步进电机控制系统
步进电机控制系统原理

步进电机控制系统原理步进电机控制系统的原理是控制步进电机运动,使其按照既定的速度和步长进行转动。
步进电机是一种特殊的电机,它通过控制输入的脉冲信号来驱动转子旋转一定的角度,步进电机每接收到一个脉冲信号,转子就会转动一定的角度,因此可以精确控制电机的位置和速度。
控制器是步进电机控制系统的核心部分,它通过软件算法生成脉冲信号来控制步进电机转动。
脉冲信号的频率和脉宽可以调节,频率决定步进电机转动的速度,脉宽决定步进电机转动的步长。
通常采用微处理器作为控制器,通过编程来控制脉冲信号的生成。
驱动器是将控制器产生的脉冲信号转换为电流信号,驱动步进电机转动。
驱动器通常由一个或多个功率晶体管组成,通过开关控制来产生恰当的电流信号。
驱动器还可以采用电流反馈回路来实现闭环控制,提高步进电机的控制精度。
步进电机是根据驱动器的电流信号转动的执行部件,它通过电磁力和磁场相互作用来实现转动。
步进电机根据控制器产生的脉冲信号确定转动的角度和速度。
步进电机一般由定子和转子组成,定子上有若干个电磁线圈,转子上有若干个永磁体。
当驱动器给定一个电流信号时,电流通过定子线圈产生磁场,与转子上的永磁体相互作用,使转子转动一定的角度。
当驱动器改变电流信号时,磁场方向改变,转子转动的角度和方向也会改变。
步进电机控制系统的原理就是通过控制器产生脉冲信号,驱动器将脉冲信号转换为电流信号,通过电流信号驱动步进电机转动。
控制器根据需要调整脉冲信号的频率和脉宽,从而控制步进电机的转动速度和步长。
驱动器根据电流信号的大小和方向控制步进电机的转动角度和方向。
步进电机根据电磁力和磁场相互作用来实现转动。
通过调节脉冲信号的频率和脉宽,可以实现对步进电机的精确控制。
基于PID控制的步进电机位置闭环控制系统设计

基于PID控制的步进电机位置闭环控制系统设计一、引言在现代自动化控制系统中,步进电机广泛应用于各种精密定位和定量控制需求的场景。
步进电机的控制涉及到位置的精确定位和稳定性的维持,这就需要一个有效的闭环控制系统来实现。
PID控制器被广泛应用于步进电机的闭环控制系统设计中,本文将探讨基于PID控制的步进电机位置闭环控制系统的设计原理和实现方法。
二、步进电机简介步进电机是一种特殊的直流电动机,通过控制脉冲信号的频率和顺序来实现精确控制。
步进电机的圆周分为若干等角度的步进角,每个步进角对应一个旋转角度,这使得步进电机在控制方面更加便捷和精确。
由于步进电机无需传感器反馈,因此常用于定量控制和精确位置控制的场合。
三、PID控制器原理PID控制器是一种经典的闭环控制器,其由比例(P)、积分(I)、微分(D)三个部分组成。
比例控制决定输出与偏差的比例关系,积分控制消除系统稳态误差和提高系统的响应速度,微分控制用于抑制系统对于负荷变化的敏感性。
PID控制器采用反馈控制策略,利用实际输出和期望输出之间的偏差来调整控制量。
四、步进电机位置闭环控制系统设计步进电机的位置闭环控制系统设计基于PID控制器。
首先,需要传感器来获得实际位置信息,然后与期望位置进行比较以获取偏差。
接下来,将偏差作为输入,经过PID控制器计算出控制量,并输出给步进电机驱动器。
步进电机驱动器根据控制量控制步进电机的旋转,从而实现位置的精确控制。
五、传感器选择为了获取步进电机的实际位置信息,需要选择合适的传感器。
常用的传感器包括光电编码器和霍尔传感器。
光电编码器具有高精度和高分辨率的特点,但价格较高;霍尔传感器则具有较低的价格和较高的可靠性,但分辨率较低。
根据具体需求和预算可选择合适的传感器。
六、PID参数调整PID控制器的性能很大程度上取决于参数的选择。
比例参数决定了响应的速度和稳定性,过大的比例参数会导致系统震荡,过小则导致响应速度慢;积分参数消除稳态误差,过大的积分参数会导致系统震荡,过小则无法消除稳态误差;微分参数能够抑制系统对负荷变化的敏感性,过大的微分参数会导致系统噪声,过小则无法起到抑制作用。
步进电机定位控制

02
反应式步进电机
03
混合式步进电机
转子为软磁材料,结构简单、步 矩角小、精度较高,但动态性能 较差。
结合了永磁式和反应式的优点, 具有较高的精度和动态性能,但 结构复杂、成本较高。
步进电机的主要应用领域
01 数控机床:用于工件的精确加工和定位。
02 机器人:用于机器人的关节驱动和定位控 制。
03
自动化生产线:用于自动化生产线的物料 搬运和定位控制。
04
打印机、复印机等办公设备:用于纸张的 进给和定位控制。
02
CHAPTER
步进电机定位控制系统
定位控制系统的基本组成
控制器
用于接收输入的定位指令,并按照控制算法 生成驱动脉冲信号。
驱动器
将控制器输出的脉冲信号放大,驱动步进电 机转动。
步进电机
步进电机定位控制的软件实现
软件实现概述
软件实现是实现步进电机定位控制的 重要组成部分,主要包括脉冲发生、 运动控制和通信等功能。
脉冲发生
根据控制算法输出的控制信号,生成 相应的脉冲信号,驱动步进电机运动。
运动控制
实时监测步进电机的运动状态,根据 反馈信息调整控制信号,确保电机按 照预定轨迹运动。
通信功能
工作原理:步进电机内部通常由一组带有齿槽的转子构成,定子上有多相励磁绕组。当给定一个脉冲信号时,定子上的励磁 绕组会按一定的顺序通电,从而在转子上产生一个磁极,该磁极与定子上的齿槽对齐时,转子会转动一个步进角。步进角的 大小取决于转子的齿数和通电的相数。
步进电机的种类与特点
01
永磁式步进电机
结构简单、成本低、步矩角大, 但精度较低。
接受驱动器发出的脉冲信号,按照设定的步 数和方向转动。
机电一体化系统设计05 步进电机运动控制系统

5.1步进电动机与驱动
1 步进电动机的特点、种类、工作原理
厚 励德 志达 勤理 工
(1)步进电动机的特点 ① 控制精度由步进角决定( )。 ② 抗干扰能力强,在电机电特性工作范围 内,不产生丢步或无法工作等现象。 ③ 电机每转动一步进角,尽管存在一定的 转角误差,但电机转动360时,转角累计误 差将归零。 ④ 控制性能好,不会产生“丢步 ”现象 (频繁启动、停止、变换)。 ⑤易于与计算机实现对接。
变频信号
方向信号
步进电机驱动电路的组成
一种四相步进电机驱动实用电路
或
厚 励德 志达 勤理 工
0.1μ f 0.1μ f
步进脉冲输出
0.1μ f
定时器引 脚布局
引脚布局
引脚布局
步进脉冲
线圈
方 向 控 制
线圈
7476 7486
线圈
线圈
(1)环形脉冲分配器
厚 励德 志达 勤理 工
由于步进电机的工作原理是各绕组必须按 一定的顺序通电变化才能正常工作(A B C A B ……;A AB B BC C CA A AB B ……),完成这种通电 顺序变化规律的部件称为环形脉冲分配器。 实现脉冲环形分配的方法主要有三种: 软件分频——可充分利用计算机资源降低 硬件成本,可适用多相脉冲分配,但将占用 计算机运行时间,影响步进电机的运行速度。 IC集成电路分频(DDT分频器)——灵活性 强,可搭接成任意通电顺序的环形分配器, 不站用计算机的工作时间。
功率放大器是实现控制信号与步进电机匹配的 重要组件。 常见的步进电机功率放大器的组成与特点如下: ·单电压功率放大电路
w w w
特点:电路结构简单,但串联R2消耗能量降低放大 功率;电感较大使电路对脉冲反应较慢,输出波形 差。主要用于转速要求不高的小型步进电机控制。
步进电机的基本结构包括

步进电机的基本结构包括
步进电机是一种常见的电动机,广泛应用于各种机械设备中。
它的基本结构包括定子、转子、驱动电路和控制系统。
定子是步进电机的固定部分,通常由铁芯和线圈构成。
线圈中流过电流时会产生磁场,与转子磁场相互作用从而驱动转子旋转。
定子的设计和材料选择直接影响步进电机性能。
转子是步进电机的旋转部分,通常由磁性材料制成。
根据不同的电磁场构成,转子可以分为磁性转子和永磁转子两种类型。
磁性转子的磁性由定子提供,而永磁转子则自身带有永久磁铁。
驱动电路是控制步进电机旋转的重要部分,其功能是给定子线圈施加电流,使电机按设定的步进角度旋转。
常见的驱动电路包括双极性驱动和四相交错驱动两种类型,通过控制电流的方向和大小来实现步进电机的精确控制。
控制系统是步进电机的大脑,通过控制设备与步进电机连接,发送信号给驱动电路,控制电机的运动和位置。
控制系统可以是基于硬件的闭环系统,也可以是基于软件的开环系统,根据具体应用需求选择不同的控制方式。
总的来说,步进电机的基本结构包括定子、转子、驱动电路和控制系统,它们相互配合工作,实现电机的精确控制和运动。
步进电机广泛应用于打印机、数控机床、医疗设备等各种领域,是现代工业自动化中不可或缺的重要组成部分。
1。
第九章-步进电动机传动控制系统

是电机作单步运动
所能带动的极限负载,也称为极限启动转矩。实际电机所 带的负载转矩TL必须小于极限启动转矩才能运行,即电机 所带负载的阻转矩 TL<
Tst
步距角减少可使相邻矩角特性位移减少, 就可提高极限
启动转矩Tst,增大电机的负载能力。三相六拍时,矩角特
性幅值不变,而步距角小了一半,故极限启动转矩。
(b) (c) 图 三相六拍运行 (a) A相通电; (b) A、 B相通电;(c) B相通电 第8 页
(a)
③三相双三拍运行
通电方式AB→BC→CA→AB‥,一拍转过30 °。
9
步进电动机的结构
10
转子齿数 齿距角
z表示.
转子相邻两齿间的夹角,用θ z 表示。 z 拍和步距角
Tst 时,A相通电时,转子处于a”点;改由B相通电 情况2:负载转矩 TL
时,转子不能前进。
图9.6 最大负载能力的确定
25
•最大负载转矩(起动转矩)
步进电动机在步进运行时所能带动的最大负载,可由相邻
Tst
两条矩角特性交点所对应的电磁转矩
相邻矩角特性的交点所对应的转矩
Tst
来确定。
T A T sm sin e
则B通电时,距角特性为
T B T sm sin( e 120 )
图 A相、B相定子齿相对转子齿的位置
21
当A、B两相同时通电时合成矩角特性应为
T A B T A T B T sm sin e T sm sin( e 120 ) T sm sin( e 60 )
使各相电流平衡。
VD2及Rf2作用是构成续流电路。
这种电源效率较高,起动和运行频 率也比单一电压型电源要高。
第3章步进电动机的控制

升速 恒速 减速 低速
起点
终点
(时间) t
图3-24
点、位控制中的加减速控制
15
变速控制的方法有:
改变控制方式的变速控制:最简单的变速控制可利用改变步进电 机的控制方式实现。例如:对于三相步进电机系统,启动或停止时 用三相六拍,大约0.1s以后,改用三相三拍,快到达终点时再采用 三相六拍,以达到减速控制的目的。 均匀地改变脉冲时间间隔的变速控制:步进电机的加速(或减速) 控制,可以用均匀地改变脉冲时间间隔来实现。 采用定时器的变速控制:单片机控制系统中,用单片机内部的定 时器来提供延时时间。方法是将定时器初始化后,每隔一定的时间, 由定时器向CPU申请一次中断,CPU响应中断后,便发出一次控制脉 冲。此时只要均匀地改变定时器时间常数,即可达到均匀加速(或 减速)的目的。这种方法可以提高控制系统的效率。
脉冲 方向控制
步进控制器
功率放大器
步进电机
负载
图3-19 步进电机控制系统的组成
2
随着电子技术的发展,除功率驱动电路之外,其它硬件电路均可由软 件实现。采用计算机控制系统,由软件代替步进控制器,不仅简化了 线路,降低了成本而且可靠性也大为提高,同时,根据系统的需要可 灵活改变步进电机的控制方案,使用起来很方便。典型的微型机控制 步进电机系统原理图如图3-20所示。 使用微型机对步进电机进行控制有串行和并行两种方式。 步 进 电 机
6
二、步进电动机的闭环控制
在开环步进电动机系统中,电动机的输出转矩在很大程度上取决于驱 动电源和控制方式。对于不同的步进电动机或同一种步进电动机而不 同负载,励磁电流和失调角发生改变,输出转矩都会随之发生改变, 很难找到通用的控速规律,因此,也很难提高步进电机的技术指标。 闭环系统是直接或间接地检测转子的位置和速度,然后通过反馈和适 当处理自动给出驱动脉冲串。因此采用闭环控制可以获得更精确的位 置控制和更高、更平稳的转速,从而提高步进电动机的性能指标。 步进电动机的输出转矩是励磁电流和失调角的函数。为了获得较高的 输出转矩,必须考虑到电流的变化和失调角的大小,这对于开环控制 来说是很难实现的。
步进电机控制系统原理

;输出第二拍 ;延时
; ;输出第三拍 ;延时 ;A≠0,转LOOP2 0
3、步进电机与微型机的接口及程序设计
对于节拍比较多的控制程序, 对于节拍比较多的控制程序, 通常采用循环程序进行设计。 通常采用循环程序进行设计。
3、步进电机与微型机的接口及程序设计
(4)循环程序 作法: 作法: 模型按顺序存放在内存单元中 • 把环型节拍的控制模型按顺序存放在内存单元中, 把环型节拍的控制模型按顺序存放在内存单元中, • 逐一从单元中取出控制模型并输出。 逐一从单元中取出控制模型并输出。 • 节拍越多,优越性越显著。 节拍越多,优越性越显著。 以三相六拍为例进行设计, 以三相六拍为例进行设计, 其流程图如图8所示。 其流程图如图8所示。
1、 步进电机工作原理
图1 步进电机原理图
步进电机有如下特点:
• 给步进脉冲电机就转,不给步进脉冲电机就不转; 给步进脉冲电机就转,不给步进脉冲电机就不转; • 步进脉冲频率高,步进电机转得快;步进脉冲频率低,步进电机转得就慢; 步进脉冲频率高,步进电机转得快;步进脉冲频率低,步进电机转得就慢; • 改变各相的通电方式(叫脉冲分配)可以改变步进电机的运行方式; 改变各相的通电方式(叫脉冲分配)可以改变步进电机的运行方式; • 改变通电顺序,可以控制步进电机的正、反转。 改变通电顺序,可以控制步进电机的正、反转。
单三拍, ★ 单三拍,通电顺序为 A→B→C ; 双三拍, AB→BC→ ★ 双三拍, 通电顺序为 AB→BC→CA ; 三相六拍, ★ 三相六拍,通电顺序为 A→AB→B→BC→C→CA ;
改变通电顺序可以改变步进电机的转向
2、步进电机控制系统原理
3.步进电机通电模型的建立: 3.步进电机通电模型的建立: 步进电机通电模型的建立
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
然后,使步进电机以每分钟 30 转的速率反向旋转 2min。 3. 典型的步进电机控制系统如下图所示 驱 动 器 步 进 电 机
CPU
接 口
负 载
图 1.微机控制步进电机系统原理框图
1. PC 机一台,EL 教学实验箱一台及汇编程序;
具 有 的 设 计 条 件
计 划 学 生 数 及 任 务
3人
(1) :明确课题对程序功能,运算精度等方面的要求及硬件条件 (2) :把复杂问题分解为若干模块,确定各模块处理方法,画出流程图。 (3) :存储器资源分配 (4) :编制程序,根据流程图精心选择合适的指令和寻址方式来编制源程序 (5) :对程序进行汇编,调试和修改,直到程序运行结果正确为止。 第一周设计任务: :明确课题对程序功能,运算精度等方面的要求及硬件条件 (1) (2) :把复杂问题分解为若干模块,确定各模块处理方法,画出流程图。 (3) :存储器资源分配 第二周设计任务: (4) :编制程序,根据流程图精心选择合适的指令和寻址方式来编制源程 序 (5) :对程序进行汇编,调试和修改,直到程序运行结果正确为止。
自动化专业微机原理课程设计任务书
论文 题目
步进电机控制系统
设1. PC 系统机里, 在 设计总线接口电路以及功率驱动电路控制四相步进电机, 用软件完成脉冲分配任务,由 LED 显示步进电机的实际转数。脉冲分配方式:单 4 拍工作方式。 2. 具体控制要求为: 使步进电机以每分钟 60 转的速率正向旋转 2min、 3S; 停
《微型计算机原理及接口技术》中国科技大学出版社 2009.6 第 4 版 周荷琴,吴秀清 《16-32 位微型计算机技术及应用》清华大学出版社 《微型计算机原理及接口技术》实验指导书 戴梅萼 史嘉权 编著 编著
计 划 设 计 进 程
参 考 文 献