新版北师大七年级下数学概率初步练习题有答案

合集下载

2020年北师大版七年级下数学第6章《概率初步》练习题及答案 (50)

2020年北师大版七年级下数学第6章《概率初步》练习题及答案 (50)

第 1 页 共 1 页 2020年北师大版七年级下数学第6章《概率初步》练习题
50.某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买30元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物320元
(1)他获得购物券的概率是多少?
(2)他得到100元、50元、20元购物券的概率分别是多少?
(3)若要让获得20元购物券的概率变为25,则转盘的颜色部分怎样修改?请说明理由.
解:(1)∵共有20种等可能事件,其中满足条件的有11种,
∴P (没有中奖)=920
, ∵甲顾客购物320元,
∴共有10次抽奖机会,
∴10次不中的概率为(920)10,
∴获得购物券的概率是1﹣(920)10.
(2)由题意得:共有20种等可能结果,其中获100元购物券的有2种,获得50元购物券的有4种,获得20元购物券的有5种,
∴P (获得100元)=
220=110; P (获得50元)=420=15; P (获得20元)=520=14;
(3)直接将3个无色扇形涂为黄色.。

北师大版七年级下册数学第六章 概率初步含答案(有一套)

北师大版七年级下册数学第六章 概率初步含答案(有一套)

北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、在一只不透明的口袋中放入红球5个,黑球1个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n是()A.3B.4C.5D.62、分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A. B. C. D.3、如图所示,电路图上有A,B,C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A、B,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于()A. B. C. D.4、一个密码箱的密码,每个数位上的数都是从0到9的自然数.若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少是( )A.3位B.4位C.5位D.6位5、甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.C.D.6、一个不透明的袋子里装有6个只有颜色可以不同的球,其中4个红球,2个白球.从袋中任意摸出1个球,则摸出的球是红球的概率为()A. B. C. D.7、同时抛掷两枚硬币,正面都朝上的概率为()A. B. C. D.8、从1~9这九个自然数中任取一个,是2的倍数的概率是( )A. B. C. D.9、甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为().A. B. C. D.10、在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A. B. C. D.11、从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够组成三角形的概率是()A. B. C. D.12、从连续正整数10-99中选出一个数,其中每个数被选出的机会相等,求选出的数其十位数字与个位数字的和为9的概率是()A. B. C. D.13、从-2、-1、0、1、2 、3这六个数中,随机抽取一个数,记作a,关于x的方程的解是正数,那么这 6 个数中所有满足条件的 a 的值有()个.A.1B.2C.3D.414、有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是,将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是随的增大而增大的概率是()A. B. C. D.115、小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是________.17、以下事件:①明天要下雨;②打开电视机,正在直播足球比赛;③拋掷一枚正方体骰子,掷得的点数不会小于1;④花2元钱买彩票,中500万元大奖;⑤守株待兔;⑥生老病死;⑦长生不老.其中是必然事件的有________,是不可能事件的有________(填序号)18、在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是________.19、在数学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:种子数(粒) 100 200 300 400发芽种子数(粒) 94 187 282 376由此估计这种作物种子发芽率约为________(精确到0.01).20、判断下面的说法:如果一件事发生的可能性为百万分之一,那么它就不可能发生________(填“正确”或“错误”)21、已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y= 图象上的概率是________.22、我们规定把同一副扑g牌中的红桃,黑桃,梅花三张牌背面朝上放在桌子上,将扑g牌洗匀后从中随机抽取一张,记下扑g牌的花色后放回,洗匀后再随机抽取一张,则两次抽取的扑g牌为同一张的概率为________.23、在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是________。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(43)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(43)

一、选择题(共10题)1.一个布袋里装有3个红球,2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是白球的概率是( )A.15B.25C.35D.232.下列成语描述的事件为随机事件的是( )A.守株待兔B.水中捞月C.瓮中捉鳖D.水涨船高3.下列事件中,不可能事件是( )A.投掷一枚均匀硬币,正面朝上B.明天是阴天C.任意选择某个电视频道,正在播放动画片D.两负数的和为正数4.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.235.下列事件中,属于必然事件的是( )A.经过路口,恰好遇到红灯B.抛一枚硬币,正面朝上C.打开电视,正在播放动画片D.四个人分成三组,这三组中有一组必有2人6.下列事件是随机事件的是( )A.随意掷一块质地均匀的骰子,掷出的点数是奇数B.在一个标准大气压下,把水加热到100∘C,水就会沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球7.如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称图形的概率是( )A.23B.12C.13D.148.如图所示的圆面图案是用相同半径的圆与圆弧构成的.若随意向圆面投掷一次飞镖,则飞镖击中黑色区域的概率是( )A.13B.14C.16D.299.下列事件中,是必然事件的是( )A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨10.以下说法正确的是( )A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是35二、填空题(共7题)11.从一副有52张的扑克牌(无大小王)中任意抽取一张,抽到梅花的可能性大小是.12.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除了颜色外都相同,若从中随机摸出一个球是白球的概率是13,则黄球的个数为个.13.一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是.14.不透明袋子中装有12个球,其中有3个红球、4个黄球和5个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.15.如果一个自然数右边的数字比左边的数字大,那么我们把它叫做“上升数”(如34,569,1269等都是上升数),现在任取一个两位数,是“上升数”的概率是.16.一个不透明的盒子内装有大小、形状相同的六个球.其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是.17.如果抛掷一枚普通的正方体骰子(每个面分别标有1,2,3,4,5,6),掷得的数是6的事件是;掷得的数小于7的事件是;掷得的数大于6的事件是.(填“必然事件”、“不可能事件”或“随机事件”)三、解答题(共8题)18.有六张牌,牌面数字分别为2,3,4,5,6,7.从中任意摸一张牌,摸到的牌面数字有几种不同的可能?摸到的牌面数字小于8属于什么事件?19.某超市为吸引顾客,进行“满88元可以参加抽奖”有奖销售活动.设定了两个一等奖,四个二等奖,十个三等奖,将奖项写在乒乓球上并与其他无标识、手感完全相同的乒乓球混在一起,一共50个,放在抽奖箱内.顾客消费满额后可获得一次抽奖机会,问顾客恰好抽到一等奖、二等奖、三等奖的可能性大小分别是多少?20.甲、乙两人玩一种游戏:共20张牌,牌面上分别与有−10,−9,−8,⋯,−1,1,2,⋯,10,洗好牌后,将背面朝上,每人从中任意抽取3张,然后将牌面上的三个数相乘,结果较大者为胜.(1) 你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会赢?(2) 你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会输?(3) 结果等于6的可能性有几种?把每一种都写出来.21.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1) 先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值 (2) 先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.22.有一张明星演唱会的门票,小明和小亮都想获得这张门票,亲自体验明星演唱会的热烈气氛,小红为他们出了一个主意,方法就是:从印有1,2,3,4,5,4,6,7的8张扑克牌中任取一张,抽到比4大的牌,小明去;否则,小亮去.(1) 求小明抽到4的概率.(2) 你认为这种方法对小明和小亮公平吗,请说明理由;若不公平,请你修改游戏规则,使游戏对双方都公平.23.一个盒子内有120个弹珠,一些是红色的,一些是蓝色的,一些是白色的.从盒子内任取一个,拿出蓝色弹珠的概率是25%,拿出红色弹珠的概率是45%,盒子内每种颜色的弹珠各有多少个?24.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如图两幅不完整的统计图.根据以上信息,解答下列问题:(1) 被调查的学生共有人,并补全条形统计图;(2) 在扇形统计图中,m=,n=,表示区域C的圆心角是;(3) 小明是被问卷调查的同学,那么他参加了哪项活动的可能性最大?25.一枚均匀骰子的每个面上分别标着数字1,2,3,4,5,6.任意抛掷这枚骰子一次.(1) 朝上一面的点数是奇数的有多少种不同的可能?(2) 朝上一面的点数是奇数的概率是多少?(3) 朝上一面的点数出现以下情况的概率最小的是( )(A)偶数(B)奇数(C)3的倍数(D)比2小的数答案一、选择题(共10题)1. 【答案】B【解析】∵布袋里装有3个红球,2个白球,每个球除颜色外均相同,∴从中任意摸出一个球,则摸出的球是白球的概率=23+2=25.【知识点】公式求概率2. 【答案】A【解析】A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意.【知识点】事件的分类3. 【答案】D【知识点】事件的分类4. 【答案】D【解析】设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:46=23.【知识点】公式求概率5. 【答案】D【解析】A、经过路口,恰好遇到红灯,是随机事件,不合题意;B、抛一枚硬币,正面朝上,是随机事件,不合题意;C、打开电视,正在播放动画片,是随机事件,不合题意;D、四个人分成三组,这三组中有一组必有2人,是必然事件,符合题意.故选:D.【知识点】事件的分类6. 【答案】A【知识点】事件的分类7. 【答案】C【解析】如图所示:使图形中的四枚棋子成为轴对称图形的概率是:26=13.【知识点】公式求概率8. 【答案】A【知识点】公式求概率9. 【答案】B【知识点】事件的分类10. 【答案】A【解析】A.一年中有365天,因而在同一年出生的400人中至少有两人的生日相同,故A选项正确;B.一个游戏的中奖率是1%,买100张奖券,不一定会中奖,故B选项错误;C.一副扑克牌中,随意抽取一张是红桃K,这是随机事件,故C选项错误;D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是38,故D选项错误.【知识点】事件的分类、公式求概率二、填空题(共7题)11. 【答案】14【知识点】公式求概率12. 【答案】24【解析】设黄球的个数是x个,根据题意得:1212+x =13,解得:x=24,经检验:x=24是原分式方程的解,∴黄球的个数为24.故答案为:24.【知识点】公式求概率13. 【答案】12【知识点】公式求概率14. 【答案】 14【知识点】公式求概率15. 【答案】 25【解析】两位数共有 90 个.10−19 这 10 个数中,“上升数”有 12,13,14,15,16,17,18,19 一共 8 个; 20−29 这 10 个数中,“上升数”有 23,24,25,26,27,28,29 一共 7 个; 30−39 这 10 个数中,“上升数”有 34,35,36,37,38,39 一共 6 个; 40−49 这 10 个数中,“上升数”有 45,46,47,48,49 一共 5 个; 50−59 这 10 个数中,“上升数”有 56,57,58,59 一共 4 个; 60−69 这 10 个数中,“上升数”有 67,68,69 一共 3 个; 70−79 这 10 个数中,“上升数”有 78,79 一共 2 个; 80−89 这 10 个数中,“上升数”有 89 一共 1 个; 90−99 这 10 个数中,“上升数”有 0 个;∴ 在两位数中共有 1+2+3+4+5+6+7+8=36, ∴ 任取一个两位数,是“上升数”的概率 =3690=25. 【知识点】公式求概率16. 【答案】 13【知识点】公式求概率17. 【答案】随机事件;必然事件;不可能事件【知识点】事件的分类三、解答题(共8题)18. 【答案】 6 种,必然事件.【知识点】事件的分类19. 【答案】一等奖:125,二等奖:225,三等奖:15.【知识点】公式求概率20. 【答案】(1) 当抽到 −10,−9,10 时,乘积为 900,不管对方抽到其他怎样的三张,都会赢. (2) 当抽到 10,9,−10 时,乘积为 −900,不管对方抽到其他怎样的三张,都会输. (3) 结果等于 6 的可能性有 5 种:1×2×3;−1×(−2)×3;−1×2×(−3);1×(−2)×(−3);1×(−1)×(−6). 【知识点】公式求概率21. 【答案】(1) 4;2,3 (2) 根据题意得:6+m 10=45,解得:m =2, 所以 m 的值为 2. 【解析】(1) 当袋子中全为黑球,即摸出 4 个红球时,摸到黑球是必然事件;当摸出 2 个或 3 个时,摸到黑球为随机事件.【知识点】公式求概率、必然事件22. 【答案】(1) 从 8 张扑克牌中任取一张,所有可能出现的结果一共有 8 种,每种结果出现的概率都相等,其中抽到 4 的结果有 2 种.所以,P(抽到4)=28=14.答:小明抽到 4 的概率为 14. (2) 不公平.理由如下:从 8 张扑克牌中任取一张,所有可能出现的结果一共有 8 种,每种结果出现的概率都相等,其中抽到比 4 大的结果有 3 种.所以,P(抽到比4大)=38. 所以小明去看演唱会的概率为 38,则小亮去看演唱会的概率为:1−38=58.因为 38<58,所以,游戏不公平.修改游戏规则如下:(答案不唯一)从印有 1,2,3,4,5,4,6,7 的 8 张扑克牌中任取一张,抽到比 4 大的牌,小明去;抽到比 4 小的牌,小亮去,抽到 4 重新抽,游戏对双方都公平. 【知识点】公式求概率23. 【答案】蓝色弹珠 30 个,红色弹珠 54 个,白色弹珠 36 个.【知识点】公式求概率24. 【答案】(1) 100;条形统计图为:(2) 30;10;144∘(3) 根据踢毽子的概率为310,喜欢乒乓球的概率为15,喜欢跳绳的概率为25,喜欢篮球的概率为110,故喜欢跳绳的可能性大.【解析】(1) 观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100−30−20−10=40人.(2) 因为A组有30人,D组有10人,共有100人,所以A组所占的百分比为:30%,D组所占的百分比为10%,所以m=30,n=10;表示区域C的圆心角为40100×360∘=144∘.【知识点】公式求概率、条形统计图、扇形统计图25. 【答案】(1) 3种.(2) 12.(3) D【知识点】公式求概率。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(12)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(12)

一、选择题(共10题)1.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件是必然事件的是( )A.掷一次骰子,朝上的一面的点数大于0B.掷一次骰子,朝上的一面的点数为7C.掷一次骰子,朝上的一面的点数为4D.掷两次骰子,朝上的一面的点数都是32.下列事件中必然事件的是A.任意买一张电影票,座位号是偶数B.正常情况下,将水加热到100∘C时水会沸腾C.三角形的内角和是360∘D.打开电视机,正在播动画片3.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( )A.45B.35C.25D.154.下列调查工作中,需采用普查方式的是( )A.军工厂对该厂生产的一批炮弹爆炸范围的调查B.环保部门对淮河某段水域的水污染情况的调查C.质检部门对各厂家生产的电池使用寿命的调查D.企业在给职工做工作服前进行尺寸大小的调查5.从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是A.标号小于6B.标号大于6C.标号是奇数D.标号是36.下列成语描述的事件为随机事件的是( )A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼7.有一个质地均匀的骰子,6个面上分别标有1∼6这6个整数,投掷这个骰子一次,朝上一面的数字出现“3”的概率是( )A.16B.14C.13D.128.一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是( )A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件9.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是( )A.12B.13C.14D.1610.掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数为奇数的概率是( )A.16B.13C.12D.23二、填空题(共7题)11.一个不透明的袋子中装有8个大小、形状、都一样的小球,其中有3个红球与5个黄球,从这8个球中任取一个球是红球的概率是.12.小莉家附近有一公共汽车站,大约每隔30分钟准有一趟车经过.那么“小莉在到达该车站后10分钟内可坐上车”这一事件的概率是.13.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1到6的点数,掷得面朝上的点数为偶数的概率为.16.不透明袋子中装有6个球,其中有1个红球,2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.17.一个不透明的袋子中装有4个红球,3个白球,2个黄球,这些小球除颜色不同外,其它都相同,从袋子中随机摸出1个小球,则摸出红球的概率是.三、解答题(共8题)18.如图,有一个转盘被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题.(1) ④事件发生的可能性大小是.(2) 多次实验,指针指向绿色的频率的估计值是.(3) 将这些事件的序号按发生的可能性从小到大的排序排列为:<<<.19.一袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出一球,请问:(1) “摸出的球是白球”是什么事件?它的概率是多少?(2) “摸出的球是黄球”是什么事件?它的概率是多少?(3) “摸出的球是红球或黄球”是什么事件?它的概率是多少?20.某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可以随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元,小明购买了100元的商品,他看到商场公布前10000张奖奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张)500100020006500(1) 求“紫气东来”奖券出现的频率.(2) 请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?说明理由.21.某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1) 他遇到红灯的概率大还是遇到绿灯的概率大?(2) 他遇到绿灯的概率是多少?22.在一个不透明的布袋中装有2个红球和若干个白球,它们除颜色外,其余都相同,若从中随意摸出一个球,摸到白球的机会是4,求布袋中白球的个数.523.小明和小杰想观看篮球比赛,但只有一张门票,小杰提议用如下方法决定到底谁去看比赛:小杰拿来三张扑克牌:黑桃2,,黑桃3,黑桃4,背面朝上洗匀后,任意抽出两张,若两张牌数字之和为偶数,小杰去;若两张牌数字之和为奇数,小明去.你认为这个游戏公平吗?如果你是小明,请你设计一个公平的游戏.24.小亮和小芳都想参加学校杜团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘.(1) 转盘转到2的倍数的概率是多少?(2) 你认为这个游戏公平吗?请说明理由.25.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1) 转动转盘中奖的概率是多少?(2) 元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?答案一、选择题(共10题)1. 【答案】A【知识点】事件的分类2. 【答案】B【解析】A、是随机事件,可能发生也可能不发生,故选项错误;B、必然事件,故选项正确;C、是不可能发生的事件,故选项错误;D、是随机事件,可能发生也可能不发生,故选项错误.【知识点】事件的分类3. 【答案】C【知识点】公式求概率4. 【答案】D【知识点】事件的分类5. 【答案】A【知识点】事件的分类6. 【答案】B【知识点】事件的分类7. 【答案】A【解析】∵在1∼6这6个整数中,“3”这个数字只有1个,∴朝上一面的数字出现“3”的概率是:1.6【知识点】公式求概率8. 【答案】C【解析】∵一个不透明的盒子中装有9个白球和1个黑球,∴从中任意摸出一球,可能摸到白球也可能摸到黑球,∴“摸到白球”和“摸到黑球”都是随机事件.故选:C.【知识点】事件的分类9. 【答案】C【解析】由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E,F,G,H四个,所以小球从E出口落出的概率是:14;故选:C.【知识点】公式求概率10. 【答案】C【解析】由题意可得,点数为奇数的概率是:36=12.【知识点】公式求概率二、填空题(共7题)11. 【答案】38【解析】在口袋中放有3个红球与5个黄球,共8个,这两种球除颜色外完全相同,随机从口袋中任取一个球,从这8个球中任取一个球是红球的概率是38.【知识点】公式求概率12. 【答案】13【知识点】公式求概率13. 【答案】49【解析】盒子中共有4+3+2=9个球,摸到白球概率为49.【知识点】公式求概率14. 【答案】25【知识点】公式求概率15. 【答案】12【知识点】公式求概率16. 【答案】13【解析】摸出的球是绿球的概率P=26=13.【知识点】公式求概率17. 【答案】49【解析】∵不透明的袋子中装有4个红球,3个白球,2个黄球,共有9个球,∴摸出红球的概率是49.【知识点】公式求概率三、解答题(共8题)18. 【答案】(1) 23(2) 16(3) ②;③;①;④【解析】(1) 由题意得P(指向黄色)=26=13,∴P(不指向黄色)=1−13=23.(2) 由题意得P(指向绿色)=16,∴指向绿色的频率估计值是16.(3) P(①)=36=12,P(②)=16,P(③)=26=13,P(④)=46=23.∴② <③ <① <④.【知识点】公式求概率19. 【答案】(1) 不可能事件,P(摸出的球是白球)=0.(2) 随机事件,P(摸出的球是黄球)=25.(3) 必然事件,P(摸出的球是红球或黄球)=1.【知识点】随机事件、公式求概率、必然事件、不可能事件20. 【答案】(1) 120(2) 抽奖合算.【知识点】公式求概率21. 【答案】(1) ∵红灯40s、绿灯60s、黄灯3s,∴他遇到绿灯的概率大.(2) 遇到绿灯的概率6040+60+3=60103,故遇到绿灯的概率是60103.【知识点】公式求概率、概率的概念及意义22. 【答案】设布袋中有n个白球,根据题意,得n2+n =45,解得n=8.经检验,n=8是所列方程的解,并且符合实际问题的意义.所以布袋中有8个白球.【知识点】公式求概率23. 【答案】不公平(p奇=23,p偶=13);设计方法不唯一,合理均可.【知识点】公式求概率24. 【答案】(1) ∵共有9种等可能的结果,其中2的倍数有4个,∴P(转到2的倍数)=49.(2) 游戏不公平.理由如下:∵共有9种等可能的结果,其中3的倍数有3个,∴P(转到3的倍数)=39=13.∵49>13,∴游戏不公平.【知识点】公式求概率25. 【答案】(1) 指针指向1,2,3,5,6,8都获奖,∴获奖概率P=68=34.(2) 获得一等奖的概率为18,1000×18=125(人),∴获得一等奖的人数可能是125人.【知识点】用样本估算总体、公式求概率。

2022年强化训练北师大版七年级数学下册第六章概率初步专题练习试题(含答案及详细解析)

2022年强化训练北师大版七年级数学下册第六章概率初步专题练习试题(含答案及详细解析)

北师大版七年级数学下册第六章概率初步专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是必然事件的是()A.水中捞月B.抛掷一枚质地均匀的硬币,正面向上C.打开电视,正在播广告D.如果a、b都是实数,那么ab=ba2、现有4条线段,长度依次是2、5、7、8,从中任选三条,能组成三角形的概率是()A.12B.14C.35D.343、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是()A.nm的值一定是12B.nm的值一定不是12C.m越大,nm的值越接近12D.随着m的增加,nm的值会在12附近摆动,呈现出一定的稳定性4、下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上5、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是()A.12B.13C.14D.1106、标标抛掷一枚点数从1-6的正方体骰子12次,有7次6点朝上.当他抛第13次时, 6点朝上的概率为()A.113B.712C.512D.167、下列说法不正确的是()A.不可能事件发生的概率是0B.概率很小的事件不可能发生C.必然事件发生的概率是1D.随机事件发生的概率介于0和1之间8、下列事件为必然事件的是A.打开电视机,正在播放新闻B.掷一枚质地均匀的硬币,正面儿朝上C.买一张电影票,座位号是奇数号D.任意画一个三角形,其内角和是180度9、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A.14B.12C.34D.110、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是()A.14B.13C.415D.15第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是4的倍数的概率是______________.2、某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后,紧接着绿灯开启42秒,再紧接着黄灯开启3秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是______.3、在不透明的箱子中装有10个形状质地大小相同的小球,其中编号依次为1,2,3,…,10,现从箱子中随机摸取一个小球,则摸得的是小球编号为质数的概率是 ________________.4、初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性______.(填“大”或“小”).5、在桌面上放有四张背面完全一样的卡片,卡片的正面分别标有数字4、﹣2、1、3,把四张卡片背面朝上,随机抽取两张,则两张卡片上的数字之和为正数的概率是________.三、解答题(5小题,每小题10分,共计50分)1、如图,小颖认为该转盘上共有三种不同的颜色,所以自由转动这个转盘,指针停在红色、黄色或蓝色区域的概率都是13,你认为小颖的说法对吗?请说明理由.2、指出下列事件中,哪些是必然事件,哪些是不可能事件.①两条平行线被第三条直线所截,同位角相等;②367人中至少有2人的生日相同;③没有水分,种子也会发芽;④某运动员百米赛跑的成绩是5s;⑤同种电荷相互排斥;⑥通常情况下,高铁比普通列车快;⑦用长度分别为3 cm,5 cm,8 cm的三条线段能围成一个三角形.3、有7张纸签,分别标有数字1,2,3,4,5,6,7,小明从中任意抽取一张纸签(不放回),小颖从剩余的纸签中任意抽取一张,谁抽到的数字大谁就获胜,然后两人把抽到的纸签都放回,重新开始游戏.(1)现小明已经抽到数字4,然后小颖抽纸签,那么小明获胜的概率是多少?小颖获胜的概率又是多少?(2)若小明已经抽到数字6,小明、小颖获胜的概率分别是多少?若小明已经抽到数字1,情况又如何?4、一个均匀材料制作的正方形骰子,各个面上分别标有数字1,2,3,4,5,6,连续抛掷两次,点数之和为6的概率是________.5、某书城为了招徕顾客,设立了一个可以自由转动的转盘,如图,转盘被平均分成12份,并规定:读者每购买100元图书,就可获得一次转动转盘的机会,如果转盘停止后(指针对准分界线时重转),指针正好对准红色、黄色、绿色区域,那么读者就相应获得45元、30元、25元的购书券,指针对准其它区域没有购书券,凭购书券可以在书城继续购书.(1)任意转动一次转盘获得购书券的概率为;(直接填空)(2)任意转动一次转盘获得25元购书券的概率是多少?-参考答案-一、单选题1、D【分析】根据事先能肯定它一定会发生的事件称为必然事件依次判断即可.【详解】解:A. 水中捞月不可能发生,是不可能事件,不符合题意;B. 抛掷一枚质地均匀的硬币,正面向上,是随机事件,不符合题意;C. 打开电视,正在播广告,是随机事件,不符合题意;D. 如果a、b都是实数,那么ab=ba,是必然事件,符合题意;【点睛】本题考查事件发生的可能性大小.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件.2、A【分析】先找出从中任选三条的所有可能的结果,再根据三角形的三边关系定理找出能组成三角形的结果,然后利用概率公式即可得.【详解】解:由题意,从这4条线段中任选三条共有4种结果,即2,5,7、2,5,8、2,7,8、5,7,8,由三角形的三边关系定理可知,能组成三角形的有2种结果,即2,7,8和5,7,8,则所求的概率为2142P==,故选:A.【点睛】本题考查了求概率,熟练掌握等可能性下的概率计算方法是解题关键.3、D【分析】根据频率与概率的关系以及随机事件的定义判断即可【详解】投掷一枚质地均匀的硬币正面向上的概率是12,而投掷一枚质地均匀的硬币正面向上是随机事件,nm是它的频率,随着m的增加,nm的值会在12附近摆动,呈现出一定的稳定性;故选:D本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.4、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、A【分析】根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可【详解】解:∵总可能结果有4种,摸到标号大于2的结果有2种,∴从袋子中任意摸出1个球,摸到标号大于2的概率是21 42故选A本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.6、D【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:掷一颗均匀的骰子(正方体,各面标16-这6个数字),一共有6种等可能的情况,其中6点朝上只有一种情况,所以6点朝上的概率为16.故选:D.【点睛】本题考查概率的求法与运用,解题的关键是掌握一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =.7、B【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;B. 概率很小的事件也可能发生,故该选项不正确,符合题意;C. 必然事件发生的概率是1,故该选项正确,不符合题意;D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.8、D【分析】根据事件发生的可能性大小判断即可.【详解】A、打开电视机,正在播放新闻,是随机事件,不符合题意;B、掷一枚质地均匀的硬币,正面朝上,是随机事件,不符合题意;C、买一张电影票,座位号是奇数号,是随机事件,不符合题意;D、任意画一个三角形,其内角和是180°,是必然事件,符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,,,共有3个,∴抽到的图案是中心对称图形的概率是34.故选C.【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.10、B【分析】由题意,只要求出阴影部分与矩形的面积比即可.【详解】解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为:51 153;故选:B.【点睛】本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.二、填空题1、1 5【分析】根据从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,得出是4的倍数的数据,再根据概率公式即可得出答案.【详解】解:∵从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是4的倍数的有:4,8共2个,∴取到的数恰好是4的倍数的概率是21105=. 故答案为:15.【点睛】本题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.2、25【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】红灯亮30秒,绿灯亮42秒,黄灯亮3秒,()302==30+42+35P ∴红灯亮, 故答案为:25.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n =.3、2 5【分析】根据题意,先求得质数的个数,进而根据概率公式计算即可.【详解】1,2,3,…,10,中有2,3,5,7共4个质数,∴摸得的是小球编号为质数的概率42 105=,故答案为:25(或0.4)【点睛】本题考查了概率公式求概率,求得质数的个数是解题的关键.4、大【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小.【详解】解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,∴找到男生的概率为:3044=1522,找到女生的概率为:1444=722而157, 2222>∴找到男生的可能性大,故答案为:大【点睛】本题考查的是简单随机事件的概率,掌握“利用概率公式求解简单随机事件的概率”是解本题的关键,随机事件的概率等于符合条件的情况数除以所有的情况数.5、5 6【分析】画树状图得出共有12种等可能的结果数,其中两张卡片上的数字之和为正数的结果有10种,再由概率公式求解即可.【详解】解:根据题意画图如下:共有12种等可能的结果,其中两张卡片上的数字之和为正数的结果有10种,则两张卡片上的数字之和为正数的概率是1012=56故答案为:56.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题1、不对,见解析【分析】由红色部分扇形的圆心角为180︒,黄色部分与蓝色部分扇形的圆心角分别为90,90︒︒,从而可得它们占整个圆的111,,,244从而可得答案.【详解】解:不对,红色面积最大,且红色面积是黄色面积的2倍,也是蓝色面积的2倍,指针停在红色、黄色或蓝色区域的概率分别是111 ,,. 244【点睛】本题考查的是几何概率,弄懂指针停在红色区域的概率等于1801=3602是解题的关键.2、必然事件:①②⑤⑥;不可能事件:③④⑦【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:①两条平行线被第三条直线所截,同位角相等,是必然事件;②367人中至少有2人的生日相同,是必然事件;③没有水分,种子也会发芽,是不可能事件;④某运动员百米赛跑的成绩是5s,是不可能事件,;⑤同种电荷相互排斥,是必然事件;⑥通常情况下,高铁比普通列车快,是必然事件;⑦用长度分别为3cm,5cm,8cm的三条线段能围成一个三角形,是不可能事件;∴必然事件:①②⑤⑥;不可能事件:③④⑦.【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、(1)小明获胜的概率是12;小颖获胜的概率是12;(2)小明已经抽到数字6,小明获胜的概率是5 6;小颖获胜的概率是16;小明已经抽到数字1,则小明获胜的概率是0,小颖获胜的概率是1.【分析】(1)根据题意列出可能性,根据概率公式即可求解;(2)根据题意列出可能性,根据概率公式即可求解.【详解】解:(1)共有7张纸签,小明已经抽到数字4,如果小明获胜的话,小颖只可能抽到数字1、2、3,所以小明获胜的概率是31 62 =.如果小颖要获胜,抽到的数字只能是5、6、7,所以小颖获胜的概率是31 62 =(2)若小明已经抽到数字6,如果小明获胜的话,小颖只可能抽到数字1,2、3、4,5,所以小明获胜的概率是56.如果小颖要获胜,抽到的数字只能是7,所以小颖获胜的概率是16.若小明已经抽到数字1,则小明获胜的概率是0,小颖获胜的概率是1.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了二次函数图象上点的坐标特征.4、5 36【分析】利用列举法求出两次出现的点数之和等于6包含的基本事件有5个,由此能求出两次出现的点数之和等于6的概率.【详解】一个均匀材料制作的正方体形骰子,各个面上分别标有数字1,2,3,4,5,6,连续抛掷两次,基本事件总数n=6×6=36,两次出现的点数之和等于6包含的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),共5个,∴两次出现的点数之和等于6的概率为P=536.故答案为:536.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.5、(1)12;(2)14【分析】(1)根据概率公式直接求解即可;(2)用绿色区域的份数除以总分数即可得出获得25元的概率.【详解】解:(1)∵转盘被分成了12份,有颜色的有6份,∴任意转动一次转盘获得购书券的概率是61 122=;故答案为:12;(2)∵转盘被分成了12份,绿颜色的有3份,∴获得25元的概率是31 124=.【点睛】本题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解决本题的关键是得到相应的概率.。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(17)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(17)

一、选择题(共10题)1.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A.15B.415C.49D.132.下列说法中,正确的是( )A.不可能事件发生的概率为0B.随机事件发生的概率为12C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次3.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸岀的球上的数字为2的概率记为P1,摸岀的球上的数字小于4的概率记为P2,摸出的球上的数字为5的概率记为P3,则P1,P2,P3的大小关系式( )A.P1<P2<P3B.P3<P2<P1C.P2<P1<P3D.P3<P1<P24.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是( )A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同.B.一枚质地均匀的骰子,任意掷一次,1−6点数朝上的可能性相同.C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同.D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同.5.下列说法中不正确的是( )A.任意打开七年级下册数学教科书,正好是97页是确定事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.抛掷一枚硬币,硬币落地时正面朝上是随机事件D.一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是66.在所给图形中任意画一个点,落在黑色区域的概率是( )A.1πB.12C.πD.507.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A.47B.37C.34D.138.有编号为1至10的10个乒乓球,小明从中任意拿走一个,那么小明拿到的乒乓球的编号为奇数的可能性的大小为( )A.110B.15C.120D.129.在有25名男生和20名女生的班级中,随机抽取一名学生做代表,则下列说法正确的是( )A.男、女生做代表的可能性一样大B.男生做代表的可能性大C.女生做代表的可能性大D.男、女生做代表的可能性大小不能确定10.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是( )A.12B.13C.29D.19二、填空题(共7题)11.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;⋯;则从第个图中随机取出一个球,是黑球的概率是.12.小明的爸爸想给妈妈送张美容卡作为生日礼物,小明家附近有3家美容店,爸爸不知如何选择,于是让小明对3家店铺顾客的满意度做了调查:(说明:顾客对于店铺的满意度从高到低,依次为3个笑脸,2个笑脸,1个笑脸)小明选择将(填“A”、“B”或“C”)美容店推荐给爸爸,能使妈妈获得满意体验可能性最大.13.在一个不透明的盒子里装有除颜色外其余均相同的3个黄色乒乓球和若干个白色乒乓球,从盒子,那么盒子内白色乒乓球的个数为.里随机摸出一个乒乓球,摸到白色乒乓球的概率为2314.一副扑克牌52张(不含大小王),分为黑桃、红心、方块及梅花4种花色,每种花色各有13张,分别标有字母A,K,Q,J和数字10,9,8,7,6,5,4,3,2.从这副牌中任意抽取一张,则抽到标有字母的扑克牌的概率是.15.取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随−1=机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程xx−1m无解的概率为.(x−1)(x+2)16.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.17.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有12个白球,且,那么袋子中共有球的个数为.摸出白球的概率是14三、解答题(共8题)18.有五条线段的长分别为2,4,6,8,10,从中任取三条能构成三角形的概率是多少?19.某单位对职工出行方式就“地铁与公交,私家车,出租车或滴滴打车,公共自行车或共享单车”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1) 求扇形统计图中m的值,并补全条形统计图.(2) 在被调查的人中,随机抽一人,抽到填公共自行车或共享单车的概率是多少?(3) 该单位有800名职工,估算乘地铁与公交及公共自行车或共享单车的职工的人数是多少?20.一个不透明布袋中除颜色不同外,其他均相同的乒乓球有x个黄球和y个白球,从袋中随机抽取一个球,它是黄色乒乓球的概率是38.(1) 写出表示x和y关系的表达式;(2) 如再往袋中放进10个黄色乒乓球,则取黄色乒乓球的概率变为12,求x和y的值21.小明两次分别购买了1张和100张彩票,均未获奖,于是他说:“购买1张和100张中奖的可能性相等.”小华说:“这两个事件都是不可能事件.”他们的说法对吗?请说明理由.22.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1) 先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值 (2) 先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.23.某商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费200元(含200元)以上,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准9折,8折,7折区域,那么顾客就可以获得此项优惠,如果指针恰好在分割线上时,那么需重新转动转盘.(1) 某顾客正好消费220元,他转一次转盘,他获得9折,8折,7折优惠的概率分别是多少?(2) 某顾客消费中获得了转动一次转盘的机会,实际付费168元,请问他消费所购物品的原价应为多少元?24.在班上组织的“元旦迎新晚会”中,小丽和小芳都想当节目主持人,但现在只有一个名额.小芳想出了一个用游戏来选人的办法,她将一个转盘(均质的)平均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到偶数,则小丽去;反之,则小芳去.你认为这个游戏公平吗?为什么?如果不公平,请你修改转盘中的数字,使这个游戏变得公平.25.在一个不透明的口袋中分别装有6个红球,9个黄球,3个白球,这些球除颜色外其他均相同.从中任意摸出一个球.(1) 摸到的球是白球的概率为.(2) 如果要使摸到白球的概率为1,那么需要在这个口袋中再放入多少个白球?4答案一、选择题(共10题)1. 【答案】C【解析】如图所示:所涂的小正方形与原阴影图形的小正方形至少有一边重合的一共有9个,能构成轴对称图形的有所标数据1,2,3,4,共4个,.则所得到的阴影图形恰好是轴对称图形的概率为:49【知识点】公式求概率2. 【答案】A【知识点】概率的概念及意义3. 【答案】D,P2=1,P3=0,即P3<P1<P2.【解析】依题可知,P1=13【知识点】公式求概率4. 【答案】B【知识点】事件的分类、公式求概率5. 【答案】A【知识点】概率的概念及意义6. 【答案】B【知识点】公式求概率7. 【答案】B【知识点】公式求概率8. 【答案】D【知识点】公式求概率9. 【答案】B【知识点】公式求概率10. 【答案】C【知识点】公式求概率二、填空题(共7题)11. 【答案】2n+1【解析】根据图示规律,第n个图中,黑球有n个,球的总数有1+2+3+4+5+⋯+n= n(n+1)2,则从第(n)个图中随机取出一个球,是黑球的概率是nn(n+1)2=2n+1.【知识点】公式求概率12. 【答案】C【解析】美容店A的平均满意度为:53×3+28×2+19×1100=2.34;美容店B的平均满意度为:50×3+40×2+10×1100=2.4;美容店C的平均满意度为:65×3+26×2+9×1100=2.56.∵2.34<2.4<2.56,∴小明选择将C美容店推荐给爸爸,能使妈妈获得满意体验可能性最大.【知识点】概率的概念及意义13. 【答案】6【解析】设有x个白色乒乓球,由题意,从盒子里随机摸出一个乒乓球,有(x+3)种情况,从盒子里随机摸出一个白色乒乓球,有x种情况,故摸到白色乒乓球的概率为xx+3=23,∴x=6,即有6个白色乒乓球.【知识点】公式求概率14. 【答案】413【解析】因为一副扑克牌52张(不含大小王)中带有字母的有16张,所以从这副牌中任意抽取一张,则这张牌标有字母的概率是1652=413.【知识点】公式求概率15. 【答案】15【知识点】公式求概率16. 【答案】12【解析】∵抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴他第二次再抛这枚硬币时,正面向上的概率是:12.【知识点】概率的概念及意义17. 【答案】48【解析】设袋子中共有x个球,其中有12个白球,且摸出白球的概率是14,则12x =14,解得:x=12×4=48,经检验x=48为分式方程的根,故袋中共有48个球.【知识点】公式求概率三、解答题(共8题)18. 【答案】310.【知识点】公式求概率19. 【答案】(1) 总人数=15÷25%=60(人).A类人数=60−24−15−9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图.(2) 抽到填公共自行车或共享单车的概率是=9÷60=320.(3) ∵800×20%=160(名),800×320=120(名),∴乘地铁与公交的职工的人数是160名,乘公共自行车或共享单车的职工的人数是120名.【知识点】用样本估算总体、条形统计图、公式求概率20. 【答案】(1) 因为有x个黄球和y个白球,从袋中随机抽取一个球,它是黄色乒乓球的概率是38,所以xx+y =38.所以x=35y.(2) 因为再往袋中放进10个黄色乒乓球,取黄色乒乓球的概率变为12,所以x+10x+y+10=12.由(1),知x=35y,把x=35y代入,得y=25,所以x=15.【知识点】公式求概率21. 【答案】小明的说法错误,因为购买100张彩票中奖的可能性比购买1张彩票中奖的可能性大;小华的说法错误,这两个事件都是随机事件,不能因为事件发生的可能性小就认为是不可能事件.【知识点】事件的分类22. 【答案】(1) 4;2,3(2) 根据题意得:6+m10=45,解得:m=2,所以m的值为2.【解析】(1) 当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件.【知识点】公式求概率、必然事件23. 【答案】(1) P(获得9折)=90∘×2360∘=12;P(获得8折)=60∘×2360∘=13;P(获得7折)=30∘×2360∘=16.(2) 因为200×0.9=180>168,所以他没有获得9折优惠.因为200×0.8=160<168,所以168÷0.8=210.因为200×0.7=140<168,所以168÷0.7=240.故他消费所购物品的原价应为210元或240元.【知识点】公式求概率24. 【答案】∵P小丽=26=13,P小芳=46=23,又∵13≠23,∴此游戏不公平.修改如下图:将转盘中的奇数任改一个为偶数即可.【知识点】公式求概率25. 【答案】(1) 16(2) 设需要在这个口袋中再放入x个白球根据题意,得3+x18+x =14,解得x=2.答:需要在这个口袋中再放入2个白球.【知识点】公式求概率。

北师大版七年级数学下册第六章《概率初步》单元检测练习题10含答案解析

北师大版七年级数学下册第六章《概率初步》单元检测练习题10含答案解析

北师大版七年级数学下册第六章《概率初步》单元检测练习题10一、选择题1.在一个不透明的袋中装有9个只有颜色不同的球,其中4个红球、3个黄球和2个白球.从袋中任意摸出一个球,不是白球的概率为( )A.29B.79C.49D.132.下列说法不正确的是( )A.“某射击运动员射击一次,正中把靶心”属于随机事件B.“13名同学至少有两名同学的出生月份相同”属于必然事件C.“在标准大气压下,当温度降到−5∘C时,水结成冰”属于随机事件D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件3.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( )A.19B.12C.13D.234.下列说法正确的是( )A.“若ac=bc,则a=b”是必然事件B.“若∣a∣+∣b∣=0,则a=0且b=0”是不确定事件C.“若ab=0,则a=0且b=0”是不可能事件D.“若ab<0,则a>0且b<0”是随机事件5.如图,一个转盘被均匀分成8部分,随意转动转盘,则第一次转动转盘指针指到阴影部分的概率为( )A.18B.14C.38D.126.从长度分别为1cm,3cm,5cm,6cm四条线段中随机取出三条,则能够组成三角形的概率为( )A.14B.13C.12D.347.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( )A.0.1B.0.2C.0.3D.0.68.下列说法中,错误的是( )A.百分比也叫百分数或百分率B.“对折”就是现价比原价下降了50%C.等可能事件的前提必须是各种结果发生的可能性是相等的D.抛硬币得到反面朝上的可能性是50%,所以抛2次必有1次反面朝上9.一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字−1,0,2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( )A.14B.13C.12D.3410.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( )A.13B.16C.19D.112二、填空题11.口袋内装有除颜色外完全相同的红球、白球和黑球共10个,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么黑球的个数是个.12.“任意打开自己的七下数学书,正好是第六章”,这是(填“随机”或“必然”)事件.13.如图,地面上铺满了正方形的地砖(40cm×40cm),现在向这一地面上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率是.14.(1)用抽签的办法从A,B,C,D四人中任选一人去打扫公共场地,选中A的概率是.(2)有4根长度分别为5cm,10cm,18cm,25cm的木棒,从中任意取3根,则这3根木棒恰好能首尾相接构成三角形的概率是.15.如果m是从−2,−1,0,1四个数中任取的一个数,那么关于x的方程mx−3=2x−3+1的根为正数的概率为.16.为提升英语听力及口语技能,小明打算在手机上安装一款英语口语APP辅助练习.他分别从甲、乙、丙三款口语APP中随机选取了1000条网络评价进行对比,统计如下:(说明:网上对于口语APP的综合评价从高到低,依次为五星、四星、三星、二星和一星).小明选择(填“甲”、“乙”或“丙”)款英语口语APP,能获得良好口语辅助练习(即评价不低于四星)的可能性最大.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.三、解答题18.一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除了颜色外没有区别.从中任意摸出一个球.(1) 计算摸到红球的可能性的大小;,需要在这个囗袋中再放入多少个红球?(2) 如果要使摸到红球的可能性为1219.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只,如图所示,“字母棋”的游戏规则为:①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A棋胜B棋,C棋;B棋胜C棋,D棋;C棋胜D祺;D棋胜A棋;③相同棋子不分胜负.(1) 若小玲先摸,问小玲摸到C棋的概率是多少?(2) 已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?20.如图,一个圆形转盘被平均分成8个小扇形.请在这8个小扇形中分别写上数字1,2,3,任意转动转盘,使得转盘停止转动后,“指针落在数字1的区域”的可能性最大,且“指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同.21.某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1) 这次知识竞赛共有多少名学生?(2) “二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3) 小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.22.一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同.(1) 搅匀后,从中任意摸出一个球,恰好是红球的概率是;(2) 搅匀后,从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.①求两次都摸到红球的概率;②经过了n次“摸球—记录—放回”的过程,全部摸到红球的概率.23.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其他均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球,若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1) 用树状图或列表法求出小明先挑选的概率.(2) 你认为这个游戏公平吗?请说明理由.24.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“∗”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z的改善情况,并绘制成条形统计图.根据以上信息,回答下列问题.(1) 从服药的50名患者中随机选出一人,求此人指标x的值大于1.7的概率;(2) 设这100名患者中服药者指标y数据的方差为s12,未服药者指标y数据的方差为s22,则s12s22(填“>”、“=”或“<”);(3) 对于指标z的改善情况,下列推断合理的是.①服药4周后,超过一半的患者指标z没有改善,说明此药对指标z没有太大作用;②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.25.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1) 求转动一次转盘获得购物券的概率;(2) 某顾客在此商场购物220元,通过转转盘获得购物券和直接获得购物券,你认为哪种方式对顾客更合算?谈谈你的理由.答案一、选择题1. 【答案】B【解析】∵袋子中共有9个小球,其中不是白球的有7个,∴摸出一个球不是白球的概率是7.9【知识点】公式求概率2. 【答案】C【知识点】事件的分类3. 【答案】C【知识点】公式求概率4. 【答案】D【解析】A.若ac=bc,则a=b是随机事件,故A错误;B.若∣a∣+∣b∣=0,则a=0且b=0,是必然事件,故B错误;C.若ab=0,则a=0或b=0是随机事件,故C错误;<0,则a>0,b<0或a<0,b>0,是随机事件,故D正确.D.若ab【知识点】绝对值的性质、事件的分类5. 【答案】C【知识点】公式求概率6. 【答案】A【解析】从长度为1cm,3cm,5cm,6cm四条线段中随机取出三条,共有以下4种结果(不分先后),1cm,3cm,5cm;1cm,3cm,6cm;3cm,5cm,6cm;1cm,5cm,6cm,其中,能构成三角形的只有1种,.∴P(构成三角形)=14【知识点】公式求概率7. 【答案】D【知识点】公式求概率8. 【答案】D【知识点】概率的概念及意义9. 【答案】C【解析】根据题意可得:4个小球中,其中标有2,3是正数,故从中随机地摸取一个小球,则这个小球所标数字是正数的概率为:24=12.【知识点】公式求概率10. 【答案】B【知识点】公式求概率二、填空题11. 【答案】3【解析】由题意可得,摸出黑球个数是:10×(1−0.2−0.5)=3个.【知识点】公式求概率12. 【答案】随机【知识点】事件的分类13. 【答案】716【解析】因为圆碟的圆心如果在正方形的地砖(40cm×40cm)的中心部位30cm×30cm的范围外,则与地砖间隙相交,所以圆碟与地砖间的间隙相交的概率大约是40×40−30×3040×40=716.【知识点】公式求概率14. 【答案】14;14【知识点】三角形的三边关系、公式求概率15. 【答案】12【解析】将方程两边都乘以x−3,得:m=2+x−3,解得x=m+1,∵方程的解为正数,∴m+1>0且m+1≠3,则m>−1且m≠2,所以在所列的4个数中,能使此方程的解为正数的有0,1这2个数,则关于x的方程mx−3=2x−3+1的根为正数的概率为24=12,故答案为:12.【知识点】公式求概率16. 【答案】乙【知识点】公式求概率17. 【答案】25【解析】3,5,8,10,13,从中任取三根,所有情况为:3,5,8;3,5,10;3,5,13;3,8,10;3,8,13;3,10,13;5,8,10;5,8,13;5,10,13;8,10,13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,∴可以组成三角形的概率=410=25.【知识点】公式求概率三、解答题18. 【答案】(1) 13.(2) 6.【知识点】公式求概率19. 【答案】(1) 310(2) 49【知识点】公式求概率20. 【答案】答案不唯一,如下图:这样标出“指针落在数字1的区域”的可能性最大,且“指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同.【知识点】公式求概率21. 【答案】(1) 这次知识竞赛共有学生 2010%=200(名);(2) 二等奖的人数是:200×(1−10%−24%−46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360∘×40200=72∘;(3) 小华获得“一等奖或二等奖”的概率是:20+40200=310.【知识点】公式求概率、条形统计图、扇形统计图22. 【答案】(1) 23(2) ①搅匀后从中任意摸出 1 个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出 1 个球,所有可能出现的结果有:(红1,红1) 、 (红1,红2) 、 (红1,白) 、 (红2,红1) 、 (红2,红2) 、 (红2,白) 、 (白,红1) 、 (白,红2) 、 (白,白),共有 9 种,它们出现的可能性相同.所有的结果中,满足“两次都是红球”(记为事件 B )的结果只有 4 种,所以 P (B )=49. ② (23)n【知识点】公式求概率、用代数式表示规律23. 【答案】(1) 23.图略(2) 不公平,因为和为奇数的概率是 23,而和为偶数的概率为 13.【知识点】公式求概率24. 【答案】(1) 指标 x 的值大于 1.7 的概率 =3÷50=350 或 6%.(2) >(3) ②【知识点】公式求概率、方差、条形统计图25. 【答案】(1) ∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)=1020=12.(2) ∵P(红色)=120,P(黄色)=320,P(绿色)=620=310,∴200×120+100×320+50×310=40(元)∵40元>30元,∴选择转转盘对顾客更合算.【知识点】公式求概率。

北师七下数学概率初步单元综合试题(含解析)

北师七下数学概率初步单元综合试题(含解析)

北师版七年级下册数学概率初步一、选择题(共25小题)1.(2013•茂名)下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹2.(2013•仙桃)下列事件中,是必然事件的为()A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是﹣2℃C.通常加热到100℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》3.(2013•沈阳)下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°4.(2013•宁德)掷一枚均匀的骰子,下列属于必然事件的是()A.朝上的数字小于7 B.朝上的数字是奇数C.朝上的数字是6 D.朝上的数字大于65.(2013•福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个 C.4个D.5个或5个以上6.(2013•武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球7.(2013•钦州)下列说法错误的是()A.打开电视机,正在播放广告这一事件是随机事件B.要了解小赵一家三口的身体健康状况,适合采用抽样调查C.方差越大,数据的波动越大D.样本中个体的数目称为样本容量8.(2013•衡阳)“a是实数,|a|≥0”这一事件是()A.必然事件 B.不确定事件C.不可能事件D.随机事件9.(2013•攀枝花)下列叙述正确的是()A.“如果a,b是实数,那么a+b=b+a”是不确定事件B.某种彩票的中奖概率为,是指买7张彩票一定有一张中奖C.为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适D.“某班50位同学中恰有2位同学生日是同一天”是随机事件10.(2013•南平)以下事件中,必然发生的是()A.打开电视机,正在播放体育节目B.正五边形的外角和为180°C.通常情况下,水加热到100℃沸腾D.掷一次骰子,向上一面是5点11.(2015•柳州)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是()A.25% B.50% C.75% D.85%12.(2015•长沙)下列说法中正确的是()A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查13.(2015•巴中)下列说法中正确的是()A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近D.为了解某种节能灯的使用寿命,选择全面调查14.(2013•包头)下列事件中是必然事件的是()A.在一个等式两边同时除以同一个数,结果仍为等式B.两个相似图形一定是位似图形C.平移后的图形与原来图形对应线段相等D.随机抛掷一枚质地均匀的硬币,落地后正面一定朝上15.(2014•聊城)下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是616.(2013•张家界)下列事件中是必然事件的为()A.有两边及一角对应相等的三角形全等B.方程x2﹣x+1=0有两个不等实根C.面积之比为1:4的两个相似三角形的周长之比也是1:4D.圆的切线垂直于过切点的半径17.(2014•仙桃)下列事件中属于不可能事件的是()A.某投篮高手投篮一次就进球B.打开电视机,正在播放世界杯足球比赛C.掷一次骰子,向上的一面出现的点数不大于6D.在1个标准大气压下,90℃的水会沸腾18.(2015•呼伦贝尔)下列说法正确的是()A.掷一枚硬币,正面一定朝上B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.方差越大,数据的波动越大19.(2015•德阳)下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为620.(2015•百色)必然事件的概率是()A.﹣1 B.0 C.0.5 D.121.(2014•黔东南州)掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上22.(2014•铁岭)下列事件是必然事件的是()A.某射击运动员射击一次,命中靶心B.单项式加上单项式,和为多项式C.打开电视机,正在播广告D.13名同学中至少有两名同学的出生月份相同23.(2014•包头)下列说法正确的是()A.必然事件发生的概率为0B.一组数据1,6,3,9,8的极差为7C.“面积相等的两个三角形全等”这一事件是必然事件D.“任意一个三角形的外角和等于180°”这一事件是不可能事件24.(2014•抚顺)下列事件是必然事件的是()A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.半径分别为3和5的两圆相外切,则两圆的圆心距为8D.三角形的内角和是360°25.(2013•聊城)下列事件:①在足球赛中,弱队战胜强队.②抛掷1枚硬币,硬币落地时正面朝上.③任取两个正整数,其和大于1④长为3cm,5cm,9cm的三条线段能围成一个三角形.其中确定事件有()A.1个B.2个C.3个D.4个二、填空题(共5小题)26.(2013•丹东)某奥运射击冠军射击一次,命中靶心.这个事件是(填“必然”、“不可能”或“不确定”)事件.27.(2013•庆阳)若某种彩票的中奖率为5%,则“小明选中一张彩票一定中奖”这一事件是(必然事件、不可能事件、随机事件).28.(2015•泰州)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.29.(2013•莆田)经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为.30.(2014•孝感)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是.(填序号)北师大新版七年级(下)近3年中考题单元试卷:第6章概率初步参考答案与试题解析一、选择题(共25小题)1.(2013•茂名)下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹【考点】随机事件.【专题】计算题.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(2013•仙桃)下列事件中,是必然事件的为()A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是﹣2℃C.通常加热到100℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》【考点】随机事件.【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件进行判断.【解答】解:A,B,D选项,是可能发生也可能不发生的事件,属于不确定事件,不符合题意;是必然事件的是:通常加热到100℃时,水沸腾,符合题意.故选:C.【点评】此题主要考查了必然事件的定义,解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(2013•沈阳)下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°【考点】随机事件.【分析】不可能事件是指在一定条件下,一定不发生的事件.【解答】解:A、买一张电影票,座位号是奇数,是随机事件,故A选项错误;B、射击运动员射击一次,命中9环,是随机事件,故B选项错误;C、明天会下雨,是随机事件,故C选项错误;D、度量一个三角形的内角和,结果是360°,是不可能事件,故D选项正确.故选:D.【点评】本题考查了不可能事件、随机事件的概念.用到的知识点为:不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2013•宁德)掷一枚均匀的骰子,下列属于必然事件的是()A.朝上的数字小于7 B.朝上的数字是奇数C.朝上的数字是6 D.朝上的数字大于6【考点】随机事件.【分析】必然事件就是一定发生的事件,依据定义即可解答.【解答】解:A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是不可能事件,选项错误.故选A.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(2013•福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个 C.4个D.5个或5个以上【考点】可能性的大小.【专题】压轴题.【分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.【解答】解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.【点评】本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.6.(2013•武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【考点】随机事件.【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(2013•钦州)下列说法错误的是()A.打开电视机,正在播放广告这一事件是随机事件B.要了解小赵一家三口的身体健康状况,适合采用抽样调查C.方差越大,数据的波动越大D.样本中个体的数目称为样本容量【考点】随机事件;全面调查与抽样调查;总体、个体、样本、样本容量;方差.【分析】根据随机事件的概念以及抽样调查和方差的意义和样本容量的定义分别分析得出即可.【解答】解:A、打开电视机,正在播放广告这一事件是随机事件,根据随机事件的定义得出,此选项正确,不符合题意;B、要了解小赵一家三口的身体健康状况,适合采用全面调查,故此选项错误,符合题意;C、根据方差的定义得出,方差越大,数据的波动越大,此选项正确,不符合题意;D、样本中个体的数目称为样本容量,此选项正确,不符合题意.故选:B.【点评】此题主要考查了随机事件以及样本容量和方差的定义等知识,熟练掌握相关的定理是解题关键.8.(2013•衡阳)“a是实数,|a|≥0”这一事件是()A.必然事件 B.不确定事件C.不可能事件D.随机事件【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选:A.【点评】用到的知识点为:必然事件指在一定条件下一定发生的事件.9.(2013•攀枝花)下列叙述正确的是()A.“如果a,b是实数,那么a+b=b+a”是不确定事件B.某种彩票的中奖概率为,是指买7张彩票一定有一张中奖C.为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适D.“某班50位同学中恰有2位同学生日是同一天”是随机事件【考点】随机事件;全面调查与抽样调查;概率的意义.【分析】根据确定事件、随机事件的定义,以及概率的意义即可作出判断.【解答】解:A、“如果a,b是实数,那么a+b=b+a”是必然事件,选项错误;B、某种彩票的中奖概率为,是指中奖的机会是,故选项错误;C、为了了解一批炮弹的杀伤力,调查具有破坏性,应采用普查的抽查方式比较合适;D、正确.故选D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.(2013•南平)以下事件中,必然发生的是()A.打开电视机,正在播放体育节目B.正五边形的外角和为180°C.通常情况下,水加热到100℃沸腾D.掷一次骰子,向上一面是5点【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、打开电视机,可能播放体育节目、也可能播放戏曲等其它节目,为随机事件,故A 选项错误;B、任何正多边形的外角和是360°,故B选项错误;C、通常情况下,水加热到100℃沸腾,符合物理学原理,故C选项正确;D、掷一次骰子,向上一面可能是1,2,3,4,5,6,中的任何一个,故D选项错误.故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.(2015•柳州)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是()A.25% B.50% C.75% D.85%【考点】可能性的大小.【分析】抛一枚质地均匀的硬币,有两种结果,正面朝上,每种结果等可能出现,从而可得出答案.【解答】解:抛一枚质地均匀的硬币,有正面朝上、反面朝上两种结果,故正面朝上的概率=.故选:B.【点评】本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.(2015•长沙)下列说法中正确的是()A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查【考点】概率的意义;全面调查与抽样调查;随机事件;概率公式.【分析】根据随机事件,可判断A;根据概率的意义,可判断B、C;根据调查方式,可判断D.【解答】解:A、“打开电视机,正在播放《动物世界》”是随机事件,故A错误;B、某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为,故C错误;D、想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查,故D正确;故选:D.【点评】本题考查了全面调查与抽样调查,正确区分全面调查与抽样调查是解题关键,注意概率时事件发生可能性的大小,并不一定发生.13.(2015•巴中)下列说法中正确的是()A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近D.为了解某种节能灯的使用寿命,选择全面调查【考点】概率的意义;全面调查与抽样调查;随机事件.【分析】结合随机事件、概率的意义以及全面调查和抽样调查的概念进行判断.【解答】解:A、“打开电视,正在播放新闻节目”是随机事件,故本选项错误;B、“抛一枚硬币正面向上的概率为”表示随着抛掷次数的增加,“抛出正面向上”这一事件发生的频率稳定在附近,故本选项错误;C、“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近,该说法正确,故本选项正确;D、为了解某种节能灯的使用寿命,选择抽样调查,故本选项错误.故选C.【点评】此题主要考查了概率的意义、全面调查和抽样调查的概念等知识,正确理解各知识点的概念是解题关键.14.(2013•包头)下列事件中是必然事件的是()A.在一个等式两边同时除以同一个数,结果仍为等式B.两个相似图形一定是位似图形C.平移后的图形与原来图形对应线段相等D.随机抛掷一枚质地均匀的硬币,落地后正面一定朝上【考点】随机事件.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A、当除数为0时,结论不成立,是随机事件;B、两个相似图形不一定是位似图形,是随机事件;C、平移后的图形与原来图形对应线段相等,是必然事件;D、随机抛出一枚质地均匀的硬币,落地后正面可能朝上,是随机事件.故选C.【点评】本题考查了必然事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.15.(2014•聊城)下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6【考点】随机事件;概率公式.【专题】常规题型.【分析】根据必然事件、不可能事件、随机事件的概念以及概率的求法即可作出判断.【解答】解:A.抛掷一枚硬币,硬币落地时正面朝上是随机事件,故A选项正确;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B选项正确;C.任意打开七年级下册数学教科书,正好是97页是不确定事件,故C选项错误;D.,取得的是红球的概率与不是红球的概率相同,所以m+n=6,故D选项正确.故选:C.【点评】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念以及概率的求法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.16.(2013•张家界)下列事件中是必然事件的为()A.有两边及一角对应相等的三角形全等B.方程x2﹣x+1=0有两个不等实根C.面积之比为1:4的两个相似三角形的周长之比也是1:4D.圆的切线垂直于过切点的半径【考点】随机事件.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A、只有两边及夹角对应相等的两三角形全等,而两边及其中一边的对角对应相等的两三角形不一定全等,是随机事件;B、由于判别式△=1﹣4=﹣3<0,所以方程无实数根,是不可能事件;C、面积之比为1:4的两个相似三角形的周长之比也是1:2,是不可能事件;D、圆的切线垂直于过切点的半径,是必然事件.故选:D.【点评】本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.(2014•仙桃)下列事件中属于不可能事件的是()A.某投篮高手投篮一次就进球B.打开电视机,正在播放世界杯足球比赛C.掷一次骰子,向上的一面出现的点数不大于6D.在1个标准大气压下,90℃的水会沸腾【考点】随机事件.【专题】常规题型.【分析】不可能事件就是一定不会发生的事件,依据定义即可判断.【解答】解:A、是随机事件,故A选项错误;B、是随机事件,故B选项错误;C、是必然事件,故C选项错误;D、是不可能事件,故D选项正确.故选:D.【点评】本题考查了不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.18.(2015•呼伦贝尔)下列说法正确的是()A.掷一枚硬币,正面一定朝上B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.方差越大,数据的波动越大【考点】概率的意义;全面调查与抽样调查;方差;随机事件.【分析】利用概率的意义、全面调查与抽样调查、方差及随机事件分别判断后即可确定正确的选项.【解答】解:A、掷一枚硬币,正面不一定朝上,故错误;B、某种彩票中奖概率为1%,是指买100张彩票不一定有1张中奖,故错误;C、旅客上飞机前的安检应采用全面调查,故错误;D、方差越大,数据的波动越大,正确,故选D.【点评】本题考查了概率的意义、全面调查与抽样调查、方差及随机事件的知识,属于基础题,比较简单.19.(2015•德阳)下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6【考点】概率的意义.【专题】计算题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学七年级(下)第六章 概率初步练习题
一、选择题
1、“任意买一张电影票,座位号是2的倍数”,此事件是( )
A.不可能事件
B.不确定事件
C.必然事件
D.以上都不是
2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( )
A.21
B.31
C.32
D.6
1 3、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)等于 ( ) A.21 B. 3
2 C.51 D.10
1 4、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( )
A.21P P >
B. 21P P <
C. 21P P =
D.以上都有可能
5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( ) A.201 B. 10019 C.5
1 D.以上都不对 二、填空题
6、必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______.
7、一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______.
8、任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.
9、数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.
10、在数学兴趣小组中有女生4名,男生2名,随机指定一人为组长恰好是女生的概率是_______.
11、布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出
一个球是白球的概率是_________.
12、有一组卡片,制作的颜色,大小相同,分别标有0—10这11个数字,现在将它们背面
向上任意颠倒次序,然后放好后任取一组,则:
(1)P(抽到两位数)= ;
(2)P(抽到一位数)= ;
(3)P(抽到的数大于8)= ;
13、某路口南北方向红绿灯的设置时间为:红灯40s,绿灯60s,黄灯3s.小刚的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是_________.
14、如图是一个可自由转动的转盘,转动转盘,停止后,指针指向3的概率是_______.
15、(2011山东烟台中考题)如图,在两个同心圆中,四条直径把大圆分成八等份,若往
圆面投掷飞镖,则飞镖落在黑色区域的概率是 .
16、若从一个不透明的口袋中任意摸出一球是白球的概率为
6
1,已知袋中白球有3个,则袋中球的总数是____________。

三、解答题
17、下列事件中,哪些是确定事件?哪些是不确定事件?
(1)任意掷一枚质地均匀的骰子,朝上的点数是6.
(2)在一个平面内,三角形三个内角的和是190度.
(3)线段垂直平分线上的点到线段两端的距离相等.
(4)打开电视机,它正在播动画片.
18、请将下列事件发生的概率标在图中:
(1)随意掷两枚质地均匀的骰子,朝上面的点数之和为1;
(2)抛出的篮球会下落;
(3)从装有3个红球、7个白球的口袋中任取一个球,恰好是红球(这些球除颜色外完
全相同);
(4)掷一枚质地均匀的硬币,硬币落下后,正面朝上.
19、下面是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区
域的概率.
20、用10个球设计一个摸球游戏:
(1)使摸到红球的概率为5
1;
(2)使摸到红球和白球的概率都是5
2. 第六章 概率初步练习题 参考答案
一、选择题答案
1、选B
2、 选B
3、 选C
4、 选A
5、 选C
二、填空题答案
第6题 1,1; 0,0; 0,1 第7题 41; 13
1 第8题 21 第9题 41 第10题 3
2 第11题 10
3 第12题(1)
111; (2)1110; (3)112 第13题 10340 第14题 31 第15题 2
1 第16题 18 三、解答题答案
第17题(1)不确定事件; (2)确定事件,也是不可能事件;
(3)确定事件,也是必然事件; (4)不确定事件;
第18题(1)标在0处; (2)标在1(100%)处;
(3)标在103(30%)处; (4)标在2
1(50%)处. 第19题 41; 8
3 第20题 (1)2个红球,8个其他颜色球;
(2)4个红球,4个白球,2个其他颜色球.。

相关文档
最新文档