第2章电阻电路的等效变换

合集下载

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

i

… i
+ -
u

K=1,2 , i
+ -
u
Reg
u
G1
in Gn
u

Geg
分流公式: 分流公式:ik=Gku=Gk/Geg i n=2时,Reg=R1R2/(R1+R2) 时 ( i1=R2/(R1+R2), 2=R1/(R1+R2)×i ),i ( ( *混联:有串,又有并 混联:有串, 混联 1 R1 R2 R3 R4
对于△ 对于△形,各电阻中电流为:i12=u12/R12 i23=u23/R23 i31=u31/R31 各电阻中电流为:
i ′ =i12-i31=u12/R12-u31/R31 1
i ′2 =u23/R23-u12/R12
i ′3 =u31/R31-u23/R23
i1 + i 2 + i 3 = 0

2
2 i31 1 i12

2

i′2
1
1
R2
3
自已补充:R 自已补充 4与1串,R3与2串,然 串 串然 后再并 i2
R4 R3 2
3
i3 2
1
1
2-5
电压源和电流源的串联和并联

1、n个电压源串联:us=∑usk--------等效电压源 、 个电压源串联: 等效电压源 个电压源串联 + - + ○ ○ -○ us1 us2 usn。 。 注:正、负号取 。 。 。 2、n个电流源的并联: 个电流源的并联: 、 个电流源的并联 is1 is=is1+is2+…is=∑isk 。 。
αi
+ uS - i +

第二章电阻电路的等效变换

第二章电阻电路的等效变换

ab
20 100 60
120 60
ab 20 100
100 Rab=70
ab
20 100 60
40
例2 求: Rab
5
15 6
a 20
b
缩短无
电阻支路
7
6
Rab=10
4 a b
15
10
20
5
a
15 b
7 6 6 4 a
b
15 7
3
例6
求: Rab c
对称电路 c、d等电位
R
R
R
c R
a R
断路 a
+a
2 +
U
6V –
(a)
b
3 9V +
(b)
解: a
+
+a U b
a +
3A 2 U
3A 3 U
b
(a)
b
(b)
例1: 求下列各电源等效变换
+a
3A 1 U
解:
(c)
b
a
+
1 +
U
3V –
(c)
b
+a
2A 5 U
(d) b
a
+
5 -
U
10V +
(d)
b
例2: 试用电压源与电流源等效变换的方法,计算2
2.1 概述
1 一些概念
1)电阻电路 仅由电源和线性电阻构成的电路。
2)等效的概念:
若结构、元件参数不相同的两部分电路N1、N2,具 有相同的电压、电流关系,则称它们彼此等效。
i

高等教育出版社第六版《电路》第2章_电阻电路的等效变换课件

高等教育出版社第六版《电路》第2章_电阻电路的等效变换课件
k 1
n
顺之者正,逆之者负。
2、串联: is1 is2
isn
is = is1= is2 = isn is
(1)电流相同的电流源能串联,但每个电源中的电压不确定。 (2)电流不相等,则不能串联,否则,违背KCL。 3、电流源is 和R、 us的串联: us is + – + u1 – R 注意:电压变化了。
第二章 电阻电路的等效变换
§2-1 引言
线性电路:由线性无源元件(R、L、C·)、线性受控 · · 源和独立电源组成。 线性电阻电路:由线性电阻、线性受控源和独立电源组成。 直流电路:独立电源为直流电源的线性电阻电路。
§2-2 电路的等效变换
一、等效的概念:
R R R1 §2-2 电路的等效变换 1 1 R2 i + R4 u R _ 3 ,
解:用电源变换法。受控源和独立源一样可以进行电源转换。 R i R _ + uR_ i R + uR + + ic + uc _ uS R _uS _
uc Ric 2 2 uR 4uR
Ri + Ri + uc = us
2uR 4uR us us uR 2V 6 在进行电源变换时,为避免出错控制量一般不要转换掉!
i2
i3
i3
u31 u23 R31 R23
R1u23 R3u12 R1R2 R2 R3 R3 R1 R1R2 R2 R3 R3 R1
R2u31 R1u23 R1R2 R2 R3 R3 R1 R1R2 R2 R3 R3 R1
由Y : R R R2 R3 R3 R1 R12 1 2 R3 R1R2 R2 R3 R3 R1 R23 R1 R R R2 R3 R3 R1 R31 1 2 R2

第02章电阻电路的等效变换(丘关源)

第02章电阻电路的等效变换(丘关源)
(1-29)
(6)恒压源并联任何元件其两端电压不变;
恒流源串联任何元件其流出电流不变;
a a
+ us

+ +

对外等效
us

b
c
b c
对外等效
is
+

d
is
d
(1-30)
例1 用电源等效变换法求i R5
R1 u1 + R2 R3 i
+
i=?
解:
-u3
R4
is
R5 u3 — R3 i
应 用 举 例
一、理想电压源的串联和并联
1、串联 + uS1_ _ uS2 +
+ 注意参考方向
º uS=+uS1 …-uS2 i + uS _ º
等效
+
uS _
º +
_ º
2、并联
条件:uS=uS1=uS2 方向相同 º 恒压源中的电流由外电路决定。相同的恒压源才能并联 。
(1-21)
uS1_
u S2
+ _
i
º
3、恒压源与任意支路(非恒压源)并联的等效 i i + + + + 任意 uS 对外等效 uS _ u _ u 元件 _ _ 4、实际电压源的串联等效
+ i +
uS1 _
R1
_ uS2 + u
R2 _
等效
uS _ R + i +
u
_
uS=+uS1-uS2
R=R1 + R2
(1-22)
二、理想电流源的串联和并联

电路理论基础第二章电阻电路的等效变换.

电路理论基础第二章电阻电路的等效变换.

■ _________________________________________________秦二五五阻竜賂鬲看效交鎭5 MT\ 2-2『WL略g*j»c凭. r -「电m 的■!»"井JBi 1-「削血的、知联结*>^洒联结的帶玻^^换'2-5 f 电压■、电汶4K的*税加井联11 2-6「4&际他sRftdKjn.st及如nat. 72-7r«r入电》1•重点:1.电路等效的概念2.电阻的串、并联3.电阻的Y・A变换4.电压源和电流源的等效变换2-1引言•电阻电路仅由电源和线性电阻构成的电路。

①欧姆定律和基尔霍夫定律是分析电•分析方法阻电路的依据.②等效变换的方法,也称化简的方法・IW回,『Wk I下賈***yuj^" ...... .... . 一組由从旨•麦以2-2电路的等效变换1 •二端电路(网络)任何一个复杂的电路,向外引出两个端钮,且从一个端子流入的电流等于从另一个端子流出的电流,则称这一电路为二端网络(或一端口网络)。

・回「王廣r下V2-3电阻的串联和并联1.电阻串联R\①电路特点+ HI - + W & - + 冷(a)各电阻顺序连接,流过同一电流(KCL)。

(b)总电压等于各串联电阻的电压之和(KVL)。

以=叫+••• + '" --- + 叫t 回,:上贡「下IT.. ....2. 电阻并联(a)各电阻两端为同一电压(KVL)。

(b)总电流等于流过各并联电阻的电流之和(KCL).i =八 + 02+ + L+「込回,:上贡「下IT② 等效电阻■:~I/. RH 血人dij KCL: / = /1 +,2+ …+ S+ ' * +/…= U/R\ +M /7?2 + 十 M /R n=M (1//?]+ 1/7?2—H '/RJ=uG 門na = G + G ----------- <7 =牙 G > aoq12nk k①电路特点HiIO — +ftU迟回,上黃丨下帀《隽捡 等效电导等于并联的各电导之和.例3-2两电阻的分流.R 显心1冬_叽 刊 \R +1/ RjR\ + RjlR\ .二 RJ1//?+1做,一 R\+Rjz, = —―~~—— i = -----1 R + \ K 、 & +&------- 1 --------- 1 -------- hR' RRfI ③并联电阻的分流 IL u/R,kk_一 一/ ~ u! R eq上黃丨下帀1/尺2即 <老II --------- ---- ------- ——亠“ • 亠亠J 亠亠A 亠亠—亠■亠▲ »■■■■•亠令午+亠▲亠▲▲亠▲▲“ 亠亠.亠亠 S 亠亠1 从以上例题可得求解串、并联电路的一般步骤:①求出等效电阻或等效电导.②应用欧姆定律求出总电压或总电流.③应用欧姆定律或分压.分流公式求各电阻上的削流和电压《以上的关键在于识别各电阻的串联.并联关系!求"Rah,Red o(5 + 5)x 15 +(y (5 + 5)+ 15(15 • 5)X 5uh —例3・6求:。

第2章电阻电路的等效变换

第2章电阻电路的等效变换

总电流
U S 18 I= = A = 6A R 3
由分流公式得
6 I1 = I = × 6A = 4A 4× 4 9 6 + (1 + ) 4+4
再分流得
6
1 I x = I 1 = 2A 2
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.4 Y形电路和Δ形电路之间 的等效变换
返回
电路分析基础
如何等效化简电桥测温电路? 如何等效化简电桥测温电路?
返回
电路分析基础
第2章 电阻电路的等效变换
2.1 等效变换
电阻电路
线性电阻电路
非线性电阻电路
简化线性电阻电路的主要依据是等效变换
返回
电路分析基础
第2章 电阻电路的等效变换
2.1.1 一端口网络的定义
二端网络
一端口网络
流入一个端子的电流必定等于流出另一端子的电流
Ig =
Rp Rg + R p
× 10 × 10 −3 = 1 × 10 −3 mA
解之得应并联的电阻为
0.1RG 2 × 10 3 Rp = = Ω ≈ 222.22Ω 0.9 9
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.3 电阻的混联
判别电路的串并联关系根据以下原则: 判别电路的串并联关系根据以下原则: (1)看电路的结构特点。 看电路的结构特点。 (2)看电压、电流关系。 看电压、电流关系。 (3)对电路作变形等效。 对电路作变形等效。 (4)找出等电位点。 找出等电位点。
R4 R5 R2(R3 + ) R4+R5 R = R1 + R4 R5 R2 + (R3 + ) R4 + R5

第二章电阻电路的等效变换


(2)R1增大,Uis增大,对其它元件均无影响
26
$2-5 电压源及电流源串联和并联(39)
1、电压源串联(如图): 1 + 等效电压源符号: 1 + Us 2 +Us1+ Us2 Us 2 +Usn -
Us=Us1+Us2+….+Usn Usk与Us方向一致取“+”,否则,取“-”
27
2、电流源并联(如图)
22
R 23 R 31
R23
2
2、 △ 型连接等效变换为Y型连接
1
23
R13
R23
R12 2
R R
1

R R R
3
12
R 1 2 R 31 R 23 R R 12 R 23 R 23 R R 31 R 23 R 23 R
31
2
1 R1 R3 3 R2 2
12
31
R
3
• 端口施加电压法求Rin: 端口施加电压源U,则有端口电流I, 求出端口伏安特性表达式:U=IR 则Rin=R=U/I
C)若端口内部有独立电源 先将电压源短路,电流源开路, 求输入电阻归结为 a)b)情况 34
二、实例: 例2-5( 44页)(自学)
练习题 2-12 :试求图(a)图(b)中的Rab
则: I Req=U 等效电路: 结论:串联电阻,等效电阻为各电阻之和。
例2-3-1 电路如图,求U1
I + U1 R1 R2 -
+
Us -
KVL:IR IR U 1 2 S + US I U2 R1 R2 R 1 U R *I Us 1 1 R R 1 2

第二章电阻电路的等效变

第二章-电阻电路的等效变第二章 电阻电路的等效变换2.1 学习要点1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。

2. 电源的串联、并联及等效变换。

3. “实际电源”的等效变换。

4. 输入电阻的求法。

2.2 内容提要 2.2.1 电阻的等效变换1. 电阻的串联:等效电阻: R eq =∑1=k nk R ;分压公式:u k =eqkeq ×R R u ; 2. 电阻的并联:等效电导:G eq =∑1=k nk G ;分流公式:qe G G i i keqk ×=;2.2.2. 电阻的Y 与△的等效变换1. △→Y :一般公式:Y 形电阻=形电阻之和形相邻电阻的乘积∆∆;即31232331*********231231212311++=++=++R R R R R R R R R R R R R R R R R R 2312=2. Y →△:一般公式:形不相邻电阻形电阻两两乘积之和形电阻=Y Y ∆;即:213322131113322123313322112++=++=++=R R R R R R R RR R R R R R R R R R R R R R R R2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。

表2.1 电源的串联、并联等效变换图2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”R u =R i =1/G i u s =i s R i =i s /G i两者等效互换的原则是保持其端口的V AR 不变。

2.2.5 输入电阻的求法一端口无源网络输入电阻的定义(见图2.2):R in =u/ i1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。

2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻R in =u s /i 或 R in =u/ i s方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比值即是一端口无源网络的输入电阻。

第二章电阻电路等效变换


3、在同样的条件下,等效电路的形式也不是唯 一的。
4、电路进行等效变换的目的是为了简化电路以 方便地求解未知量。
3
§2-2 电阻的串联、并联和混联
一、电阻的串联 (Series connection of resistors)
1、电阻的串联 特点:在串联电路中,各元件流过的电流相同。
由欧姆定律及KVL得: i u = u 1 + u 2 + + u n a =R1i+R2i+ +Rni + u =(R1+R2+ +Rn)i 令R eq=R1+R2+…+Rn=Rk b 则有 u= R eqi
27
电压源: u U s Rs i 电流源: u i Is Rs I s Rs i u Rs
电源模型等效的条件为: 电压源 I RS + US a Uab b
Is
US
RS
Is
电流源 I' a
RS ' RS
Uab' RS'
b
U s I s Rs' Rs Rs'
即形电阻 电阻两两乘积之和 Rmn i' 接在与 Rmn相对端钮的电阻 31

R31
i3'
i'1 2
R23
i'2 3

21
2)形等效为Y形,有:
i1'
R12
i2'
R31 R12 R1 R12 R23 R31 R12 R23 R2 R12 R23 R31 R23 R31 R3 R R R 12 23 31

第二章 电阻电路的等效变换


4
Rab=10
15 10
a b
a b
7
20
15
3
返 回
上 页
下 页
例 2-8 求图 2-5电路 a b 端的等效电阻。
Req (2 // 2 (4 // 4 2) // 4) // 3 (1 4 // 4) // 3 1.5
21
复习
1、电阻的串联 等效电阻、分压
23
例2-4 图2-7所示电路每个电阻都是2Ω, 求a, b两端的等效电阻
解:
c
d
e
根据电路的对称性, 可知 c, d, e三点等电位, 故可用导线短接。
8 2 8 2 16 3 3 2 Req [(2//1) 2]// 2//1 2 // 2 8 2 3 3 15 3 3
26
R12 ( R23 + R31 ) R12 + R23 + R31
i1
i1
i3
i2
i3
i2
R12 R31 R12 + R23 + R31 R23 R12 R12 + R23 + R31 R31 R23 R12 + R23 + R31
27
同理,令i1=0, 可得: R23 ( R12 + R31 ) R2 + R3 = R12 + R23 + R31 同理,令i2=0, 可得:
25
二、 等效变换:保证伏安特性相同
对应端口电压、电流分别相等
i1
u12 = f1 ( i1 , i2 , i3 ) u23 = f 2 ( i1 , i2 , i3 ) u31 = f3 (i1 , i2 , i3 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u2 6i1 6 15 90V u3 6i3 6 10 60V u4 3i3 30V
i5 10 7.5 2.5 A
例 a
20
求: Rab b
100 60 80 10
a
20
b
100 60 120 60
40
50
a
20
b
100
a
(1) 电路特点
R1
Rk
Rn
+ un _ _
i
+
+ u1 _ + u k _
u
(a) 各电阻顺序连接,流过同一电流 (KCL); (b) 总电压等于各串联电阻的电压之和 (KVL)。
u u1 uk un
(2) 等效电阻
R1 Rk Rn 等效
R eq
i
+
+ u1
包含
1
R12
a
R3 1
d
R4
b
R31
R2
R1
R3 3 Y型网络
三端 网络
2
R23 型网络
3
2
2. —Y 变换的等效条件
R1 R2 R12 R1 R2 R3 R2 R3 R23 R2 R3 R1 R3 R1 R31 R3 R1 R2
简记方法:
R12 R31 R1 R12 R23 R31 R23 R12 R2 R12 R23 R31 R3 R31 R23 R12 R23 R31
R1 +
R3
R2
+
US _
US _ + _
i1
ri1/R3
R2//R3
i1
ri1
R2 R3 R R1 R2 R3
注:
+
US _
i1
R
+
(R2//R3)ri1/R3 _
Ri1 ( R2 // R3 )ri1 / R3 U S US 受控源和独立源一样可以进行电 i1 R ( R2 // R3 )r / R3 源转换;转换过程中注意不要丢 失控制量。
1/3k
1/3k 1/3k
E
R 1k
E
1k 3k i E 3k 3k R

1
+ 20V 1
计算90电阻吸收的功率
4
9 90 1 4 3 3 3 9 9 9
1
i
+
i1
20V
90 10
-
10 90 Req 1 10 10 90
+
20V 90 1
+
转换
u _
us
is Gi
, Ri 1
Gi
i + uS _ Ri
注意 (1) 变换关系 数值关系: 方向:电流源电流方向与电压源电压方向相反。 (2) 等效是对外部电路等效,对内部电路是不等效的。 开路的电压源中无电流流过 Ri; 表 开路的电流源可以有电流流过并联电导Gi 。 现 电压源短路时,电阻中Ri有电流; 在 电流源短路时, 并联电导Gi中无电流。 (3) 理想电压源与理想电流源不能相互转换。
第2章 电阻电路的等效变换
重点: 1. 电路等效的概念; 2. 电阻的串、并联; 3. Y— 变换; 4. 电压源和电流源的等效变换;
2.1
电阻电路 分析方法
引言
仅由电源和线性电阻构成的电路
(1)欧姆定律和基尔霍夫定律是分 析电阻电路的依据;
(2)等效变换的方法,也称化简的方法
2.2
等效电路
+
uS _
º +
_ º
并联 +
º
uS1_
u S2
+ _ º
us us1 us 2
相同的电压 源才能并联, 电源中的电 流不确定。
电压源支路的串、并联及其等效
+ i +
uS1 _
R1
+
uS2 _ R2 _
uS _ R + i +
u
u
_
u us1 R1i us 2 R2 i (uS1 uS 2 ) ( R1 R2 )i uS Ri
i = i1+ i2+ …+ ik+ …+in
(2) 等效电阻
i + u _ R1 i1 R2 i2 Rk ik Rn in
等效
i
+ u _
Req
由KCL:
i = i1+ i2+ …+ ik+ …+in =u/R1 +u/R2 + …+u/Rn=u(1/R1+1/R2+…+1/Rn)=uGeq
Geq G1 G2 Gn Gk Gk
例5.
求电流i1 R1
R3 +
R3
US/R1 R2
R2//R1
+
US _
ri1
_
i1
ri1
+
_ + R US(R2//R1)/R1 _
i
+ ri1 _
i1
R1 US/R1
R3 + R2
ri1
_
R2 R1 R R3 R2 R1
Ri ri1 U S ( R2 // R1 ) / R1
相同的理想电流源才能串联, 每个电流源的端电压不能确定
2.6
电压源和电流源的等效变换
实际电压源、实际电流源两种模型可以进行等效变换, 所谓的等效是指端口的电压、电流在转换过程中保持不变。
i
+ uS _
Ri
端口特性
+
u _
实 际 电 压 源
iS Gi i =iS – Giu
i + u _
实 际 电 流 源
p1=G1u2, p2=G2u2,, pn=Gnu2 p1: p2 : : pn= G1 : G2 : :Gn
总功率
p=Gequ2 = (G1+ G2+ …+Gn ) u2
=G1u2+G2u2+ +Gnu2
=p1+ p2++ pn 表明
(1) 电阻并联时,各电阻消耗的功率与电阻大小成反比 (2) 等效电阻消耗的功率等于各串联电阻消耗功率的总和
例6. 把电路转换成一个电压源和一个电阻的串连。
1k
1k I 2k º + U _ º 10V
500I - I +
0.5I 10V
º
+ U _ º
U 500I 2000I 10 1500I 10
10V
1.5k
I
º
+ U _ º
2.7 输入电阻
1. 定义 无 源
i
+ u -
Rk u uk Rk i Rk uu Req Req
说明电压与电阻成正比,因此串连电阻电路可作分压电路
例 i
两个电阻的分压:
º + + u1 R1 u u2 R2 _ + º
R1 u1 u R1 R2 R2 u2 u R1 R2
注意方向 !
(4) 功率
p1=R1i2, p2=R2i2,, pn=Rni2 p1: p2 : : pn= R1 : R2 : :Rn 总功率 p=Reqi2 = (R1+ R2+ …+Rn ) i2 =R1i2+R2i2+ +Rni2 表明 =p1+ p2++ pn
3. 电阻的串并联

电路中有电阻的串联,又有电阻的并联, 这种连接方式称电阻的串并联。
6
计算各支路的电压和电流。
i1
+
165V
5
i1 5
i2
6
i3 i4 i5
12
+
165V
i2
18 9
i3
-
18
4
-
i1 165 11 15 A i2 90 18 5 A i3 15 5 10 A i4 30 4 7.5 A
10
+ 10V _
6A
10
+
70V
_
+ 6V _
10
2A 6A
10
+
66V
_
例4.
10 6
6
I=?
4
2A 10
2A
10 4
I=? +
+
40V
+
40V
+
2A
30V
_
_
30V
_ I=?
_
30 60 I 1.5 A 20
10 10
+
60V
+
30V
_
_
例5.
求电流i1 R1
电路的等效变换
1. 二端电路(网络)
任何一个复杂的电路, 向外引出两个端钮,且从一个 端子流入的电流等于从另一端子流出的电流,则称这一电 路为二端络网(或一端口网络)。 无 源 i 无 一 i 源 端 口
2. 二端电路等效的概念
两个二端电路,端口具有相同的电压、电流关系,则 称它们是等效的电路。
B
1 R1 1 R2 R1 R2 Req 1 R1 1 R2 R1 R2
相关文档
最新文档