段 围成一个面积是 2.5cm2 的三角形。这样的三角形共有 个。
[解析] 第一种情况:如果有两个点在同一行或者同一列上,那么,以这两个点所连成的边 为底,则此时这条底是整数,此时,高是另一个点到这条底的距离,也是整数,则 有
S S PCD P ' CD
由 ABCD 是平行四边形,可知 AD∥BC,于是,DP’ ∥ BC,由等积变形,可知
S S P ' CD P ' DB
综上, SPAB S SP ' AB S S S P ' DB S PCD P 'CD P ' AB ABD S ABCD 所以, S ABCD 11 5 6 S ABCD 12 7、等差数列 a1 , a2 , , a19 共有 19 项。已知 a1 a7 a14 a18 120 ,那么

第十一届小学“希望杯”全国数学邀请赛五年级第1试题目及答案

第十一届小学“希望杯”全国数学邀请赛五年级第1试题目及答案

第十一届小学“希望杯”全国数学邀请赛五年级第1试1.计算:5.62×49-5.62×39+43.8= 。

12.规定a△b=a÷(a+b),那么2△1.8=。

53.若干个数的平均数是2013,增加一个数后,平均数仍是2013,则增加的这个数是。

4.如果三位数3□2是4的倍数,那么□里能填的最小的数是,最大的数是。

5.观察下图,?代表的数是。

1 3 5 7 9 8 6 4 22 4 6 8 7 5 33 5 7 6 44 6 5?6.小明在计算一个整除的除法算式时,不小心将除数18看成15,得到的商是24,则正确的商是。

7.将100块糖分成5份,使每一份的数量依次多2,那么最少的一份有糖块,最多的一份有糖块。

8.一件商品,对原价打九折和打七折后的售价相差5.4,那么此商品的原价是元。

9.有26个连续的自然数,如果前13个数的和是247,那么,后13个数的和是。

10.在三位数253,257,523,527中,质数是。

11.14个棱长为1的正方体在地面上堆成如图1所示的几何体,将它的表面(包括与地面接触部分)染成红色,那么红色部分的面积是。

12.如图2,若梯形ABCD的上底AD长16厘米,高BD长21厘米,并且BD=3DE,则三角形ADE的面积是平方厘米,梯形的下底BC长厘米。

13.小丽将一些巧克力装入大,小两种礼盒中的一种礼盒内,如果每个小礼盒装5块巧克力,那么剩下10块;如果每个大礼盒装8块巧克力,那么少2块。

已知小礼盒比大礼盒多3个,则这些巧克力共有块。

14.从甲地到乙地,小张走完全程用2个小时,小李走完全程用1个小时。

如果小张和小李同时从甲地出发去乙地,后来,在某一时刻,小张未走的路程恰好是小李未走的路程的2倍,那么此时他们走了分钟。

15.有16盒饼干,其中15盒的重量(含盒子)相同,另有1盒少了几块,如果用天平称,那么至少称次就一定能找出这盒饼干。

16.编号1~10的10名篮球运动员轮流进行三人传球训练,第1轮由编号(1,2,3)的队员训练,然后依次是编号(4,5,6)(7,8,9)(10,1,2),…的队员训练,当再次轮到编号(1,2,3)的队员时,将要进行的是第轮训练。

第13届小机灵杯五年级决赛解析

第13届小机灵杯五年级决赛解析

第十三届“小机灵杯”数学竞赛决赛卷(五年级组)时间:60分钟总分:120分第一部分(每题6分,共30分)【第1题】从11111124681012+++++中删去两个加数后使余下的四个加数之和恰好等于1.那么,删去的两个加数分别是________和________。

【分析与解】 111111111111111111112468101224810612248104810⎛⎫+++++=+++++=++++=++ ⎪⎝⎭; 而11981040+=; 34025=⨯,分母含因数5的只有110,故另一个数为18; 删去剩下的两个加数分别是18和110。

【第2题】用四则运算符号及括号,对10、10、4、2这四个数进行四则运算,使所得结果是24。

那么,这个四则运算的算式是________________________。

【分析与解】算24点:()24101024+÷⨯=【第3题】把一个正方体切成27个相同的小正方体。

这些小正方体的表面积之和比大正方体的表面积大432平方厘米。

那么,大正方体的体积是________立方厘米。

【分析与解】设原来大正方体的棱长为3a 厘米,则每个小正方体的棱长为a 厘米;每个小正方体的表面积为26a 平方厘米;大正方体的表面积为()226354a a ⨯=平方厘米; 2262754432a a ⨯-=;24a =;2a =;大正方体的棱长为236⨯=厘米;大正方体的体积为36216=立方厘米。

若a ,b ,c ,d 是互不相等的正整数,357a b c d ⨯⨯⨯=,则________a b c d +++=。

【分析与解】把357分解质因数:3573717=⨯⨯;所以把357拆成四个互不相同的正整数的乘积只能是35713717=⨯⨯⨯;即{}{},,,1,3,7,17a b c d =;则这四个数的和是1371728+++=。

【第5题】从一只装有1升酒精的大瓶中倒出13升酒精,往瓶中加入等量的水并搅匀,然后再倒出13升混合液,再加入等量的水并搅匀,最后再倒出13升混合液,并加入等量的水。

小机灵杯1-14届试题及详解

小机灵杯1-14届试题及详解

2003年2004年2005年2006年2007年2008年2009年2010年2,4593,2284,35,306,43157,328,169,6610,11 11,10 12,2660 13,60 14,792 15,116,49/4 17,G18,44 19,12 20,1536,72012年2013年第十一届小机灵杯五年级初赛试题1、5.5×6.6+6.6×7.7+7.7×8.8+8.8×9.92、五(1)班男生的平均身高是149cm,女生的平均身高是144cm,全班的平均身高是147cm。

那么,五(1)班的男生人数是女生人数的多少倍?3、甲、乙分别持有7张卡片,卡片上分别写有1、2、3、4、5、6、7七个数字。

如果两人各摸出一张卡片,那么两张卡片上数字和为8的可能性是多少?4、有一个圆形跑道,甲用40秒跑完一圈,乙跑的方向与甲相反,每15秒遇到甲一次。

乙跑完一圈需要几秒?5、50个各不相同的正整数,它们的和为2012,那么这些数里奇数最多有几个?6、把正整数排成下列数阵:1 2 5 10 …4 3 6 11 …9 8 7 12 …16 15 14 13 ………………第21行第21列的数是多少?7、有一叠卡片共200张,从上到下依次编号为1到200,从最上面的一张开始按如下次序进行操作:把最上面的第一张卡片拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张(原来的第三张)卡片拿掉,把下一张卡片放在这一叠卡片的最下面……依次重复这样做。

那么剩下的这张卡片是原来200张卡片里的第几张?8、某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。

可以肯定至少有多少人四项运动都会?9、把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,……,其中第1000个数是多少?10、如图所示,ABCD是梯形,三角形ADE的面积是1,三角形ABF的面积是9,三角形BCF的面积是27,那么三角形ACE的面积是多少?11、某学生漏看了写在两个三位数之间的乘号,将它们当成了一个六位数,而该六位数恰好是原来乘积的7倍,这两个三位数之和是多少?12、从1到900中选6个正整数,使这6个连续正整数的积的尾数恰好为4个0,有多少种选法?第十一届"小机灵"杯数学竞赛决赛五年级试题第一项,每题4分。

第十一届小机灵杯数学竞赛决赛五年级试题(无答案)-最新教学文档

第十一届小机灵杯数学竞赛决赛五年级试题(无答案)-最新教学文档

第十一届"小机灵杯"数学竞赛决赛五年级试题第一项,每题4分。

1、2、商场元旦促销,将彩色电视机降价20%出售,那么元旦促销活动过后商场要涨价______%才能恢复到原价。

3、已知13a-4b=11,那么2019-(20b-65a)=______。

4、在一次象棋比赛中,每两个选手恰好比赛一局,赢者每局得2分,输者每局得0分,平局则两个选手各得1分。

今有4名计分者统计了这次比赛中全部的得分总数,由于有的计分者粗心,其数据各不相同,分别为1979、1980、1984、1985.经核实,其中有1人统计无误。

这次比赛共有________名选手参加。

____ _______5、如图所示,三位数ABC加297的和是三位数CBA,满足条件的三位数ABC共有____个。

第二项,每题8分。

6、如图所示,P为平行四边形ABDC外一点,, 已知三角形PAB与三角形PCD的面积分别为11平方厘米和5平方厘米,那么平行四边形ABCD的面积是________平方厘米。

7、等差数列a1,a2,a3,……a19共有19项,已知a1+a7+a14+a18=120 那么a1+a2+a3+….a19=________。

8、有一个容器内注满了水,将大、中、小三个铁球这样操作:第一次,沉入小球;第二次,取出小球,沉入中球;第三次,取出中球,沉入大球。

已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的3倍。

那么,小、中、大三球的体积比是______。

9、如图所示,画有15个边长为1cm的正方形共产生24个顶点,选择其中的3个点用线段围成一个面积是2.5cm2的三角形。

这样的三角形共有_____个。

10、甲、乙两人分别从A、B两地同时出发相向而行。

当甲走到一半时,乙将速度提高1倍,结果两人在距离B地1200米处相遇,并且最后同时到达对方起点。

那么两地相距____米。

第三项,每题12分。

11、用120个同样大小的小正方体拼成一个a×b×c的长方体,在长方体的表面涂色,在满足上述条件的各种操作中,恰有一面涂色的小正方体的个数的最大值记作X,最小值记作Y。

数学竞赛小机灵杯五年级决赛解析

数学竞赛小机灵杯五年级决赛解析

第十二届“小机灵杯”智力冲浪展示活动决赛试卷(五年级组)2014年1月19日8:30~9:50时间:80分钟总分:120分一、判断题(每题1分)【第1题】小数点在十进制中用来隔开整数部分和小数部分。

中国魏晋时代的数学家刘徽第一个将“小数”这一概念用文字表达出来。

……………………………………………………………………………………………()【分析与解】中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。

第一个将这一概念用文字表达出来的是魏晋时代的刘徽。

他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。

填“√”。

【第2题】做小数加减法时要把小数点对齐。

在小数乘法法则中,两个因数中一共有几位小数,就要从积的左边向右数几位点上小数点。

…………………………………………………………………………………………()【分析与解】在小数乘法法则中,两个因数中一共有几位小数,就要从积的右边向左数几位点上小数点。

故填“×”。

第十二届“小机灵杯”智力冲浪展示活动决赛试卷五年级组中国古代数学最重要的典籍应当是《九章算术》,魏晋数学家刘徽用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。

……………………………………………………………………………( )【分析与解】所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法。

“圜,一中同长也”。

意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。

早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。

认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。

我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的公式。

十三届小机灵杯五年级决赛试题解析

十三届小机灵杯五年级决赛试题解析
【解析】 S PBCD S PFCG 所以 S PBD (16 5) 2 5.5 15. 平面上有 50 条直线,其中 20 条互相平行,这 50 条直线最多能将平面分成_________个部分。 【解析】 去掉 20 条互相平行的直线, 剩下 30 条直线可以将平面最多分成1 1 2 3 30 466 个部分,接下来的 20 条直线,每条直线可以与平面上的直线产生至多 30 个交点(20 条直线互相平 行,互相之间不相交)因此每条直线被分成至多 31 段,可以增加至多 31 个部分,所以这 50 条直线 至多将平面分成 466 31 20 1086 个部分 四季教育 李唯瑒
2
n 20 n 25 n 40 , , , a 39.5 a 27 a 4.5 n 25 仅有 满足要求,即共排成 25 排,第一排 27 1 28 人 a 27
解得 n 只小球外观相同,其中有一只小球的重量比其他小球的重量比其他小球轻(其他小球重量相 等) 。 若用一架没有砝码的天平秤作为工具, 至少称量 5 次就可以把那个重量较轻的小球找出来。 那么 n 的最大值是__________。 【解析】假设有 3a 个球,将球分成三堆,每堆 a 个,称两堆,若哪堆轻,则球在轻的那堆中,若一 样重,则球在第三堆中 9. 5 次称出, n 的最大值为 3 243 10. 如图,在△ABC 中,已知 AB=AC,AE⊥BC,CD=CA,AD=DB,则∠DAE=_____度。
1 1 升酒精, 往瓶中加入等量的水并搅匀, 然后再倒出 升混合 3 3 1 液,在加入等量的水并搅匀,最后在倒出 升混合液,并加入等量的水。这时,瓶内液体中还 3
从一只装有 1 升酒的大瓶中倒出 有酒精__________升。

行程问题(小机灵)

行程问题(小机灵)
1 圈; 2
1 )=48m+24 2
因为速度相同,所以相同时内路程相同,起点相同,所以 30n=48m+24; 即 5n=8m+4,有不定方城知识,解出有 n=4,m=2, 所以小甲虫跑了 2 圈后,大小甲虫相距最远。 【练习 3】 【解析】
A
O B
C
当乙和丙相遇时,乙已经走了 30+15=45 千米。由于甲乙两人的速度比是 8:9,因此这时 甲已经走了 45×8÷9=40 千米。 当甲和丙相遇时,甲已经走了 30+20×2-6=64(千米) ,因此两次相遇之间的时间是全部 时间的(64-40)÷64=
【例题突破】
【例 1】 A 、 B 两地相距 2400 米,甲从 A 地、乙从 B 地同时出发,在 A 、 B 两地间往返 锻炼。甲每分钟跑 300 米,乙每分钟跑 240 米。在 30 分钟后停止运动,甲、乙两人第几 次相遇时距 A 地最近?最近距离是多少? 【例 2】甲乙二人从 A 、 B 两地同时出发相向而行,甲每分钟行 80 米,乙每分钟行 60 米. 出发一段时间后,二人在距离中点 120 米处相遇.如果甲出发后在途中某地停留了一会儿, 二人还将在距中点 120 米处相遇.问:甲在途中停留了多少分钟? 【例 3】一条小河流过 A 、 B 、 C 三镇, A 、 B 两镇之间有汽船来往,汽船在静水中的速
【例题突破】
【例 1】 【解析】
B 乙
10
20 3
30
40 5
50
1 2 4 A 甲 10 20 30 40 50
利用折线图来讲解甲走一个全程需要 2400÷300=8 (分钟) , 乙走一个全程需要 2400÷240 =10(分钟) ,通过画图如上知道第二次相遇离 A 点最近,此时甲乙共走了 3 个全程,乙走 的路程为:2400×3÷(300+240)×240=3200(米) ,由图可知乙走了一个全程多距 A 的距离,所以距离 A 地为:3200-2400=800(米) 。 【例 2】 【 解 析 】 第 一 次 , 甲 比 乙 多 走 的 路 程 S差 120 2 240 米 , 根 据 公 式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一届小机灵杯五年级决赛试题
2、商场元旦促销,将彩色电视机降价20%出售,那么元旦促销活动过后商场要涨价 %
才能恢复到原价。

[答案]25
[解答]假设电视机原价为a ,降价后的售价为
()120%0.8a a -=。

假设要涨价%x 才能恢复到
3、已知13411a b -=,那么()20132065b a --=______。

[答案]2068
[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯
-=⨯=,所以
()()20132065201365202068b a a b --=+-=
4、在一次象棋比赛中,每两个选手恰好比赛一局,赢者每局得2分,输者每局得0分,平局则两个选手各得1分。

今有4名计分者统计了这次比赛中全部的得分总数,由于有的计分者粗心,其数据各不相同,分别为1979、1980、1984、1985。

经核实,其中有1人统计无误。

这次比赛共有________名选手参加。

[答案]45
[解答]容易知道不管比赛是输赢的情况,还是平局的情况,一局两个人的分数总和总是为2分。

所以最后总比分应该是一个偶数。

从四个答案中,明显1984或者1980可能是总分数。

也就是说比赛的总场次为19842992÷=场或者19802990÷=场。

设比赛一共有n 名选手参加,每
A B C
297
+
[答案]60
()
1001029710010992973
A B C C B A C A C A
+++=++⇒-=⇒-=。

所以满足条件的()
,A C可能是()()()()()()
1,4,
2,5,3,6,4,7,5,8,6,9。

由于本题对B没有要求(B可以取6、如图所示,P为平行四边形ABDC外一点。

已知PCD
∆的面积等于5平方厘米,PAB

的面积等于11平方厘米。

则平行四边形ABCD的面积是
[答案]12
于AB CD
=,所以
而平行四边形ABDC 的面积为ABDC S AB EF =⋅,所以()212ABDC
PAB PCD S S S ∆∆=-=
7、等差数列1219,,,a a a L 共有19项。

已知171418120a a a a +++=,那么
[答案]570
[解答]设等差数列的公差为d ,则7114118161317a a d a a d a a d
=+⎧⎪
=+⎨⎪=+⎩,所以
17141811436120930a a a
a a d a d +++=+=⇒+=。


8、一个容器内已经住满了水,现有大中小三个铅球,第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次取出中球,沉入大球。

已知第一次溢出的水是第二次的3倍,第三次溢出的水是第一次的3倍,求三个球的体积比为 [答案]3:4:13
[解答]设小球的体积为x ,中球的体积为y ,大球的体积为z 。

(1)
由于第一次把小球沉入水中,所以第一次溢出的水的体积为x
(2) 由于第二次把小球取出,把中球沉入水中,所以第二次溢出的水的体积为y x -
(3) 由于第三次取出中球,沉入大球,所以第三次溢出的水的体积为z y -
根据已知条件,
9、一个长方形,是由5行3列的小正方形组成的,小正方形的边长为1cm ,这个长方形里有24个顶点,选择其中3个顶点,用一线段围成一个面积为2.5平方厘米的三角形。

这样子的三角形,长方形里一共有 个 [答案]124
[解答]李老师的解答
两个方程了:
11、由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有 块 [答案]64
[解答]设长方体的长、宽、高分别为,,l m n (不妨设l
m n ≥≥)
,容易知道只有一面染色的小正方体只有每个面上可能有一些。

要使得其最多,那么2n =(否则内部有太多的小正方体都是所有面没有染色的)。

由于12060lmn lm =⇒=。

此时一面染色的小正方体的个数为
()()()()()22222242602242644l m lm l m l m l m --=--+=--+=⨯-+。

要使得()2644l m ⨯-+最大,那么就是要使l m +最小。

考虑到60lm =,容易知道当10,6
l m ==时,l m +最小。

所以只有一面染色的小正方体最多有()264410664⨯-⨯+=
12、一个正整数数列,第一项是8,第二项是1,从第三项起每一项等于它前面两项之和,请问该数列第2013项被105除,余数是 [答案]16
[解答]由于105357=⨯⨯,所以先计算分别除以3,5,7的余数。

(1) 除以3的余数:2,1,0,1,1,2,0,2,2,1,0,1,L 1442443
一个周期
,由于20138251+5=⨯,所以其余数为
1
(2) 除以5的余数:3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,L 1
4444444244444443
一个周期
,由于
201320100+13=⨯,所以其余数为1
(3) 除以7的余数:1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,L 1444442444443
一个周期
,由于
2013
16125+13=⨯,所以其余数为2
综上所述,这个数除以3余1;除以5余1;除以7余2;容易知道这样的数最小为16,所以最后的余数为16
[答案]81 [解答]
由于12345679A B ⨯⨯最大为9912345679999999999⨯⨯=(一个九位数),不妨设
(如果不理解这步,可以用123456789000000000123456789-来体会一下) 所以最后数字和为9981⨯=
14、一个31位的整数,如果把这个整数的每个相邻的两个数码组成的整数作为两位数来考虑的话,任何一个这样的两位数都可以被17或23整除。

另外,这个31位的整数的数码中只有一个7。

则这个31位数的所有的数码之和为 [答案]151
[解答]首先我们证明这个7肯定是最后一位。

如果不是最后一位,那么后面肯定还有一位,不妨
17,517,8517,68517,468517,3468517,23468517,923468517,6923468517,
46923468517,346923468517,L L 123
一个周期
由此我们知道31位数,除去后面4位,剩下有27位。

由于27552=⨯+,所以最后所有的和为()851792346546151++++++++⨯++=
15、直角梯形ABCD ,上底长1,下底长7,连接AB 边上的E 点和DC 边上的F 点,形成与AD 和BC 平行的线段EF 把直角梯形面积一分为二,则线段EF 的长度为 [答案]5
[解答]由相似模型我们知道,2
149
GAD GBC S AD GAD GBC S BC ∆
∆⎛⎫∆∆⇒== ⎪
⎝⎭∽。

设4948GAD GBC ABCD S k S k S k ∆∆=⇒=⇒=。

由于EF 把直角梯形面积一分为二,所以
2
15525GAD GEF S AD GAD GEF EF AD EF S ∆∆⎛

∆∆⇒==⇒== ⎪
⎝⎭
∽。

相关文档
最新文档