流体力学 第三章
合集下载
流体力学-第三章

空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。
第三章 流体力学

1、理想流体:
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax
P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0
gh
p0
1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮
1 2
V
v
2 1
gh2V
gh1V
即:
p1
1 2
v
2 1
gh1
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax
P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0
gh
p0
1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮
1 2
V
v
2 1
gh2V
gh1V
即:
p1
1 2
v
2 1
gh1
流体力学第三章

精品课件
11.流体流动时,流场各空间点 的参数不随时间变化,仅随空 间位置而变,这种流动称为 () A、恒定流; B、非恒定流; C、非均匀流;
D、均匀流;
精品课件
12.一般情况下,流线不能相交,但
在(
)处除外。
A 驻点;
B 奇点;
C相切点;
D 驻点、奇点和相切点
精品课件
13.流线与迹线,在通常情况下
均 可 能 沿 程 有 升 有 降;
(C) 总 压 线 及 位 压 线 总 是 沿 程
下 降 的, 势 压 线 沿 程 可 能 有 升
有 降;
(D) 总 压 线 沿 程 总 是 下 降 的,
势压线与位压线沿程可能有升
有 降。
精品课件
15. 流体在作恒定流动时,过流
场同一固定点的流线和迹线相互
(
)
A 平行;
同一条流线上两点A、B,A点的流速大 于B点的流速,则
(A)A 点 的 测 压 管 水 头>B 点 的 测 压 管 水 头; (B)A 点 的 测 压 管 水 头<B 点 的 测 压 管 水 头; (C)A 点 的 压 强 水 头>B 点 的 压 强 水 头; (D)A 点 的 压 强 水 头<B 点 的 压 强 水 头。 精品课件
D 前三种情况都有可能。
精品课件
18. 水 流 一 定 方 向 应 该
是( )
A. 从 高 处 向 低 处 流;
B. 从 压 强 大 处 向 压 强
小 处 流;
C. 从 流 速 大 的 地 方 向
流 速 小 的 地 方 流;
D. 从 单 位 重 量 流 体 机
械能高的地方向低的
地方流
11.流体流动时,流场各空间点 的参数不随时间变化,仅随空 间位置而变,这种流动称为 () A、恒定流; B、非恒定流; C、非均匀流;
D、均匀流;
精品课件
12.一般情况下,流线不能相交,但
在(
)处除外。
A 驻点;
B 奇点;
C相切点;
D 驻点、奇点和相切点
精品课件
13.流线与迹线,在通常情况下
均 可 能 沿 程 有 升 有 降;
(C) 总 压 线 及 位 压 线 总 是 沿 程
下 降 的, 势 压 线 沿 程 可 能 有 升
有 降;
(D) 总 压 线 沿 程 总 是 下 降 的,
势压线与位压线沿程可能有升
有 降。
精品课件
15. 流体在作恒定流动时,过流
场同一固定点的流线和迹线相互
(
)
A 平行;
同一条流线上两点A、B,A点的流速大 于B点的流速,则
(A)A 点 的 测 压 管 水 头>B 点 的 测 压 管 水 头; (B)A 点 的 测 压 管 水 头<B 点 的 测 压 管 水 头; (C)A 点 的 压 强 水 头>B 点 的 压 强 水 头; (D)A 点 的 压 强 水 头<B 点 的 压 强 水 头。 精品课件
D 前三种情况都有可能。
精品课件
18. 水 流 一 定 方 向 应 该
是( )
A. 从 高 处 向 低 处 流;
B. 从 压 强 大 处 向 压 强
小 处 流;
C. 从 流 速 大 的 地 方 向
流 速 小 的 地 方 流;
D. 从 单 位 重 量 流 体 机
械能高的地方向低的
地方流
流体力学_第三章_伯努利方程及动量方程

4根线具有能量 意义: 总水头线 测压管水头线 水流轴线 基准面线
23
第三节 恒定总流的伯努利方程
例 用直径d=100mm的水管从水箱引水,水管水面与
管道出口断面中心高差H=4m,水位保持恒定,水头 损失hw=3m水柱,试求水管流量,并作出水头线 解:以0-0为基准面,列1-1、2-2断面的伯努利方程
第三节 恒定总流的伯努利方程
渐变流及其性质
渐变流
(u )u 0
渐变流的过流断面近于平 面,面上各点的速度方向 近于平行。 渐变流过流断面上的动压 强与静压强的分布规律相 同,即:
p z c g
1
第三节 恒定总流的伯努利方程
大小的变化 流速的变化 方向的变化
出现直线惯性力 压强沿流向变化
微小圆柱体的力平衡
p1dA ldA cos p2 dA l cos Z1 Z 2 p1 (Z1 Z 2 ) p2
Z1 p1 Z2 p2
4
第三节 恒定总流的伯努利方程
Z1 p1
Z2
p2
均匀流过流断面上压强 分布服从水静力学规 律
40
2
,
2
第三节 恒定总流的伯努利方程
( a )( z2 z1 ) ( a )( z2 z1 ) ( a )
单位体积气体所受有效浮力
v1 2 gh d1 1 d 2
4
4
2 1
2 1
30
第三节 恒定总流的伯努利方程
Q v1
4
d
2 1
4
d
2 1
2 gh d1 d 1 2
23
第三节 恒定总流的伯努利方程
例 用直径d=100mm的水管从水箱引水,水管水面与
管道出口断面中心高差H=4m,水位保持恒定,水头 损失hw=3m水柱,试求水管流量,并作出水头线 解:以0-0为基准面,列1-1、2-2断面的伯努利方程
第三节 恒定总流的伯努利方程
渐变流及其性质
渐变流
(u )u 0
渐变流的过流断面近于平 面,面上各点的速度方向 近于平行。 渐变流过流断面上的动压 强与静压强的分布规律相 同,即:
p z c g
1
第三节 恒定总流的伯努利方程
大小的变化 流速的变化 方向的变化
出现直线惯性力 压强沿流向变化
微小圆柱体的力平衡
p1dA ldA cos p2 dA l cos Z1 Z 2 p1 (Z1 Z 2 ) p2
Z1 p1 Z2 p2
4
第三节 恒定总流的伯努利方程
Z1 p1
Z2
p2
均匀流过流断面上压强 分布服从水静力学规 律
40
2
,
2
第三节 恒定总流的伯努利方程
( a )( z2 z1 ) ( a )( z2 z1 ) ( a )
单位体积气体所受有效浮力
v1 2 gh d1 1 d 2
4
4
2 1
2 1
30
第三节 恒定总流的伯努利方程
Q v1
4
d
2 1
4
d
2 1
2 gh d1 d 1 2
流体力学第三章(相似原理与量纲分析)

2 1 2 2
它们所反映的是没有量纲(单位)的数,称为无量纲数
l Sr 斯特劳哈尔数 tu
欧拉数
雷诺数
Vl
Re
p Eu 2 V
V2 Fr 弗劳德数 gl
25
2w 2w 2w w w w w p u v w 2 2 2 g t y z z z x x y
2伯努利方程5简单情况下的ns方程的准确解3第一节流体力学的模型实验和相似概念第二节相似判据第三节无量纲方程第四节特征无量纲数第五节量纲分析和定理主要内容第三章相似原理与量纲分析4实验数据的简化处理设计实验的基本要求理论流体力学第一二章实验流体力学普通实验数值实验5第一节流体力学的模型实验和相似概念流体力学实验
13
通常可以采用两种方法来确定动力相似判据: (一)方程分析法:描述流体的运动方程应该是一致的。 从而得到必须满足的关系式,即相似判据;
(二)量纲分析方法:以量纲分析为基础的一种方法。
14
方程分析法
动力相似判据
前提条件:假定原型流场和模型流场是满足几何相似、 时间相似和运动相似的,考虑不可压缩粘性流体的简单 情况。 首先,给出有关相似常数的定义:
此时,两个流场称之为是流场 相似或运动相似的。流场相似 也就是在两流场对应点的速度 的大小、方向成常数比例。
Q P
9
动力相似
动力相似:要求在两流场相应点上各动力学变量 成同一常数比例。 例如原型流场和模型流场在运动过程中受到的 质量力、粘性力等动力学变量成正比。
10
几何相似 时间相似 有比较清晰的关系表达式 运动相似 (可直接观测) 判断什么条件下两流场才满足动力相似??
u = U u’
它们所反映的是没有量纲(单位)的数,称为无量纲数
l Sr 斯特劳哈尔数 tu
欧拉数
雷诺数
Vl
Re
p Eu 2 V
V2 Fr 弗劳德数 gl
25
2w 2w 2w w w w w p u v w 2 2 2 g t y z z z x x y
2伯努利方程5简单情况下的ns方程的准确解3第一节流体力学的模型实验和相似概念第二节相似判据第三节无量纲方程第四节特征无量纲数第五节量纲分析和定理主要内容第三章相似原理与量纲分析4实验数据的简化处理设计实验的基本要求理论流体力学第一二章实验流体力学普通实验数值实验5第一节流体力学的模型实验和相似概念流体力学实验
13
通常可以采用两种方法来确定动力相似判据: (一)方程分析法:描述流体的运动方程应该是一致的。 从而得到必须满足的关系式,即相似判据;
(二)量纲分析方法:以量纲分析为基础的一种方法。
14
方程分析法
动力相似判据
前提条件:假定原型流场和模型流场是满足几何相似、 时间相似和运动相似的,考虑不可压缩粘性流体的简单 情况。 首先,给出有关相似常数的定义:
此时,两个流场称之为是流场 相似或运动相似的。流场相似 也就是在两流场对应点的速度 的大小、方向成常数比例。
Q P
9
动力相似
动力相似:要求在两流场相应点上各动力学变量 成同一常数比例。 例如原型流场和模型流场在运动过程中受到的 质量力、粘性力等动力学变量成正比。
10
几何相似 时间相似 有比较清晰的关系表达式 运动相似 (可直接观测) 判断什么条件下两流场才满足动力相似??
u = U u’
流体力学 第三章 流体动力学

按周界性质: ①总流四周全部被固体边界限制——有压流。如 自来水管、矿井排水管、液压管道。 ②总流周界一部分为固体限制,一部分与气体接 触——无压流。如河流、明渠。 ③总流四周不与固体接触——射流。如孔口、管 嘴出流。
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2
面
6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2
面
6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点
流体力学 第三章

无数微元流束的总和称为总流。自然界和工程中所遇到 的管流或渠流都是总流。根据总流的边界情况,可以把总流 流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
流体力学 第三章

t x
y
z
物理意义:单位时间内通过单位体积表面流入的 流体质量,等于单位时间内内部质量的增量。
(2)、可压缩定常流动连续性方程
当为恒定流时,有 =0
t(uLeabharlann ) (uy ) (uz ) 0x
y
z
(3)、不可压缩流体定常流动或非定常流动连续 性方程
当为不可压缩流时,有ρ=常数,则:
ux uy uz 0 x y z
2z t 2
流体的压强、密度也可表示为:p=f4(a, b, c, t), ρ=f5(a, b, c, t)
p:流体流经某点时的压强——流体动压强 p=(px+py+pz)/3
注:
由于流体质点的运动轨迹非常复杂,而 实际上也无须知道个别质点的运动情况, 所以除了少数情况(如波浪运动)外,在 工程流体力学中很少采用。
二、欧拉法
欧拉法(Euler Method)是以流体质点流经流场 中各空间点的运动,即以流场作为描述对象研究 流动的方法。——流场法
欧拉法不直接跟踪质点的运动过程,而是以充满 运动液体质点的空间——流场为对象。研究各时 刻质点在流场中的变化规律。将个别流体质点运 动过程置之不理,而固守于流场各空间点。通过 观察在流动空间中的每一个空间点上运动要素随 时间的变化,把足够多的空间点综合起来而得出 的整个流体的运动情况。
一、迹线
某一质点在某一时段内的运动轨迹线。
烟火的轨迹为迹线
在迹线上取微元长度dl表示某点在dt时间内的微 小位移,dl在各坐标轴上的投影分别为dx、dy、dz ,则其速度为:
u dl dt
ux
dx dt
uy
dy dt
uz
dz dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位压强势能)
z p
单位重量流体所具有的总势能 (简称单位总势能)
伯努利积分
p u2
z
2g
Cl
单位重量流体所具有的动能(简称单
u 2 位动能) 2g
****************
p u2 z
2g
单位重量流体所具有的总机 械能(简称单位总机械能)
欧
在理想流体的恒定
拉 流动中,位于同一条
观
流线上任意两个流体
• 迹线是流体质点
运动的轨迹,是与 拉格朗日观点相对 应的概念。
• 拉格朗日法中位移表达式
r r(a,b,c,t)
即为迹线的参数方程。
t 是变数,a,b,c 是参
数。
18
(2)迹线的微分方程
式中,ux,uy,uz 均为时空t,x,y,z的函数, 且t是自变量。 注意:恒定流时流线和迹线重合;
非恒定流时流线和迹线不重合;
四.流量(discharge)
指单位时间内通过河渠、管道等某一过水横断 面的流体数量。
体积流量(m3/s): 质量流量(kg/s):
• 过水断面
Байду номын сангаас
与流动方向正交的流管的横断面
• 过水断面为面积微元的流管
叫元流管,其中的流动称为元
流。
dA1
u1
dA2
u2 • 过水断面为有限面积的流管中的流动叫总流。总流可看作无数
2. 过流断面为渐变流;
3. 均匀不可压缩流体;
4.质量力只有重力
三.能量方程的扩展
分叉恒定流
在有分流汇入及流出的情况下,连续方程只须 作相应变化。质量的总流入 = 质量的总流出。
Qm1 Qm2 Qm3
Qm1
Qm2
Qm3
第七节 能量方程的应用
一.求解问题: 流量流速, 压强, 流量流速和压强 二.能量方程的解题步骤:
H z p u2 总水头
2g
水头线 将各项水头沿程变化的情况几何表示出来。
u2 2g
Hp
z
o
总水头线 测压管水头线
位置水头线
水平基准线 o
理想流体 恒定元流 的总水头 线是水平 的。
假定
1. 理想流体 2.恒定流; 3. 均匀不可压缩流体; 4.质量力只有重力,即X=Y=0,Z=-g; 5. 沿同一条流线
解: uz =0,所以是二维流动,二维流动的流线方程微分为
dx dy
ux uy
将两个分速度代入流线微分方程,得到
dx dy
ky kx
即
xdx+ydy=0
积分上式得到 x2+y2=c
即流线簇是以坐标原点为圆心的同心圆。
2.迹线
(1)迹线的定义 迹线(path line)某一质 点在某一时段内的运动 轨迹线。
举例
已知直角坐标系中的速度场 ux=x+t; uy= -y+t;uz=0,试求t =
0 时过 M(-1,-1) 点的迹线。
解:
由迹线的微分方程:
d x d y d z dt
ux
uy
uz
ux=x+t;uy=-y+t;uz=0
t = 0 时过 M(-1,-1):
C1 = C2 = 0
dx xt dt
1.选择基准面:基准面可任意选定,但应以简化计算为原则。
例如选过水断面形心(z=0),或选自由液面(p=0)
等。 2.选择计算断面:计算断面应选择均匀流断面或渐变流断面,
20 2 1 V22 15 0 V22
16 2g
2g
管中流量
V2
19.6 7 16 12.(1 m/s) 15
qV
4
d 22V2
0.052 12.1 0.02(4 m3/s)
4
4/8/2020
43
第六节 恒定总流能量方程
一、总流能量方程
设单位重量上的某流线的能量为 e z p u 2 2g
• 渐变流和急变流是工程意义上对流动是否符合均匀流条件的
划分,两者之间没有明显的、确定的界限,需要根据实际情况 来判定
45
渐变流:流线的曲率很小接近平行,过流断面上
的压力基本上是静压分布者为渐变流 (gradually varied flow),否则为急变流。
渐变流——沿程逐渐改变的流动。
对渐变流, p z C
12
(2)流线的性质
a.同一时刻的不同流线, 不能相交。
b.流线不能是折线,而是 一条光滑的曲线。
c.流线簇的疏密反映了速 度的大小
(3)流线的方程
根据流线的定义,可以求得流线的微分方程, 设ds为流线上A处的一微元弧长:
u为流体质点在A点的流速:
因为 所以
——流线方程
【例】
有一流场,其流速分布规律为:ux= -ky, uy = kx, uz=0, 试求其流线方程。
,x方向有:
理想流体的运动微分方程(欧拉运动微分方程)
(3-10)
适用范围:恒定流或非恒定流,可压缩流或不 可压缩流体。
恒定流
恒定流的时变加速度为零,但位变加速度可以不为零。
u 0 t
u u(x, y, z)
对于不可压缩流体的流动,连续方程为
u ux u y uz 0 x y z
dG重量上的能量为 dE e • dG ( z p u 2 )udA
2g
总能量
E
Ae • dG
A (z
p
u 2 )udA
2g
平均单位重量上的能量为:
e
E
Q
1
Q
A (z
p
u 2 )udA
2g
是 否
是 流渐
变
接
近
均
匀 否 流急
流
变
?
流线虽不平行,但夹角较小; 流线虽有弯曲,但曲率较小。
流线间夹角较大; 流线弯曲的曲率较大。
Ⅱ管测压孔
【例】 水流通过所示管路流入大气,已知:U形测压
管中水银柱高差Δh=0.2m,h1=0.72m H2O,管径d1=0.1m ,管嘴出口直径d2=0.05m,不计管中水头损失,试求管 中流量qv。
4/8/2020
41
【解】 首先计算1-1断面管路中心的压强。因为A-B为 等压面,列等压面方程得:
空间坐标
(a,b,c)为t=t0起始时刻质点所在的空间位置坐标,称为拉 格朗日数。所以,任何质点在空的位置(x,y,z)都可看 作是(a,b,c)和时间t的函数.
(1)(a,b,c)=const , t为变数,可以得出某个指 定质点在任意时刻所处的位置。
(2)(a,b,c)为变数,t=const,可以得出某一瞬间 不同质点在空间的分布情况。
各水力运动要素均不随时间而变化。
即:
三者都等于0。
(2)非恒定流
非恒定流(unsteady flow):
又称非定常流, 是指流场中的流体 流动空间点上各水 力运动要素中,只 要有任何一个随时 间的变化而变化的 流动。
• 流动是否恒
定与所选取的 参考坐标系有 关,因此是相对 的概念。
10
二. 流线与迹线
个元流的集合。总流的过水断面一般为曲面。
25
五. 断面平均流速v
总流过水断面上各点 的流速是不相同的,所 以常采用一个平均值来 代替各点的实际流速, 称断面平均流速v。
第三节 连续性方程
根据质量守恒: 因为 当流体不可压缩时,密度为常数 ρ1= ρ1
1
第四节 理想流体运动微分方程
1. Euler方程
由于流体质点的运动轨迹非常复杂,而实用上无
须知道个别质点的运动情况,所以除了少数情况(如 波浪运动)外,在工程流体力学中很少采用。
2.欧拉法
欧拉法(euler method)是以流体质点流 经流场中各空间点的运动即以流场作为描 述对象研究流动的方法。——流场法
它不直接追究质点的运动过程,而是以 充满运动流体质点的空间——流场为对象。 研究各时刻质点在流场中的变化规律。
恒定条件下理想流体运动方程沿流线的积分:
d ux dt
ux
d
t
duy dt
uy
d
t
d uz dt
uz
d
t
X
d
x
Y
d
y
Z
d
z
1
r
p x
d
x
p y
d
y
p z
d
z
上式左边可改写为:
dux dt
ux
dt
duy dt
uy
dt
duz dt
uz
dt
ux
dux
uy
duy
uz
duz
d
u
2 x
2
d
u
2 y
2
d
u
• 元流能量方程的应用举例
毕
托
h
管
测
Ⅰ管
速
pA
A
u
B
uA u uB 0 zA zB
代入 伯努利方程
pA u2 pB 0
2g
假设
Ⅰ、Ⅱ管
的存在不
扰动原流
pB
场。
Ⅱ管
u 2g( pB pA) 2gh
Ⅰ管 —— 测压管,开口方向与流速垂直。 Ⅱ管 —— 总压管,开口方向迎着流速。
从理想流体中任取 一(x,y,z)为中心的微元六 面体为控制体,边长为 dx,dy,dz,中心点压强为 p(x,y,z) ,如图.
受力分析(x方向为例):
1.表面力 因为理想流体,所以t=0 左表面
右表面
2.质量力
z p
单位重量流体所具有的总势能 (简称单位总势能)
伯努利积分
p u2
z
2g
Cl
单位重量流体所具有的动能(简称单
u 2 位动能) 2g
****************
p u2 z
2g
单位重量流体所具有的总机 械能(简称单位总机械能)
欧
在理想流体的恒定
拉 流动中,位于同一条
观
流线上任意两个流体
• 迹线是流体质点
运动的轨迹,是与 拉格朗日观点相对 应的概念。
• 拉格朗日法中位移表达式
r r(a,b,c,t)
即为迹线的参数方程。
t 是变数,a,b,c 是参
数。
18
(2)迹线的微分方程
式中,ux,uy,uz 均为时空t,x,y,z的函数, 且t是自变量。 注意:恒定流时流线和迹线重合;
非恒定流时流线和迹线不重合;
四.流量(discharge)
指单位时间内通过河渠、管道等某一过水横断 面的流体数量。
体积流量(m3/s): 质量流量(kg/s):
• 过水断面
Байду номын сангаас
与流动方向正交的流管的横断面
• 过水断面为面积微元的流管
叫元流管,其中的流动称为元
流。
dA1
u1
dA2
u2 • 过水断面为有限面积的流管中的流动叫总流。总流可看作无数
2. 过流断面为渐变流;
3. 均匀不可压缩流体;
4.质量力只有重力
三.能量方程的扩展
分叉恒定流
在有分流汇入及流出的情况下,连续方程只须 作相应变化。质量的总流入 = 质量的总流出。
Qm1 Qm2 Qm3
Qm1
Qm2
Qm3
第七节 能量方程的应用
一.求解问题: 流量流速, 压强, 流量流速和压强 二.能量方程的解题步骤:
H z p u2 总水头
2g
水头线 将各项水头沿程变化的情况几何表示出来。
u2 2g
Hp
z
o
总水头线 测压管水头线
位置水头线
水平基准线 o
理想流体 恒定元流 的总水头 线是水平 的。
假定
1. 理想流体 2.恒定流; 3. 均匀不可压缩流体; 4.质量力只有重力,即X=Y=0,Z=-g; 5. 沿同一条流线
解: uz =0,所以是二维流动,二维流动的流线方程微分为
dx dy
ux uy
将两个分速度代入流线微分方程,得到
dx dy
ky kx
即
xdx+ydy=0
积分上式得到 x2+y2=c
即流线簇是以坐标原点为圆心的同心圆。
2.迹线
(1)迹线的定义 迹线(path line)某一质 点在某一时段内的运动 轨迹线。
举例
已知直角坐标系中的速度场 ux=x+t; uy= -y+t;uz=0,试求t =
0 时过 M(-1,-1) 点的迹线。
解:
由迹线的微分方程:
d x d y d z dt
ux
uy
uz
ux=x+t;uy=-y+t;uz=0
t = 0 时过 M(-1,-1):
C1 = C2 = 0
dx xt dt
1.选择基准面:基准面可任意选定,但应以简化计算为原则。
例如选过水断面形心(z=0),或选自由液面(p=0)
等。 2.选择计算断面:计算断面应选择均匀流断面或渐变流断面,
20 2 1 V22 15 0 V22
16 2g
2g
管中流量
V2
19.6 7 16 12.(1 m/s) 15
qV
4
d 22V2
0.052 12.1 0.02(4 m3/s)
4
4/8/2020
43
第六节 恒定总流能量方程
一、总流能量方程
设单位重量上的某流线的能量为 e z p u 2 2g
• 渐变流和急变流是工程意义上对流动是否符合均匀流条件的
划分,两者之间没有明显的、确定的界限,需要根据实际情况 来判定
45
渐变流:流线的曲率很小接近平行,过流断面上
的压力基本上是静压分布者为渐变流 (gradually varied flow),否则为急变流。
渐变流——沿程逐渐改变的流动。
对渐变流, p z C
12
(2)流线的性质
a.同一时刻的不同流线, 不能相交。
b.流线不能是折线,而是 一条光滑的曲线。
c.流线簇的疏密反映了速 度的大小
(3)流线的方程
根据流线的定义,可以求得流线的微分方程, 设ds为流线上A处的一微元弧长:
u为流体质点在A点的流速:
因为 所以
——流线方程
【例】
有一流场,其流速分布规律为:ux= -ky, uy = kx, uz=0, 试求其流线方程。
,x方向有:
理想流体的运动微分方程(欧拉运动微分方程)
(3-10)
适用范围:恒定流或非恒定流,可压缩流或不 可压缩流体。
恒定流
恒定流的时变加速度为零,但位变加速度可以不为零。
u 0 t
u u(x, y, z)
对于不可压缩流体的流动,连续方程为
u ux u y uz 0 x y z
dG重量上的能量为 dE e • dG ( z p u 2 )udA
2g
总能量
E
Ae • dG
A (z
p
u 2 )udA
2g
平均单位重量上的能量为:
e
E
Q
1
Q
A (z
p
u 2 )udA
2g
是 否
是 流渐
变
接
近
均
匀 否 流急
流
变
?
流线虽不平行,但夹角较小; 流线虽有弯曲,但曲率较小。
流线间夹角较大; 流线弯曲的曲率较大。
Ⅱ管测压孔
【例】 水流通过所示管路流入大气,已知:U形测压
管中水银柱高差Δh=0.2m,h1=0.72m H2O,管径d1=0.1m ,管嘴出口直径d2=0.05m,不计管中水头损失,试求管 中流量qv。
4/8/2020
41
【解】 首先计算1-1断面管路中心的压强。因为A-B为 等压面,列等压面方程得:
空间坐标
(a,b,c)为t=t0起始时刻质点所在的空间位置坐标,称为拉 格朗日数。所以,任何质点在空的位置(x,y,z)都可看 作是(a,b,c)和时间t的函数.
(1)(a,b,c)=const , t为变数,可以得出某个指 定质点在任意时刻所处的位置。
(2)(a,b,c)为变数,t=const,可以得出某一瞬间 不同质点在空间的分布情况。
各水力运动要素均不随时间而变化。
即:
三者都等于0。
(2)非恒定流
非恒定流(unsteady flow):
又称非定常流, 是指流场中的流体 流动空间点上各水 力运动要素中,只 要有任何一个随时 间的变化而变化的 流动。
• 流动是否恒
定与所选取的 参考坐标系有 关,因此是相对 的概念。
10
二. 流线与迹线
个元流的集合。总流的过水断面一般为曲面。
25
五. 断面平均流速v
总流过水断面上各点 的流速是不相同的,所 以常采用一个平均值来 代替各点的实际流速, 称断面平均流速v。
第三节 连续性方程
根据质量守恒: 因为 当流体不可压缩时,密度为常数 ρ1= ρ1
1
第四节 理想流体运动微分方程
1. Euler方程
由于流体质点的运动轨迹非常复杂,而实用上无
须知道个别质点的运动情况,所以除了少数情况(如 波浪运动)外,在工程流体力学中很少采用。
2.欧拉法
欧拉法(euler method)是以流体质点流 经流场中各空间点的运动即以流场作为描 述对象研究流动的方法。——流场法
它不直接追究质点的运动过程,而是以 充满运动流体质点的空间——流场为对象。 研究各时刻质点在流场中的变化规律。
恒定条件下理想流体运动方程沿流线的积分:
d ux dt
ux
d
t
duy dt
uy
d
t
d uz dt
uz
d
t
X
d
x
Y
d
y
Z
d
z
1
r
p x
d
x
p y
d
y
p z
d
z
上式左边可改写为:
dux dt
ux
dt
duy dt
uy
dt
duz dt
uz
dt
ux
dux
uy
duy
uz
duz
d
u
2 x
2
d
u
2 y
2
d
u
• 元流能量方程的应用举例
毕
托
h
管
测
Ⅰ管
速
pA
A
u
B
uA u uB 0 zA zB
代入 伯努利方程
pA u2 pB 0
2g
假设
Ⅰ、Ⅱ管
的存在不
扰动原流
pB
场。
Ⅱ管
u 2g( pB pA) 2gh
Ⅰ管 —— 测压管,开口方向与流速垂直。 Ⅱ管 —— 总压管,开口方向迎着流速。
从理想流体中任取 一(x,y,z)为中心的微元六 面体为控制体,边长为 dx,dy,dz,中心点压强为 p(x,y,z) ,如图.
受力分析(x方向为例):
1.表面力 因为理想流体,所以t=0 左表面
右表面
2.质量力