步进电机及其驱动电路
步进电机驱动电路

R11 R10 361x4
IC6 TCP521-4
1 io4 Vdd 16 2 io6 io2 15 3 o/i io1 14 4 io7 io0 13 5 io5 io3 12 6 inh a 11 7 Vee b 10 8 Vss c 9
+5V
13 1A
14 Vcc 12 1Y
Nc
11 5A
10 5Y
+15V
14
1
Vcc 1A
1Y
3
1B
2
E7 E12/47u25V +5V
IC9
5
NE555
C41
8 VCC 4 RST
R26
470u 35V
C7
103
7 DHE 3 OUT D1
2 TGR 5 CTL
3
4 2A 2Y 6 5 2B 9 1A 1Y 8
1B 10
C16
R27 333 D2
6 TSD 1 GND
78L15
2
PC6
47u
25V
E2
C2
47u
25V
E3
C3
47u
25V
PC3 PC3 47u 25V
PT3
1
Vin
Vout
3
GND
78L15
2
PC7
47u
25V
E4
C4
47u
25V
驱动/电源板: H2P-8AH.PCB
P
222
N
1kV
2
3 1/9 12
8 10/7
PD1
PT4
1
Vin
Vout
3
GND
步进电机的驱动控制电路

绕组电 流小了, 输出转矩就会以12关系下降 1 21。此外, 在绕组电流截止时, 相绕组地两端 还会产生很高的反电动势。为提高步进电机 系统的性能和效率, 一般对驱动电路具有如 下要求: ①通电周期内能提供足够大的矩形波或 接近矩形波的电流。 ② 具有截止电流泻放回路, 以降低相绕组 两端的反电动势, 加快电流的衰减。 ③驱动电源效率高、功耗低, 运行稳定
蓄雾 蓄粼蹂。动路斩曝 盘瓷 严电 波 曹
,引言 步进电 机又称为脉冲电 它 机, 能将脉冲信 号变 换为 相应的角位移或直线位移, 输出 且 转 角、 转速与 输入脉冲的 个数、 频率有着严格的 同步关系川。由于步进电机能直接接受数字 量输入, 所以特别适合于微机控制。作为数字
控制系统中的重要执行组件, 步进电机广泛应 用于自 动指示装置、 数控机床、 计算机巡回检 测等多种领域中, 但一般数字电路的信号能量 不足以驱动步进电机, 因此需利用专门的电路 来驱动步进电机川。随着电力电子技术、自 动控制技术以及计算机技术的发展, 步进电机 驱动技术也得到 了 快速发展, 国内外对步进电 机驱动电路也进行了大量的研究和开发工作。
图3 高低压驱动
图1 步进电机驱动控制器
2 .2 工作要求 步进电机的励磁绕组是一个电感线圈, 其电感L 与励磁回路总电阻R 之比称为电机 驱动回路的时间常数 T , T = L/ R 。当步 即 进脉冲频率较低时,的影响可以不考虑, ( 电 机每走一步, 其相电流基本可以达到最大值。 当步进脉冲频率较高时, 的影响不能忽略, T 因为电机绕组中的电流是按指数规律 上 升 的, 大约经过 3 r 一5 T 的时间, 电流才能达 到稳态值。当步进脉冲频率较高, 使绕组通 电时间小于 3(时, 电机绕组的各相电流 1就 没有机会达到最大值, 而电机的转矩 MOC12,
步进电机工作原理及驱动器电路设计

步进电机工作原理及驱动器电路设计(含源程序)步进电机工作原理及驱动器设计步进电机在控制系统中具有广泛的应用。
它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。
有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。
本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。
本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。
1. 步进电机的工作原理该步进电机为一四相步进电机,采用单极性直流电源供电。
只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。
图1是该四相反应式步进电机工作原理示意图。
图1 四相步进电机步进示意图开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。
当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。
而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。
依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。
四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。
单四拍与双四拍的步距角相等,但单四拍的转动力矩小。
八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。
单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:a. 单四拍b. 双四拍 c八拍图2.步进电机工作时序波形图2.基于AT89C2051的步进电机驱动器系统电路原理步进电机驱动器系统电路原理如图3:图3 步进电机驱动器系统电路原理图AT89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。
四相步进电机驱动电路及驱动程序设计

四相步进电机驱动电路及驱动程序设计我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作,荣获一等奖。
电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。
程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。
整个舞蹈由运动数据所决定的一截截动作无缝连接而成。
本文主要介绍一下这个机器人的四相五线制步进电机驱动电路及程序设计.1、步进电机简介步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。
本文以四相制为例介绍其内部结构。
图1为四相五线制步进电机内部结构示意图。
2、四相五线制步进电机的驱动电路电路主要由单片机工作外围电路、信号锁存和放大电路组成。
我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。
8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。
每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。
电路原理图(部分)如图2所示。
(1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。
该系列单片机上集成8K的ROM,128字节RAM可供使用。
(2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。
ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。
关于这些芯片的详细介绍可参见它们各自的数据手册。
(3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。
我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。
这是一种基于总线分时复用的方式,以动态扫描的方式来发送控制信号,这和高级操作系统里的多任务进程调度的思想一致。
步进电机驱动电路的设计

U’o确定参考电位 o UI1和UI2两者都 UI1和UI2两者都 小于各自的参考电 压时,Uo=1, 压时,Uo=1,放电 管截止; 管截止; UI1和UI2两者都 UI1和UI2两者都 大于各自的参考电 压时,Uo=0, 压时,Uo=0,放电 管导通; 管导通;
V CC
RD 4
vIC
5
8
vI1
tW
T
脉冲周期T: 脉冲周期 :在周期性重复的脉冲系列 两个相邻脉冲间的间隔时间。 中,两个相邻脉冲间的间隔时间。 脉冲频率f: 脉冲频率 :单位时间内脉冲重复的次数 f=1/T。 。 占空比D:脉冲宽度与脉冲周期的比值 占空比 : D=tw/T。 。
如何获得脉冲信号? 如何获得脉冲信号?
利用脉冲振荡器直接产生脉冲信号; 利用脉冲振荡器直接产生脉冲信号;
典型的步进电机控制系统的组成
时钟电路
步进控制器——把输入的脉冲转换成环型脉冲 步进控制器——把输入的脉冲转换成环型脉冲, 把输入的脉冲转换成环型脉冲, 以控制步进电动机, 以控制步进电动机,并能进行正反转控制 功率放大器——把步进电动机输出的环型脉 功率放大器——把步进电动机输出的环型脉 冲放大, 冲放大,以驱动步进电动机转动
L297接线图与控制时序 L297接线图与控制时序
L298内部结构原理图 L298内部结构原理图
L298是一 是一 种双全桥驱动电 路,可用来驱动 各种小型直流电 机、两相双极步 进电机和四相单 极步进电机。 极步进电机。
L297和L298构成的步进电机控制系统 L297和L298构成的步进电机控制系统
0.9U m 0.1U m
tr
tf
上升时间t 脉冲上升沿从 脉冲上升沿从0.1Um上升到 上升到0.9Um所需的 上升时间 r:脉冲上升沿从 上升到 所需的 时间。 时间。 下降时间t 脉冲下降沿从 脉冲下降沿从0.9Um下降到 下降到0.1Um所需的 下降时间 f:脉冲下降沿从 下降到 所需的 时间。 时间。
步进电机工作原理及控制电路

因为它每走一步需要一定的时间,若信号频率过高,可能导致电机失步,甚至只
在原步颤动。
步进电机的步距角与工作拍数
对于一个步进电机,如果它的转子的齿数为
Nr,它的齿距角q z为:q z =2
Π/Nr,而步进电机运行k拍可使转子转动一个齿距位置。实际上步进电机每一
拍就执行一次步进,所以步进电机的步距角q s可以表示如下:
flag1=0; //步进数标志变量
init(); //液晶初始化子程序
while(1)
15 度;反应式步进
一般为三相,可实现大转矩输出,步进角一般为1.5 度,但噪声和振动都很大。
在欧美等发达国家80 年代已被淘汰;混合式步进是指混合了永磁式和反应式的
优点。它又分为两相和五相:两相步进角一般为1.8 度而五相步进角一般为
0.72
度。这种步进电机的应用最为广泛。
4.1反应式步进电机
图4.7一般的驱动电路
-A-A
图4.8 Bit
在实际应用中一般驱动路数不止一路,用上图的分立电路体积大,很多场合用
现成的集成电路作为多路驱动。常用的小型步进电机驱动电路可以用ULN2003
或ULN2803。ULN2003 是高压大电流达林顿晶体管阵列系列产品,具有电流增
益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类低速小功率
管T的集电极电阻;D是续流二极管,它为绕组放电提供回路;晶体管T是大功率
开关管。Rc也是个外接的功率电阻,它是一个消耗性负载,一一般为数欧姆。这
时线路的时间常数Tj为:
Tj = L / ( RL +RC )
公式(4.3)
其中:L单位为亨,Rc、RL单位为欧姆,Tj单位为秒。
步进电机及其驱动电路

第三节步进电动机及其驱动一、步进电机的特点与种类1.步进电机的特点步进电机又称脉冲电机。
它是将电脉冲信号转换成机械角位移的执行元件。
每当输入一个电脉冲时,转子就转过一个相应的步距角。
转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。
只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。
步进电动机具有以下特点:✍工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响;✍步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ;✍由于可以直接用数字信号控制,与微机接口比较容易;✍控制性能好,在起动、停止、反转时不易“丢步”;✍不需要传感器进行反馈,可以进行开环控制;✍缺点是能量效率较低。
就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种:(1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机(2)永磁(PM—Permanent Magnet)型(3)混合(HB—Hybrid)型(1)可变磁阻(VR—Variable Reluctance)结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机.其结构原理如图3.5定子1上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。
图3。
6 可变式阻步进电机可变磁阻步进电机的特点:❖反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力;❖需要将气隙作得尽可能小,例如几个微米;❖结构简单,运行频率高,可产生中等转矩,步距角小(0。
09~9°)❖制造材料费用低;❖有些数控机床及工业机器人上使用。
(3)混合(HB—Hybrid)型结构原理这类电机是PM式和VR式的复合形式。
其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。
步进电机驱动电路

02
步进电机驱动电路设计要素
驱动电路的组成及工作原理
驱动电路的组成
• 电源模块:为驱动电路提供稳定的电压和电流 • 控制模块:接收控制信号,控制电流的方向和大小 • 驱动模块:将控制信号转换为驱动电流,驱动电机运行
驱动电路的工作原理
• 控制模块根据输入的控制信号生成驱动信号 • 驱动模块根据驱动信号产生相应的驱动电流,驱动电机运行 • 电源模块为驱动电路提供稳定的电压和电流,保证电路正常工作
04
步进电机驱动电路在实际应用中的注意事项
驱动电路与步进电机的匹配问题
驱动电路与步进电机的匹配原则
• 度要求选择合适的驱动电路
驱动电路与步进电机的匹配方法
• 通过实验和计算确定最佳匹配方案 • 参考产品手册和应用案例进行匹配
驱动电路的控制策略与优化
未来应用场景的拓展
• 在智能家居、机器人等领域的应用 • 在航空航天、武器装备等领域的应用
未来驱动电路的设计方向
• 高性能、高效率、高可靠性的驱动电路设计 • 绿色环保、节能减排的驱动电路设计
CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
模块化驱动电路的优势
• 便于维护和升级 • 提高设计灵活性,易于扩展
新型驱动技术与控制方法的研究与应用
新型驱动技术
• 永磁同步电机等高效电机的研究与应用 • 无刷直流电机等环保电机的研究与应用
新型控制方法
• PID控制等先进控制算法的研究与应用 • 模糊控制等人工智能技术的研究与应用
步进电机驱动电路在未来应用场景的拓展
双极性驱动电路的优缺点
• 优点:驱动能力强,能实现正反转控制 • 缺点:结构较复杂,成本较高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节步进电动机及其驱动一、步进电机的特点与种类1.步进电机的特点步进电机又称脉冲电机。
它是将电脉冲信号转换成机械角位移的执行元件。
每当输入一个电脉冲时,转子就转过一个相应的步距角。
转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。
只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。
步进电动机具有以下特点:✍工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响;✍步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ;✍由于可以直接用数字信号控制,与微机接口比较容易;✍控制性能好,在起动、停止、反转时不易“丢步”;✍不需要传感器进行反馈,可以进行开环控制;✍缺点是能量效率较低。
就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种:(1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机(2)永磁(PM-Permanent Magnet)型(3)混合(HB-Hybrid)型(1)可变磁阻(VR-Variable Reluctance)结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。
其结构原理如图3.5定子1上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。
图3.6 可变式阻步进电机可变磁阻步进电机的特点:❖反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力;❖需要将气隙作得尽可能小,例如几个微米;❖结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°)❖制造材料费用低;❖有些数控机床及工业机器人上使用。
(3)混合(HB-Hybrid)型结构原理这类电机是PM式和VR式的复合形式。
其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。
其结构如图3.7所示。
混合式步进电机特点:HB兼有PM和VR式步进电机的特点:步距角可以做得较小(0.9~3.6°);无励磁时具有保持力;可以产生较大转矩,应用较广。
拍:从一相通电换接到另一相通电称为一拍。
三相单三拍:通电方式A-B-C-A →… ,步距角为30度三相双三拍:通电方式AB→BC→CA→AB →… ,步距角为30°三相六拍:通电方式A→AB→B→BC→C→CA→A→…,步距角为l5°(见图3.9)。
二、步进电机的工作原理步进电动机的步距角越小,意味着它所能达到的位置精度越高。
通常的步矩角是1.5o或0.75o。
为此需要将转子做成多极式的,并在定子磁极上制成小齿,定子磁极上的小齿和转子磁极上的小齿大小、齿宽和齿距一样。
当一相定子磁极的小齿与转子的齿对齐时,其它两相磁极的小齿都与转子的齿错过一个角度。
按着相序,后一相比前一相错开的角度要大。
步距角的大小与通电方式和转子齿数有关,用下式计算:α=360o/(Zm)式中,Z—转子齿数;m—运行拍数,通常等于相数或相数整数倍,即m=KN(N 为电动机的相数,单拍时K=1,双拍时K=2)。
三、步进电动机的性能指标及运行特性1. 步距角α(分辨力)0.6/1.2,0.75/1.5,0.9/1.8,1/2,1.5/3步距角为α与系统脉冲当量为δ和丝杠基本导程为l0的条件下,减速比的匹配关系:δ={[α/(3600)]/i}l0所以,i=αl0/(3600)δ2. 静态特性:步进电动机的静态特性是指它在稳定状态时的特性,包括矩-角特性、静转矩等。
在空载状态下,给步进电动机某相通以直流电流时,转子齿的中心线与定子齿的中心线相重合,转子上没有转矩输出。
如果在电动机转于轴上加一负载转矩TL,定子与转子之间将有一角位移θe(见图3.11),称为失调角。
此时转子上的电磁转矩与负载转矩相等,称为静态转矩T j。
T j-θe的关系曲线为矩-角特性曲线(图3.12 )。
3动态特性1)动态稳定区2)启动转矩在某一通电方式下,各相的矩-角特性总和为矩-角特性曲线族,每一曲线依次错开的电角度为θe=2π/3m,m为运行拍数。
A相与B相矩-角特性曲线之交点所对应的转矩T q被称为起动转矩。
3)空载启动频率与惯-频特性:在空(负)载条件下,步进电机转子从静止状态不失步地起动的最大控制频率称为空载起动频率 (fq)。
当带负载起动时,所允许的起动控制频率会大大下降,它反映了电机跟踪的快速性,且随负载惯量的增加而下降。
步进电动机带动惯性负载时的起跳频率与负载转动惯量之间的关系为惯-频特性。
除惯性负载之外,还有外负载转矩,则起跳频率将会进一步下降。
90BF002型步进电动机的启动矩频特性曲线和运行矩频特性。
4)最高连续运行频率及矩-频特性:步进电机在连续运行时所能接受的最高控制频率被称为最高运行频率(f max)。
电动机在连续运行状态下,其电磁转矩随控制频率的升高而逐步下降。
这种转矩与控制频率之间的变化关系称为矩-频特性。
四、步进电机的型号表示方法不同生产厂家的步进电机型号表示方法也不尽相同,举例如下:步进电机的尺寸实物的步进电机及驱动器五、步进电机的驱动与控制1.步进电机的驱动步进电机的驱动包括脉冲分配器和功率放大器等微机或数控装置等送来的脉冲信号及方向信号应按要求的配电方式自动循环地供给电动机各相绕组,以驱动电动机转子正反向旋转。
只要控制输入电脉冲的数量及频率就可精确控制步进电动机的转角及转速。
(1)脉冲分配器步进电机的各相绕组必须按一定的顺序通电才能正常工作,(环形)脉冲分配器就是实现该功能的。
实现方法有三种:①软环分:利用查表或计算方法来进行脉冲的环形分配。
以下图所示的微机控制三相步进电机为例,对其软环分状态进行详细介绍。
可将表中状态代码0lH、03H、02H、06H、04H、05H列入程序数据表中,通过软件可顺次在数据表中提取数据并通过输出接口输出即可,通过正向顺序读取和反向顺序读取可控制电动机进行正反转。
通过控制读取一次数据的时间间隔可控制电动机的转速。
该方法能充分利用计算机软件资源以降低硬件成本,尤其是对多相的脉冲分配具有更大的优点。
但由于软环分占用计算机的运行时间,故会使插补一次的时间增加,易影响步进电动机的运行速度。
②采用小规模集成电路搭接图3.15为用双稳态触发器C1、C2、C3搭接而成的三相六拍环形脉冲分配器,利用这种方式可搭接任意相任意通电顺序的环形分配器,同时在工作时不占用计算机的工作时间,但柔性较差,硬件一旦完成就不易修改。
③采用专用环形分配器器件图为市售的CH250即为一种三相步进电动机专用环形分配器。
它可以实现三相步进电动机的各种环形分配(双三拍,单六拍等),使用方便、接口简单。
图3.16为CH250的管脚图,图b为三相六拍接线图。
③采用专用环形分配器器件管脚A、B、C为相输出端;管脚R、R*用于确定初始励磁相:若为10,则为A相,若为01,则为A、B相,若为00,则为环形分配器工作状态;管脚CL、EN为进给脉冲输入端:若EN=1,进给脉冲接CL,脉冲上升沿使环形分配器工作,若CL=0,进给脉冲接EN,脉冲下降沿使环形分配器工作,否则环形分配器状态锁定;管脚J3r、J3L、J6r、J6L为三拍或六拍工作方式的控制端;管脚UD、US为电源端。
(2)功率放大器从计算机输出口或从环形分配器输出的信号脉冲电流一般只有几个毫安,须采用功率放大器将脉冲电流进行放大才能驱动步进电动机运转。
电动机各相绕组都是感性负载,通电时,电流上升率受到限制;断电时,又会产生反电动势,为使电流尽快衰减,增加适当的续流回路。
仅仅介绍简单的单电压功率放大电路。
单电压功率放大电路优点:是线路简单;缺点是电流上升慢,高频时负载能力低。
实用驱动系统KT350步进电动机驱动器的外形及接口图。
其中接线端子排A、A、B、B、C、C、D、D、E、E接至电动机的各相;AC为电源进线,用于接50Hz、80V的交流电源,端子G用于接地;连接器CN1为一个9芯连接器,可与控制装置连接。
RPW、CP为两个LED指示灯;SW是一个四位拨动开关,用于设置步进电动机的控制方式。
其中第1位用于脉冲控制模式的选择,OFF位置为单脉冲控制方式,ON位置为双脉冲控制方式;第2位用于运行方向的选择(仅在单脉冲方式时有效),OFF位置为标准运行,ON位置为单方向运行;第3位用于整.半步运行模式选择,OFF 位置时,电动机以半步方式运行,ON位置时,电动机以整步方式运行;第4位用于运行状态控制,OFF位置时,驱动器接受外部脉冲控制运行,ON位置时,自动试机运行(不需外部脉冲)。
图示为混合式步进电动机驱动器的典型接线图。
图混合式步进电动机驱动器的典型接线图步进电机控制系统2.步进电机的控制(1)控制方式:使用微机对步进电动机进行控制有串行和并行两种方式。
①串行控制:将微机送出的脉冲串和方向信号送入驱动电源,由驱动电源进行脉冲分配和功率放大,并驱动步进电机转动(图3.24a)。
特点是使用的信号线少;可进行远距离传输;但驱动电源中必须含有环形分配器。
②并行控制:由微机对脉冲串进行分配,并同时经并行端口送入驱动电源驱动步进电机转动(图3.24b)。
特点是使用的信号线多;传输速度快;一般由微机进行软环分,所以驱动电源只需进行功率放大。
(2)速度控制控制步进电动机的运行速度,实际上就是控制系统发出步进脉冲的频率或者换相的周期。
系统可用两种办法来确定步进脉冲的周期:①软件延时通过调用延时子程序的方法来实现,占有CPU时间。
②用定时器通过设置定时器时间常数的方法来实现,需硬件支持。
①软件延时②用定时器加减速规律一般有①按照直线规律升速②按指数规律升速两种。
其实现也可以由软件延时和定时器两种方法。
当利用定时器方式时,实质就是不断改变定时器装载值的大小。
为了减少每步计算装载值的时间,可用阶梯曲线来逼近理想升降曲线。
这样,每次装载,软件系统可通过查表的方法,查出所需要的装载值。
下面以最简单的等加速、等减速的加减速过程对直线加减速规律进行介绍:加速和减速的速度曲线有图3.25所示两种。
2.步进电机的控制图中,f q为起跳频率,f n为正常运行频率,起始频率f q=0 时(图 a),直线加速的斜率为:K= f n /(t n -t0)= f n /(t n)。
则电机的回转角速度为:ω=Kαt,α为步距角。
在如下图所示的步进电机速度—时间曲线中(加减速过程是线性且对称的),A、B、C…各相当于一个步距角对应的面积,假设电机起动频率为0HZ,稳定运行频率为4500HZ,电机从零时刻起动,加减速时间为0.5s。